簡易檢索 / 詳目顯示

研究生: 張婉淳
Wan-chun Chang
論文名稱: 吊車控制系統之模擬與實驗平台開發
Crane Control System of Simulation And Experiment Platform Exploitation
指導教授: 陳亮光
Liang-kuang Chen
口試委員: 姜嘉瑞
Chia-Jui Chiang
洪博雄
Boe-shong Hong
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 50
中文關鍵詞: 三維天車系統平台開發觸覺回授避障
外文關鍵詞: 3D crane, Haptic control
相關次數: 點閱:264下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

天車是港口及陸上貨櫃運輸的重要裝卸工具,亦廣泛地使用於營建及製造等各種場合來搬運重物。本論文是針對天車系統設計一個操控搖桿觸感回饋。將改裝實驗室現有的三軸平台來模擬實際天車移動。以操作搖桿控制天車移動方向,並可自主調變速度以因應各種作業環境,微調天車於狹小複雜空間執行作業以到達目標位置。比較按鈕式之固定行程控制方式,可達到更精確之定位控制,提升系統方便性以及靈敏性。裝設超音波感測器偵測周圍環境以防範天車及懸吊負載與障礙物發生碰撞,具有碰撞風險時,則產生力回饋警示操作者,極度危險時,系統自主停止動作。若同時內部編碼器讀取懸吊物之角度偏大,則自動調整並增強力回饋。利用超音波的距離資訊以及編碼器的角度資訊做力回饋電壓大小之調配,達到操作者最佳手感控制,提升系統安全性,並可避免因視線死角而導致人為誤操作。
  文中將天車與吊掛重物,模擬成一個複擺系統,經由Lagrangian法,推導出複擺系統動態方程式。由於實際平台操作空間受限,因此另外利用MATLAB GUI圖形化介面開發三軸天車模擬平台,方便使用者輸入不同介面並在各種不同的狀況下做模擬,提升系統穩定性。


Overhead crane are important loading and unloading equipment for container handling in harbors and land transportation, they are also widely used in construction and manufacturing sites. In practical industries, overhead traveling cranes are usually manipulated by human operator. The transfer object can be freely moved in the three-dimensional space by human operator for various tasks. Although manipulation for the moving direction of crane is easy, the crane’s operation without vibration of the load is difficult for unskilled operators, and therefore the swinging of the object occurs and residual vibration is not only generated after the transfer is reached at a goal point but also hit the obstacle and then made an accident. Therefore, in this paper, a semi-automatic system is proposed in terms of obstacle avoidance by manual operation of human operator and feedback control for suppression of swing by automatic controller. Further, in order to heighten the safety and prevent the human error, the command input to avoid obstacles and go towards a goal is generated by the fusion of human command using joystick and ultrasound detect the environment information. In order to do more kind of statement that can’t achieve in the experiments. Develop a MATLAB GUI 3D platform to let all the people try on it. The effectiveness of the proposed system was demonstrated by simulations and experiments.

摘 要 Abstract 目錄 圖表索引 第一章 緒論 1.1 前言 1.3 研究目的 1.4 論文大綱 第二章 系統的架構和組成 2.1 實驗平台概述 2.2 運動平台 2.2.1 小型天車架構 2.2.2 馬達及驅動器 2.2.3 滑軌與螺桿 2.3 介面卡 2.3.1 資料擷取卡(PCI-6229) 2.3.2 運動控制卡(PCI-8134) 2.4 感測器 2.4.1 光感測器 2.4.2 超音波 2.4.3 小型編碼器 2.5 操控遙桿 2.6 搖桿馬達驅動IC(TA7291) 第三章 系統建模 3.1 天車控制系統描述 3.2 天車系統運動之模擬 3.3 動態模型建立 3.3.1 一維之動態模擬建立 3.3.2 二維之動態模擬建立 3.4 程式架構 3.5 動畫平台架設 3.5.1 參數設定介紹 3.5.2 程式介面操控介紹 3.6 實驗平台架構概述 3.7 實驗平台程式架構 第四章 實驗與結果討論 4.1 實驗規劃 4.1.1實驗流程與步驟 4.2 角度量測裝置評估 4.3 搖桿力回饋裝置 4.3.1 搖桿本身力回饋大小測試 4.3.2 使用者之力回饋感受測試 4.3.3 結合兩種感測器之力回饋功能測試 4.4 MATLAB GUI設計動畫模擬 4.5 三軸平台實驗 第五章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻

1.M. Ueberle and M. Buss, "Design, control, and evaluation of a new 6 DOF haptic device," Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS02), EPFL Lausanne, October 2002
2.H. Esen, K. Yano and M. Buss, "A Virtual Environment Medical Training System for Bone Drilling with 3 DOF Force Feedback," Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS04), pp. 3631-3636, Sendai, September 2004
3.S. Nagai, A. Kaneshige and S. Ueki, "Three-dimensional obstacle avoidance online path-planning method for autonomous mobile overhead crane" Proc. of IEEE Conference on Mechatronics and Automation, pp.1497-1502,August 2011
4.M. Suzuki and K. Terashima, “Semi-Automatic Control of Overhead Crane using Potential Method,” Proceedings of the 2000 IEEE International Conference on Systems, Vol.5, Nashville, TN, August, 2000, pp. 3224-3229.
5.G. P. Starr, “Swing-free transport of suspended objects with a pathcontrolled robot manipulator,” J. Dyn. Syst., Meas. Control, vol. 107, pp. 97–100, 1985.
6.D. Strip, “Swing-free transport of suspended objects:Ageneral treatment,” IEEE Trans. Robot. Autom., vol. 5, no. 2, pp. 234–236, Apr. 1989.
7.N. C. Singer and W. P. Seering, “Preshaping command inputs to reduce system vibration,” J. Dyn. Syst., Meas., Control, vol. 112, pp. 76–82,1990.
8.B. K. Kim, S. Park,W. K. Chung, and Y. Youm, “Robust controller design for PTP motion of vertical xy positioning systems with a flexible beam,” IEEE/ASME Trans. Mechatronics, vol. 8, no. 1, pp. 99–110, Mar. 2003.
9.K. Sorensen, W. Singhose, and S. Dickerson, “A controller enabling precise positioning and sway reduction in bridge and gantry cranes,” Control Eng. Practice, vol. 15, no. 7, pp. 825–837, 2007.
10.Diantong Liu , Jianqiang Yi , Dongbin Zhao, and Wei Wang , “Adaptive sliding mode fuzzy control for a two-dimensional overhead crane,” Mechatronics, vol. 15, no. 5, pp. 505-522, 2005.
11.F. Omar, F. Karray, O. Basir and L.Yu., “Autonomous Overhead Crane System Using a Fuzzy Logic Controller,” J. Vib. Control, vol. 10, pp.1255-1270, 2004.
12.Y. Fang, W. E. Dixon, D. M. Dawson and E. Zergeroglu, “Nonlinear coupling control laws for an underactuated overhead crane system,” Mechatronics, vol.8, no. 3, pp. 418-423, 2003.
13.Y. Sakawa and Y. Shindo, “Optimal control of container cranes,” Automatica, vol. 18, no. 3A, pp. 257–266, 1982.
14.A. Z. Al-Garni, K. A. F. Moustafa, and S. S. A. K. J. Nizami, “Optimal control of overhead cranes,” Control Eng. Practice, vol. 3, pp. 1277–1284, 1995.
15.R. M. Hischorn and G. Miller, “Control of Nonlinear system with friction,” IEEE Trans. Contr. Tech., vol. 28, no. 6, pp. 588-595, 1992.
16.K. Yano and K. Terashima, "Sloshing Suppression Control of Liquid Transfer Systems Considering 3D Transfer Path," IEEE/ASME Trans.on Mechatronics, vol. 10, no. 1, pp. 1-9, February 2005
17.K. Yano, T. Toda and K. Terashima, "Sloshing Suppression Control of Automatic Pouring Robot by Hybrid Shape Approach," Proc. of IEEE Conference on Decision and Control (CDCO1), pp.1328-1333,December 2001
18.Akihiro Kaneshige and Kazuhiko Terashima, "Development of the Operation Support System for a Rotary Crane Considering the Collision Avoidance to the Ground and the Suppression a Swing of Transfer Object," SICE-ICASE International Joint Conference,pp.1530-1533,October 2006
19.K. Yano, M. Yamada and K. Terashima, "Development of Operator Support System for Rotary Crane with Simultaneous Control of Positioning and Sway Suppression," International Conference on Control Applications,pp551-556,October 2007
20.R. Sato, Y. Noda, T. Miyoshi, K. Terashima, K. Kakihara, Y. Nie, and K. Funato, "Operational support control by haptic joystick considering load sway suppression and obstacle avoidance for intelligent crane" Annual Conference of IEEE, IECON '09. 35th, pp.2301-2307, 2009
21.K. Yano, A. Takemoto and K. Terashima, "Semi-automatic obstacle avoidance control for operation support system with haptic joystick" IEEE/RSJ International Conference on Digital Object Identifier, pp. 1229-1234, 2005
22.K.L. Sorensen, J.B. Spiers and W.E. Singhose, "Operational Effects of Crane Interface Devices" IEEE Conference on Digital Object Identifier, pp. 1073-1078, 2007

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)

QR CODE