簡易檢索 / 詳目顯示

研究生: 游鈞如
Chun-Ju Yu
論文名稱: 氧化鋅奈米柱摻雜石墨相氮化碳與高能隙薄膜材料複合結構之氫氣感測研究
The Studies of g-C3N4 Doped ZnO Nanorods with High band gap film composite structure for H2 Sensing Applications
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
Shyan-Kay Jou
段維新
Wei-Hsing Tuan
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 223
中文關鍵詞: 氧化鋅奈米柱石墨相氮化碳超奈米鑽石氧化鎵氫氣感測器
外文關鍵詞: ZnO nanorods, Graphite carbon nitride, Ultra-nanocrystalline diamond, Gallium oxide, Hydrogen gas sensor
相關次數: 點閱:449下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以簡單與低成本的製程技術製備高效能的氫氣感測元件,內文將分為三個部分。第一部分探討不同成長溶液濃度的氧化鋅奈米柱之氫氣感測及物性分析。接著在摻雜不同條件的石墨相氮化碳於氧化鋅奈米柱之氫氣感測及物性分析。第二部分則是將前述摻雜石墨相氮化碳的氧化鋅奈米柱成長於超奈米鑽石結構上,再做氫氣感測及物性分析。第三部分則是將第一部分結果成長於退火前後之氧化鎵結構上,再做氫氣感測及物性分析。此外,針對氫氣感測最好的試片,將其進行穩定性、重複性及選擇性量測。
    研究發現,氧化鋅奈米柱在成長溶液濃度為35 mM時,由拉曼與XRD分析得知有較佳的結晶品質,在500 ppm的氫氣濃度下,響應值為12.7%。接著在水熱法中添加不同參數的石墨相氮化碳,後成長石墨相氮化碳複合氧化鋅奈米柱,響應值有所提升,在500 ppm的氫氣濃度下,響應值為23%。造成提升的因素為,因為氧化鋅與石墨相氮化碳的晶格參數不同,並且之間存在新的缺陷使得響應度獲得提升,將此結構複合於超奈米鑽石上,在500 ppm的氫氣濃度下,響應值為43.7%。響應值與穩定度皆有增加,因為超奈米鑽石這層釋放出大量的碳,因此吸附水平提高,使得石墨相氮化碳複合氧化鋅奈米柱的吸附能力和缺陷性質增加。
    進一步研究,氧化鋅奈米柱在成長於氧化鎵結構上,在500 ppm的氫氣濃度下,響應值為16.3%。石墨相氮化碳於氧化鋅奈米柱/片在成長於氧化鎵結構上,在500 ppm的氫氣濃度下,響應值為18.7%。石墨相氮化碳於氧化鋅奈米柱/片在成長於退火後氧化鎵結構上,在500 ppm的氫氣濃度下,響應值為30%。因為奈米柱與奈米片表面積的增加,表面能快速的解離,使得更多的電子釋放到導帶響應值獲得提升,隨著摻雜石墨相氮化碳與氧化鎵退火後對於使得穩定性與衰退性獲得改善。超奈米鑽石整體響應對於氧化鎵較佳,是因為氧缺陷區所造成的影響,由OI/OIall比值可知Zn控制引入氧缺陷區的有效途徑,因此對於氫氣響應度高。


    In this study, a structure of graphite carbon nitride (g-C3N4) doped zinc oxide nanorods (ZNR) was synthesized using a simple and cost-effective method. Through this method, g-C3N4 were successfully doped with ZNR. Various analyses were used to confirm the successful formation of the gCN-ZNR structure. The hydrogen sensing properties of gCN-ZNR were investigated, which shows that remarkably improved H2 sensing performances for gCN doped ZNR.Then, this structure is combined with the ultra-nanodiamonds (N-UNCD), which improved H2 sensing performances and the stability. The gCN-ZNR/N-UNCD based H2 sensor shows the good response of 43.7% since the N-UNCD layer releases a large amount of carbon, which increases the adsorption capacity for the gCN-ZNR structure.
    Then the gCN-ZNR structure grown on Ga2O3 film(gCN-ZNR/Ga2O3) and the gCN-ZNR structure grown on annealed Ga2O3 film(gCN-ZNR/Ga2O3 A) were studied. It was found that the nanorods and nanosheets structure effectively increased the surface area that provides more active sites, which leads to the rapid gas adsorption/desorption, thereby exhibit a higher response for both of the gCN-ZNR/Ga2O3 and gCN-ZNR/Ga2O3 A samples. Moreover, the stability and decay properties are improved for the gCN-ZNR/Ga2O3 A samples.
    In summary, the response value(43.7%) of gCN-ZNR/N-UNCD is better than that of gCN-ZNR/Ga2O3 A(30.0%) since the ratio of OI/OIall (the concentration of oxygen vacancy) is higher for gCN-ZNR/N-UNCD samples. This studies shows promising hybrid nanostructures for future hygrogen sensor applications.

    摘要 I 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 7 第二章 文獻探討 8 2.1 氧化鋅材料特性簡介 8 2.1.1 水熱法成長機制 10 2.1.2 VLS法成長機制 12 2.1.3 電化學沉積法 13 2.2 石墨相氮化碳(g-C3N4)特性簡介 16 2.2.1熱蒸氣冷凝法 17 2.2.2微接觸印刷輔助途徑法 18 2.2.3溶劑熱途徑法 19 2.2.4直接成長溶劑熱途徑法 20 2.3 鑽石薄膜之特性簡介 21 2.3.1鑽石薄膜基本性質及結構 21 2.3.2 超奈米鑽石成長機制 22 2.3.3奈米結晶鑽石 24 2.4 氧化鎵(Ga2O3)特性簡介 25 2.5 氣體感測器介紹 28 2.5.1 金屬氧化物半導體型[8] 28 2.5.2 電化學固態電解質型 28 2.5.3 觸媒燃燒型 29 2.5.4 表面聲波型 29 2.6 氧化鋅與氫氣感測 30 第三章 實驗方法 33 3.1 實驗設計與流程 33 3.2 使用材料介紹 37 3.3 基板清洗 38 3.4熱蒸氣冷凝法(TVC)製備石墨相氮化碳 40 3.5 水熱法(Hydrothermal method)成長氧化鋅奈米柱 41 3.5.1 製備氧化鋅晶種層 41 3.5.2 成長氧化鋅奈米柱 42 3.5.3 製備摻雜石墨相氮化碳之氧化鋅結構 43 3.6 微波電漿化學氣相沉積法成長超奈米鑽石 44 3.7 磁控薄膜濺鍍系統濺鍍氧化鎵薄膜 45 3.8 儀器設備與材料分析方法 46 3.8.1 場發射掃描式電子顯微鏡 (Scanning Electron Microscope, FE-SEM) 46 3.8.2 紫外光-可見光光譜儀(UV-VIS Spectrophotometer) 47 3.8.3拉曼光譜儀(Raman Spectrum) 47 3.8.4 傅立葉轉換紅外線光譜儀 (FTIR) 48 3.8.5 X射線繞射儀(X-ray Diffraction, XRD) 49 3.8.6光激發螢光頻譜儀(Photoluminescence, PL) 50 3.8.7場發射槍穿透式電子顯微鏡(300kV)(FEG-TEM ) 51 3.8.8 X光電子能譜分析儀(X-ray photoelectron spectroscopy,XPS) 52 3.8.9 高真空量測系統(Gas Sensor, GS) 53 第四章 氧化鋅奈米柱摻雜石墨相氮化碳(gCN-ZNR)之氫氣感測研究 54 4.1 氧化鋅奈米柱之特性分析 54 4.1.1 不同成長濃度之氧化鋅奈米柱表面型態分析 54 4.1.2 拉曼光譜儀分析 57 4.1.3 X-ray繞射儀分析 59 4.1.4 紫外光-可見光光譜儀分析 60 4.1.5 氧化鋅奈米柱之氫氣感測分析 61 4.2石墨相氮化碳(g-C3N4)之特性分析 67 4.2.1 g-C3N4光激發螢光頻譜儀分析 67 4.2.2 g-C3N4傅立葉轉換紅外線光譜儀分析 68 4.2.3 g-C3N4 X-ray 繞射儀分析 69 4.2.4 g-C3N4紫外光-可見光譜儀圖分析 70 4.3 gCN-ZNR複合結構之特性分析 70 4.3.1 gCN-ZNR表面型態分析 71 4.3.2 gCN-ZNR拉曼光譜儀分析 73 4.3.3 gCN-ZNR X-ray 繞射儀分析 75 4.3.4 gCN-ZNR紫外光-可見光光譜儀分析 78 4.3.5 gCN-ZNR場發射槍穿透式電子顯微鏡分析 79 4.3.6 gCN-ZNR X光電子能譜分析儀分析 80 4.3.7 gCN-ZNR複合結構之氫氣感測分析 82 4.3.8 gCN-ZNR複合結構之選擇性分析 86 4.3.9 gCN-ZNR複合結構之氫氣感測重複性分析 87 4.3.10 gCN-ZNR複合結構之氫氣穩定性分析 88 4.4 gCN-ZNR之氫氣感測總結 89 第五章 氧化鋅奈米柱摻雜石墨相氮化碳於超奈米鑽石(gCN-ZNR/N-UNCD)複合結構之氫氣感測研究 93 5.1 超奈米鑽石(N-UNCD)之特性分析 93 5.1.1 N-UNCD表面型態分析 93 5.1.2 N-UNCD拉曼光譜儀分析 96 5.2 gCN-ZNR/N-UNCD複合結構之特性分析 97 5.2.1 gCN-ZNR/N-UNCD表面型態分析 98 5.2.2 gCN-ZNR/N-UNCD拉曼光譜儀分析 100 5.2.3 gCN-ZNR/N-UNCD X-ray 繞射儀分析 103 5.2.4 gCN-ZNR/N-UNCD紫外光-可見光光譜儀分析 106 5.2.5 gCN-ZNR/N-UNCD場發射槍穿透式電子顯微鏡分析 107 5.2.6 gCN-ZNR/N-UNCD X光電子能譜分析儀分析 108 5.2.7 gCN-ZNR/N-UNCD複合結構之氫氣感測分析 109 5.2.8 gCN-ZNR/N-UNCD複合結構之選擇性分析 114 5.2.9 gCN-ZNR/N-UNCD複合結構之氫氣重複性分析 115 5.2.10 gCN-ZNR/N-UNCD複合結構之氫氣穩定性分析 116 5.3 gCN-ZNR/N-UNCD之氫氣感測總結 117 第六章氧化鋅奈米柱摻雜石墨相氮化碳於氧化鎵(gCN-ZNR/β-Ga2O3)複合結構之氫氣感測研究 121 6.1氧化鎵之特性分析 121 6.1.1表面型態分析 121 6.1.2 X-ray 繞射儀分析 123 6.1.3紫外光-可見光光譜儀分析 126 6.1.4氧化鎵X光電子能譜分析儀分析 128 6.1.5氧化鎵之氫氣感測分析 129 6.1.6 Ga2O3、β-Ga2O3 A6之氫氣感測總結 131 6.2氧化鋅奈米片於氧化鎵(ZNS/β-Ga2O3)複合結構之特性分析 133 6.2.1 ZNS/β-Ga2O3表面型態分析 133 6.2.2 ZNS/β-Ga2O3 X-ray 繞射儀分析 134 6.2.3 ZNS/β-Ga2O3紫外光-可見光光譜儀分析 136 6.2.4 ZNS/β-Ga2O3 X光電子能譜分析儀分析 137 6.2.5 ZNS/β-Ga2O3複合結構之氫氣感測分析 139 6.2.6 ZNS/β-Ga2O3複合結構之選擇性分析 143 6.2.7 ZNS/β-Ga2O3複合結構之氫氣重複性分析 144 6.2.8 ZNS/β-Ga2O3複合結構之氫氣穩定性分析 145 6.2.9 ZNS/β-Ga2O3之氫氣感測總結 146 6.3氧化鋅奈米柱摻雜石墨相氮化碳於氧化鎵(gCN-ZNR/β-Ga2O3)複合結構之特性分析 148 6.3.1 gCN-ZNR/β-Ga2O3表面型態分析 148 6.3.2 gCN-ZNR/β-Ga2O3 X-ray 繞射儀分析 149 6.3.3 gCN-ZNR/β-Ga2O3紫外光-可見光光譜儀分析 151 6.3.4 gCN-ZNR/β-Ga2O3 X光電子能譜分析儀分析 152 6.3.5 gCN-ZNR/β-Ga2O3複合結構之氫氣感測分析 154 6.3.6 gCN-ZNR/β-Ga2O3複合結構之選擇性分析 158 6.3.7 gCN-ZNR/β-Ga2O3複合結構之氫氣重複性分析 159 6.3.8 gCN-ZNR/β-Ga2O3複合結構之氫氣穩定性分析 160 6.3.9 gCN-ZNR/β-Ga2O3之氫氣感測總結 161 6.4氧化鋅奈米片摻雜石墨相氮化碳於氧化鎵經600oC退火 (gCN-ZNS/β-Ga2O3A6)複合結構之特性分析 163 6.4.1 gCN-ZNS/β-Ga2O3 A6表面型態分析 163 6.4.2 gCN-ZNS/β-Ga2O3 A6 X-ray 繞射儀分析 164 6.4.3 gCN-ZNS/β-Ga2O3 A6紫外光-可見光光譜儀分析 166 6.4.4 gCN-ZNS/β-Ga2O3 A6 X光電子能譜分析儀分析 168 6.4.5 gCN-ZNS/β-Ga2O3 A6複合結構之氫氣感測分析 170 6.4.6 gCN-ZNS/β-Ga2O3A6複合結構之選擇性分析 173 6.4.7 gCN-ZNS/β-Ga2O3A6複合結構之氫氣重複性分析 174 6.4.8 gCN-ZNS/β-Ga2O3A6複合結構之氫氣穩定性分析 175 6.5 gCN-ZNR、gCN-ZNR/N-UNCD、Ga2O3、β-Ga2O3 A6、ZNS/β-Ga2O3、gCN-ZNR/β-Ga2O3、gCN-ZNS/β-Ga2O3 A6複合結構XPS綜合分析 176 6.6 gCN-ZNS/β-Ga2O3 A6之氫氣感測總結 186 第七章 結論與未來展望 189 7.1 結論 189 7.2 未來展望 190 參考文獻 191

    [1].Hyun, S. K., et al. (2017). "Ethanol gas sensing using a networked PbO-decorated SnO2 nanowires." Thin Solid Films 637: 21-26.
    [2].Yole (2018). "氣體傳感器市場2022年挑戰10美元." from https://kknews.cc/science/o3zln5o.html.
    [3].Najjar, Y. S. (2013). "Hydrogen safety: The road toward green technology." International Journal of Hydrogen Energy 38(25): 10716-10728.
    [4].Hübert, T., et al. (2014). "Developments in gas sensor technology for hydrogen safety." International Journal of Hydrogen Energy 39(35): 20474-20483.
    [5].Kou, X., et al. (2018). "Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping." Sensors and Actuators B: Chemical 256: 861-869.
    [6].Navaneethan, M., et al. (2018). "Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature." Sensors and Actuators B: Chemical 255: 672-683.
    [7].Zou, C., et al. (2016). "Synthesis and enhanced NO2 gas sensing properties of ZnO nanorods/TiO2 nanoparticles heterojunction composites." Journal of colloid and interface science 478: 22-28.
    [8].陳一誠 (1992). "金屬氧化物半導體行氣體感測器." 材料與社會 68: 62-66.
    [9].Ihokura, K. and J. Watson (2017). The Stannic Oxide Gas SensorPrinciples and Applications, CRC press.
    [10].Liu, J., et al. (2018). "Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst." Applied Catalysis B: Environmental 222: 35-43.
    [11].Wang, J., et al. (2018). "Defects modified in the exfoliation of g-C3N4 nanosheets via a self-assembly process for improved hydrogen evolution performance." Applied Catalysis B: Environmental 238: 629-637.
    [12].Mamba, G. and A. Mishra (2016). "Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation." Applied Catalysis B: Environmental 198: 347-377.
    [13].Zhang, R., et al. (2018). "Highly sensitive acetone gas sensor based on g-C3N4 decorated MgFe2O4 porous microspheres composites." Sensors 18(7): 2211.
    [14].Birrell, J., et al. (2002). "Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond." Applied physics letters 81(12): 2235-2237.
    [15].Cheng, Y. W., et al. (2014). "Electrically conductive ultrananocrystalline diamond‐coated natural graphite‐copper anode for new long life lithium‐ion battery." Advanced Materials 26(22): 3724-3729.
    [16].Panda, K., et al. (2014). "Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films." ACS applied materials & interfaces 6(11): 8531-8541.
    [17].Bhattacharyya, S., et al. (2001). "Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films." Applied physics letters 79(10): 1441-1443.
    [18].Williams, O. A., et al. (2004). "n-Type conductivity in ultrananocrystalline diamond films." Applied physics letters 85(10): 1680-1682.
    [19].Arenal, R., et al. (2007). "Diamond nanowires and the insulator-metal transition in ultrananocrystalline diamond films." Physical Review B 75(19): 195431.
    [20].Sankaran, K., et al. (2012). "Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma." Journal of Physics D: Applied Physics 45(36): 365303.
    [21].Saravanan, A., et al. (2015). "Highly conductive diamond–graphite nanohybrid films with enhanced electron field emission and microplasma illumination properties." ACS applied materials & interfaces 7(25): 14035-14042.
    [22].Ogita, M., et al. (2001). "Ga2O3 thin film for oxygen sensor at high temperature." Applied Surface Science 175: 721-725.
    [23].Víllora, E. G., et al. (2004). "Large-size β-Ga2O3 single crystals and wafers." Journal of Crystal Growth 270(3-4): 420-426.
    [24].Víllora, E. G., et al. (2006). "Rf-plasma-assisted molecular-beam epitaxy of β-Ga2 O3." Applied physics letters 88(3): 031105.
    [25].Ohira, S., et al. (2006). "Fabrication of hexagonal GaN on the surface of β-Ga2O3 single crystal by nitridation with NH3." Thin Solid Films 496(1): 53-57.
    [26].Oshima, T., et al. (2007). "Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors." Japanese Journal of Applied Physics 46(11R): 7217.
    [27].Suzuki, R., et al. (2009). "Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing." Applied physics letters 94(22): 222102.
    [28].Nakagomi, S., et al. (2011). "Hydrogen sensitive Schottky diode based on β-Ga2O3 single crystal." Sensor Letters 9(1): 31-35.
    [29].Nakagomi, S., et al. (2011). "Comparison of hydrogen sensing properties of Schottky diodes based on SiC and β-Ga2O3 single crystal." Sensor Letters 9(2): 616-620.
    [30].Higashiwaki, M., et al. (2012). "Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates." Applied physics letters 100(1): 013504.
    [31].Gao, F., et al. (2016). "Ultraviolet electroluminescence from Au-ZnO nanowire Schottky type light-emitting diodes." Applied physics letters 108(26): 261103.
    [32].He, J., et al. (2018). "Enhanced field emission of ZnO nanowire arrays by the control of their structures." Materials Letters 216: 182-184.
    [33].Hsu, C.-L., et al. (2016). "A dual-band photodetector based on ZnO nanowires decorated with Au nanoparticles synthesized on a glass substrate." RSC advances 6(78): 74201-74208.
    [34].Burgos, A., et al. (2018). "Electrodeposition of ZnO nanorods as electron transport layer in a mixed halide perovskite solar cell." Int. J. Electrochem. Sci 13: 6577-6583.
    [35].Deng, X., et al. (2017). "ZnO enhanced NiO-based gas sensors towards ethanol." Materials Research Bulletin 90: 170-174.
    [36].Liu, J., et al. (2017). "Highly sensitive and low detection limit of ethanol gas sensor based on hollow ZnO/SnO2 spheres composite material." Sensors and Actuators B: Chemical 245: 551-559.
    [37].Shi, Z.-F., et al. (2015). "Photoluminescence performance enhancement of ZnO/MgO heterostructured nanowires and their applications in ultraviolet laser diodes." Physical Chemistry Chemical Physics 17(21): 13813-13820.
    [38].Han, Z., et al. (2012). "Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance." Applied Catalysis B: Environmental 126: 298-305.
    [39].Kim, K.-H., et al. (2013). "Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation." Scientific reports 3(1): 1-6.
    [40].Özgür, Ü., et al. (2005). "A comprehensive review of ZnO materials and devices." Journal of applied physics 98(4): 11.
    [41].Okada, T., et al. (2005). "Ultraviolet lasing and field emission characteristics of ZnO nano-rods synthesized by nano-particle-assisted pulsed-laser ablation deposition." Applied Physics A 81(5): 907-910.
    [42].徐育婷 (2010). 研製氧化鋅材料之共振腔增強式金屬-半導體-金屬紫外光檢測器.
    [43].Ashrafi, A. and C. Jagadish (2007). "Review of zincblende ZnO: Stability of metastable ZnO phases." Journal of applied physics 102(7): 4.
    [44].[44].Solozhenko, V. L., et al. (2011). "Kinetics of the wurtzite-to-rock-salt phase transformation in ZnO at high pressure." The Journal of Physical Chemistry A 115(17): 4354-4358.
    [45].Morkoç, H. and Ü. Özgür (2008). Zinc oxide: fundamentals, materials and device technology, John Wiley & Sons.
    [46].Ashrafi, A. A., et al. (2000). "Growth and characterization of hypothetical zinc-blende ZnO films on GaAs (001) substrates with ZnS buffer layers." Applied physics letters 76(5): 550-552.
    [47].Chan, Y., et al. (2003). "ZnSe nanowires epitaxially grown on GaP (111) substrates by molecular-beam epitaxy." Applied physics letters 83(13): 2665-2667.
    [48].Shaikh, S. K., et al. (2016). "Chemical bath deposited ZnO thin film based UV photoconductive detector." Journal of Alloys and Compounds 664: 242-249.
    [49].Polsongkram, D., et al. (2008). "Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method." Physica B: Condensed Matter 403(19-20): 3713-3717.
    [50].Hejazi, S., et al. (2008). "The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor–liquid–solid (VLS) mechanism." Journal of Alloys and Compounds 455(1-2): 353-357.
    [51].Vergés, M. A., et al. (1990). "Formation of rod-like zinc oxide microcrystals in homogeneous solutions." Journal of the Chemical Society, Faraday Transactions 86(6): 959-963.
    [52].Vayssieres, L., et al. (2001). "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO." The Journal of Physical Chemistry B 105(17): 3350-3352.
    [53].Yang, Y., et al. (2005). "ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement." Chemical physics letters 403(4-6): 248-251.
    [54].Mensah, S. L., et al. (2007). "Formation of single crystalline ZnO nanotubes without catalysts and templates." Applied physics letters 90(11): 113108.
    [55].Wagner, a. R. and s. W. Ellis (1964). "Vapor‐liquid‐solid mechanism of single crystal growth." Applied physics letters 4(5): 89-90.
    [56].Wang, N., et al. (2008). "Growth of nanowires." Materials Science and Engineering: R: Reports 60(1-6): 1-51.
    [57].Huang, M. H., et al. (2001). "Room-temperature ultraviolet nanowire nanolasers." science 292(5523): 1897-1899.
    [58].Cembrero, J., et al. (2004). "Nanocolumnar ZnO films for photovoltaic applications." Thin Solid Films 451: 198-202.
    [59].Liebig, J. v. (1834). "About some nitrogen compounds." Ann. Pharm 10(10): 10.
    [60].Goettmann, F., et al. (2006). "Metal-free catalysis of sustainable Friedel–Crafts reactions: direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds." Chemical communications(43): 4530-4532.
    [61].Wang, X., et al. (2009). "A metal-free polymeric photocatalyst for hydrogen production from water under visible light." Nature materials 8(1): 76-80.
    [62].Dong, G., et al. (2015). "Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent photocatalytic activity for NO removal." Applied Catalysis B: Environmental 174: 477-485.
    [63].Oh, J., et al. (2015). "Oxidized Carbon Nitrides: Water‐Dispersible, Atomically Thin Carbon Nitride‐Based Nanodots and Their Performances as Bioimaging Probes." Chemistry–A European Journal 21(16): 6241-6246.
    [64].Maeda, K., et al. (2009). "Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light." The Journal of Physical Chemistry C 113(12): 4940-4947.
    [65].Liu, J., et al. (2015). "A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries." Nano letters 15(8): 5137-5142.
    [66].Yu, J., et al. (2014). "Photocatalytic reduction of CO2 into hydrocarbon solar fuels over gC3N4–Pt nanocomposite photocatalysts." Physical Chemistry Chemical Physics 16(23): 11492-11501.
    [67].Yan, S., et al. (2009). "Photodegradation performance of g-C3N4 fabricated by directly heating melamine." Langmuir 25(17): 10397-10401.
    [68].Wang, X., et al. (2009). "Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light." Journal of the American Chemical Society 131(5): 1680-1681.
    [69].Abe, R. (2010). "Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation." Journal of Photochemistry and Photobiology C: Photochemistry Reviews 11(4): 179-209.
    [70].Shi, X., et al. (2015). "General characterization methods for photoelectrochemical cells for solar water splitting." ChemSusChem 8(19): 3192-3203.
    [71].Li, Y. and J. Z. Zhang (2010). "Hydrogen generation from photoelectrochemical water splitting based on nanomaterials." Laser & Photonics Reviews 4(4): 517-528.
    [72].Wang, S., et al. (2018). "New Iron‐Cobalt Oxide Catalysts Promoting BiVO4 Films for Photoelectrochemical Water Splitting." Advanced Functional Materials 28(34): 1802685.
    [73].Bian, J., et al. (2015). "Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications." Nano Energy 15: 353-361.
    [74].Lv, X., et al. (2017). "A new strategy of preparing uniform graphitic carbon nitride films for photoelectrochemical application." Carbon 117: 343-350.
    [75].Lu, X., et al. (2017). "Novel framework g- gC3N4 film as efficient photoanode for photoelectrochemical water splitting." Applied Catalysis B: Environmental 209: 657-662.
    [76].Xie, X., et al. (2016). "In situ growth of graphitic carbon nitride films on transparent conducting substrates via a solvothermal route for photoelectrochemical performance." RSC advances 6(12): 9916-9922.
    [77].Shalom, M., et al. (2014). "Controlled carbon nitride growth on surfaces for hydrogen evolution electrodes." Angewandte Chemie 126(14): 3728-3732.
    [78].Dong, F., et al. (2011). "Efficient synthesis of polymeric gC3N4 layered materials as novel efficient visible light driven photocatalysts." Journal of Materials Chemistry 21(39): 15171-15174.
    [79].Matsumoto, S., et al. (1982). "Vapor deposition of diamond particles from methane." Japanese Journal of Applied Physics 21(4A): L183.
    [80].Lin, C., et al. (2014). "Development of high-performance UV detector using nanocrystalline diamond thin film." International Journal of Photoenergy 2014.
    [81].Arora, S. and V. Vankar (2006). "Field emission characteristics of microcrystalline diamond films: Effect of surface coverage and thickness." Thin Solid Films 515(4): 1963-1969.
    [82]. S.J. Kim, B.K Jul, Y.H. Lee, B.S. Park IEEE (1996) 526.
    [83]. 曾永華、陳柏穎、鄭宇明、游銘永 (2014). "人造鑽石的合成及應用." 497.
    [84]. Ong, W.-J., et al. (2016). "Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?" Chemical reviews 116(12): 7159-7329.
    [85]. Roy, R., et al. (1952). "Polymorphism of Ga2O3 and the system Ga2O3—H2O." Journal of the American Chemical Society 74(3): 719-722.
    [86]. Stepanov, S., et al. (2016). "Gallium OXIDE: Properties and applica 498 a review." Rev. Adv. Mater. Sci 44: 63-86.
    [87]. Åhman, J., et al. (1996). "A reinvestigation of β-gallium oxide." Acta Crystallographica Section C: Crystal Structure Communications 52(6): 1336-1338.
    [88]. Pearton, S., et al. (2018). "A review of Ga2O3 materials, processing, and devices." Applied Physics Reviews 5(1): 011301.
    [89]. Higashiwaki, M., et al. (2016). "Recent progress in Ga2O3 power devices." Semiconductor Science and Technology 31(3): 034001.
    [90]. Miyata, T., et al. (2000). "Gallium oxide as host material for multicolor emitting phosphors." Journal of Luminescence 87: 1183-1185.
    [91]. Fleischer, M., et al. (1990). "Stability of semiconducting gallium oxide thin films." Thin Solid Films 190(1): 93-102.
    [92]. Ho, C.-H., et al. (2010). "Thermoreflectance characterization of β-Ga2O3 thin-film nanostrips." Optics express 18(16): 16360-16369.
    [93]. Ma, X., et al. (2017). "First-principles calculations of electronic and optical properties of aluminum-doped β-Ga2O3 with intrinsic defects." Results in physics 7: 1582-1589.
    [94]. Irmscher, K., et al. (2011). "Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method." Journal of applied physics 110(6): 063720.
    [95]. 黃炳照 (2001). "固態電解質電化學氣體感測器." 化學 59(2): 207-217.
    [96]. D'amico, A., et al. (1982). "Surface acoustic wave hydrogen sensor." Sensors and Actuators 3: 31-39.
    [97]. 張宏維, et al. (2007). "表面聲波氣體感測器之研製與應用." 化學 65(4): 487-497.
    [98]. Kathiravan, D., et al. (2017). "Self-assembled hierarchical interfaces of ZnO nanotubes/graphene heterostructures for efficient room temperature hydrogen sensors." ACS applied materials & interfaces 9(13): 12064-12072.
    [99]. Gu, H., et al. (2012). "Hydrogen gas sensors based on semiconductor oxide nanostructures." Sensors 12(5): 5517-5550.
    [100]. Wagner, C. (1950). "The mechanism of the decomposition of nitrous oxide on zinc oxide as catalyst." The Journal of Chemical Physics 18(1): 69-71.
    [101]. Seiyama, T., et al. (1962). "A new detector for gaseous components using semiconductive thin films." Analytical Chemistry 34(11): 1502-1503.
    [102]. Comini, E., et al. (2002). "Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts." Applied physics letters 81(10): 1869-1871.
    [103]. Wang, C., et al. (2008). "Hydrogen-induced metallization of zinc oxide (2 1 1 0) surface and nanowires: the effect of curvature." Physical Review B 77(24): 245303.
    [104]. Xu, H., et al. (2009). "Hydrogen and oxygen adsorption on ZnO nanowires: A first-principles study." Physical Review B 79(7): 073402.
    [105]. Wikipedia. "Scherrer_equation." from https://en.wikipedia.org/wiki/Scherrer_equation.
    [106]. Das, D. and P. Mondal (2014). "Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by RF magnetron sputtering." RSC advances 4(67): 35735-35743.
    [107]. Huang, B.-R., et al. (2017). "Few-layer thin-film metallic glass-enhanced optical properties of ZnO nanostructures." ACS applied materials & interfaces 9(45): 39475-39483.
    [108]. Ebin, B., et al. (2012). "Production and characterization of ZnO nanoparticles and porous particles by ultrasonic spray pyrolysis using a zinc nitrate precursor." International Journal of Minerals, Metallurgy, and Materials 19(7): 651-656.
    [109]. Saravanan, A., et al. (2019). "Interface engineering of ultrananocrystalline diamond/MoS2-ZnO heterostructures and its highly enhanced hydrogen gas sensing properties." Sensors and Actuators B: Chemical 292: 70-79.
    [110]. Kong, J.-Z., et al. (2017). "Visible light-driven photocatalytic performance of N-doped ZnO/gC3N4 nanocomposites." Nanoscale research letters 12(1): 1-10.
    [111]. Sinha, M., et al. (2016). "Ultrafast and reversible gas-sensing properties of ZnO nanowire arrays grown by hydrothermal technique." The Journal of Physical Chemistry C 120(5): 3019-3025.
    [112]. Lin, P., et al. (2018). "Hybrid reduced graphene oxide/TiO2/graphitic carbon nitride composites with improved photocatalytic activity for organic pollutant degradation." Applied Physics A 124(7): 1-11.
    [113]. Zhao, Y., et al. (2005). "Turbostratic carbon nitride prepared by pyrolysis of melamine." Journal of materials science 40(9-10): 2645-2647.
    [114]. Li, X., et al. (2009). "Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine." Applied Physics A 94(2): 387-392.
    [115]. Wu, D., et al. (2015). "Two dimensional graphitic-phase C3N4 as multifunctional protecting layer for enhanced short-circuit photocurrent in ZnO based dye-sensitized solar cells." Chemical Engineering Journal 280: 441-447.
    [116]. ian, W., et al. (2016). "Detection of Ag+ using graphite carbon nitride nanosheets based on fluorescence quenching." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 169: 122-127.
    [117]. Wang, J., et al. (2017). "Core-shell g-C3N4@ ZnO composites as photoanodes with double synergistic effects for enhanced visible-light photoelectrocatalytic activities." Applied Catalysis B: Environmental 217: 169-180.
    [118]. Muravitskaya, A., et al. (2016). "Enhanced Raman scattering of ZnO nanocrystals in the vicinity of gold and silver nanostructured surfaces." Optics express 24(2): A168-A173.
    [119]. Xu, M., et al. (2013). "Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity." ACS applied materials & interfaces 5(23): 12533-12540.
    [120]. Xu, X., et al. (2011). "g-C3N4 coated SrTiO3 as an efficient photocatalyst for H2 production in aqueous solution under visible light irradiation." International Journal of Hydrogen Energy 36(21): 13501-13507.
    [121]. Yan, H. and H. Yang (2011). "TiO2–g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation." Journal of Alloys and Compounds 509(4): L26-L29.
    [122]. Mao, N. (2019). "Investigating the Heteronjunction between ZnO/Fe2O3 and gC3N4 for an Enhanced Photocatalytic H 2 production under visible-light irradiation." Scientific reports 9(1): 1-9.
    [123]. Wang, J., et al. (2017). "Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution." Applied Catalysis B: Environmental 206: 406-416.
    [124]. Li, X., et al. (2020). "Atomic Layer Deposition of Ga2O3/ZnO Composite Films for High-Performance Forming-Free Resistive Switching Memory." ACS applied materials & interfaces 12(27): 30538-30547.
    [125]. Pfeiffer, R., et al. (2003). "Evidence for trans-polyacetylene in nano-crystalline diamond films." Diamond and Related Materials 12(3-7): 268-271.
    [126]. Kuzmany, H., et al. (2004). "The mystery of the 1140 cm−1 Raman line in nanocrystalline diamond films." Carbon 42(5-6): 911-917.
    [127]. Sankaran, K., et al. (2014). "Origin of graphitic filaments on improving the electron field emission properties of negative bias-enhanced grown ultrananocrystalline diamond films in CH4/Ar plasma." Journal of applied physics 116(16): 163102.
    [128]. Fu, X., et al. (2017). "Characterizing amorphous silicates in extraterrestrial materials: Polymerization effects on Raman and mid‐IR spectral features of alkali and alkali earth silicate glasses." Journal of Geophysical Research: Planets 122(5): 839-855.
    [129]. Saravanan, A., et al. (2018). "Hierarchical morphology and hydrogen sensing properties of N2-based nanodiamond materials produced through CH4/H2/Ar plasma treatment." Applied Surface Science 457: 367-375.
    [130]. Terranova, M. L., et al. (2015). "Nanodiamonds for field emission: state of the art." Nanoscale 7(12): 5094-5114.
    [131]. Kumar, S., et al. (2014). "Study of iron-catalysed growth of β-Ga2O3 nanowires and their detailed characterization using TEM, Raman and cathodoluminescence techniques." Journal of Physics D: Applied Physics 47(43): 435101.
    [132]. Mobtakeri, S., et al. (2021). "Gallium oxide films deposition by RF magnetron sputtering; a detailed analysis on the effects of deposition pressure and sputtering power and annealing." Ceramics International 47(2): 1721-1727.
    [133]. Han, S., et al. (2019). "High-performance UV detectors based on room-temperature deposited amorphous Ga2O3 thin films by RF magnetron sputtering." Journal of Materials Chemistry C 7(38): 11834-11844.
    [134]. Rodríguez, C. I. M., et al. (2019). "α-Ga2O3 as a Photocatalyst in the Degradation of Malachite Green." ECS Journal of Solid State Science and Technology 8(7): Q3180.
    [135]. Yang, C.-C., et al. (2014). "Novel Ga-ZnO nanosheet structures applied in ultraviolet photodetectors." IEEE Photonics Technology Letters 26(13): 1317-1320.
    [136]. Wu, K., et al. (2012). "Unique Approach toward ZnO growth with tunable properties: Influence of methanol in an electrochemical process." Crystal growth & design 12(6): 2864-2871.
    [137]. She, G., et al. (2009). "Controlled synthesis of oriented 1D ZnO nanostructures on transparent conductive substrates." Journal of nanoscience and nanotechnology 9(3): 1832-1838.
    [138]. Reddy, L. S., et al. (2015). "Hydrothermal synthesis and photocatalytic property of β-Ga2O3 nanorods." Nanoscale research letters 10(1): 1-7.
    [139]. Jaiswal, P., et al. (2018). "Microwave irradiation-assisted deposition of Ga2O3 on III-nitrides for deep-UV opto-electronics." Applied physics letters 112(2): 021105.
    [140]. He, K., et al. (2017). "Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts." Chinese Journal of Catalysis 38(2): 240-252.
    [141]. Tsai, Y.-S., et al. (2019). "ZnO/ZnS core-shell nanostructures for hydrogen gas sensing performances." Ceramics International 45(14): 17751-17757.
    [142]. Cuong, N. D., et al. (2009). "Microstructural and electrical properties of Ga2O3 nanowires grown at various temperatures by vapor–liquid–solid technique." Sensors and Actuators B: Chemical 140(1): 240-244.
    [143]. Mondal, B., et al. (2014). "ZnO–SnO2 based composite type gas sensor for selective hydrogen sensing." Sensors and Actuators B: Chemical 194: 389-396.
    [144]. Gupta, A., et al. (2014). "Hydrogen sensing based on nanoporous silica-embedded ultra dense ZnO nanobundles." RSC advances 4(15): 7476-7482.
    [145]. Anand, K., et al. (2014). "Hydrogen sensor based on graphene/ZnO nanocomposite." Sensors and Actuators B: Chemical 195: 409-415.
    [146]. Kumar, M., et al. (2017). "Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network." Nanotechnology 28(36): 365502.
    [147]. Abdullah, Q., et al. (2021). "Novel SnO2-coated β-Ga2O3 nanostructures for room temperature hydrogen gas sensor." International Journal of Hydrogen Energy 46(9): 7000-7010.

    無法下載圖示 全文公開日期 2026/08/03 (校內網路)
    全文公開日期 2026/08/03 (校外網路)
    全文公開日期 2026/08/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE