簡易檢索 / 詳目顯示

研究生: 盧欣伯
Shin-Po Lu
論文名稱: FFT IP產生器設計與實作
Design and Implementation of an FFT IP Generator
指導教授: 姚嘉瑜
Chia-Yu Yao
口試委員: 呂學坤
Shyue-Kung Lu
王乃堅
Nai-Jian Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 72
中文關鍵詞: 矽智財快速傅立葉轉換內建自我測試
外文關鍵詞: Intellectual Property, Fast Fourier Transform, Built-in Self Test
相關次數: 點閱:277下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硬體FFT處理器廣泛地應用於通訊系統中,而對於不同的用途,將會使用不同運算點數的FFT處理器,因此若能快速產生符合不同應用的FFT處理器,將有助於縮短系統的開發設計時間。
    本論文分析不同運算點數的FFT處理器,找出其運算規律性及模組化的硬體架構,透過C語言實現一個能自動產生8點到8192點範圍內不同運算點數的FFT IP產生器,該產生器可根據使用者給定的輸入參數,自動化產生FFT IP (Verilog code) ,而產生器自動化產生的FFT IP還具備簡單內建自我測試功能,用來提高FFT IP的可靠性。另外,產生器自動化產生的FFT IP,將以北瀚科技驗證平台搭配Altera StratixII EP2S60F1020C5NK FPGA,驗證本論文設計之FFT IP硬體電路的正確性。


    FFT processors are widely used in communication systems. In different applications, different size FFT processors are employed. This thesis presents an FFT IP generator such that the designer can obtain an FFT soft IP in a few second.
    This thesis first analyzes the advantage of different FFT architectures. Next, an SDF architecture is used for the proposed FFT IP generator because SDF has the simplest hardware architecture. The generator can generate 8-to 8192-point FFT IP with variable input wordlength. A built-in self test circuit is also generated to accompany the FFT IP such that the IP can be easily tested. The generated 8-to 8192-point FFT IPs are all verified on the Altera StratixⅡ FPGA board.

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1研究動機 1 1.2研究目的與方法 2 1.3使用工具與模擬軟體 3 1.4論文架構 3 第二章 FFT演算法介紹 4 2.1前言 4 2.2 FFT演算法 4 2.2.1 Radix2演算法 4 2.2.2 Radix4演算法 6 2.2.3 Radix22演算法 8 2.2.4 Radix-8演算法 10 2.2.5 Radix-23演算法 12 2.3結論 14 第三章 FFT硬體架構介紹 16 3.1前言 16 3.2管線式架構 16 3.2.1單路徑延遲回授架構(SDF) 16 3.2.2多路徑延遲連接架構(MDC) 17 3.3記憶體式架構 18 3.4結論 19 第四章 FFT處理器與BIST電路硬體實現 21 4.1前言 21 4.2 FFT處理器硬體實現 21 4.2.1 Radix運算模組 22 4.2.1.1蝴蝶運算器 23 4.2.1.2 PE1之特殊乘法器 27 4.2.1.3 PE2之特殊乘法器 29 4.2.1.4 PE3之複數乘法器 33 4.2.2迴旋因子產生器 34 4.2.3補充 39 4.3內建自我測試電路硬體實現 40 4.3.1測試向量產生器 40 4.3.2輸出響應分析器 41 第五章 FFT IP產生器 43 5.1前言 43 5.2 IP產生器運作流程 43 第六章 實驗結果 47 6.1前言 47 6.2硬體電路實現與驗證 47 6.3合成結果 48 6.4驗證結果 50 第七章 結論與展望 62 參考文獻 63 附錄 65 1.模組介紹 65 2.模組I/O介紹 67 作者簡介 72

    [1] C. L. Wang and C. H. Chang, “A novel DHT-based FFT/IFFT processor for
    ADSL transceivers,” in Proc. IEEE Int. Symp. Circuits Syst., July 1999,
    pp. 51–54.
    [2] VDSL Alliance, VDSL Alliance Draft Standard Proposal, Apr. 1999.
    [3] J. R. Choi, S. B. Park, D. S. Han, and S. H. Park, “A 2048 complex point
    FFT architecture for digital audio broadcasting system,” in Proc. IEEE
    Int. Symp. Circuits Syst., 2000, vol. V, pp. 693–696.
    [4] ESTI EN 300 744 V1.5.1, “Digital Video Broadcasting (DVB); Framing
    Structure, Channel Coding and Modulation for Digital Terrestrial
    Television,” Nov. 2004.
    [5] Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, “A 1-GS/s FFT/IFFT processor for UWB
    applications,” IEEE J. Solid-State Circuits, Aug. 2005, vol. 40, pp. 1726-
    1735.
    [6] Simon Haykin, An introduction to analog and digital communications, NY,
    Wiley , 1989.
    [7] C. T. Lin, Y. C. Yu, and L. D. Van, “A low-power 64-point FFT/IFFT design
    for IEEE 802.11a WLAN application”, in Proc. IEEE Int. Symp. Circuits
    Syst. May 2006, pp. 4523-4526.
    [8] Y. T. Lin, P. Y. Tsai and T. D. Chiueh,”Low-power variable-length fast
    fourier transform processor,” IEEE Proc.-Comput. Digit. Tech., July 2005,
    vol.152, pp. 499-506.
    [9] J. W. Cooley and J. W. Tukey, “An algorithm for machine computation of
    complex fourier series,” Math. Comput., Apr. 1965, vol. 19 , pp. 297-301.
    [10] S. He and M. Torkelson, ”A new approach to pipeline FFT processor ,”
    IEEE Int. Parallel Processing Symp., Apr. 1996 , pp. 766-770.
    [11] S. He and M. Torkelson, “Designing pipeline FFT processor for OFDM (de)
    modulation,” in Proc. IEEE URSI Int. Symp. Signals, Syst. Electron.,
    Sep. 1998, pp. 257-262.
    [12] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal
    Processing . Englewood Cliffs, NJ: Prentice-Hall, 1975.
    [13] E. H Wold and A. M. Despain, “Pipeline and parallel-pipeline FFT
    processor for VLSI implementation,” IEEE Trans. Comput., May 1984, vol.
    C-33, pp. 414-426.
    [14] E. Swartzlander, V. K. W. Young, and S. J. Joseph, “A radix 4 delay
    commutator for fast Fourier transform processor implementation,” IEEE J.
    Solid-State Circuits, Oct. 1984, vol. SC-19, pp. 702-709.
    [15] C.-H. Chang, C.-L. Wang, and Y.-T. Chang, “A novel memory-based FFT
    processor for DMT/OFDM applications”, in Proc. IEEE Int. Conf. on
    Acoustics, Speech, Signal Processing, Mar. 1999, pp. 3206-3216.
    [16] L. T. Wang, C. W. Wu and X. Wen, VLSI Test Principles and Architectures:
    Design for Testability, San Francisco, Morgan Kaufmann, 2006.
    [17] IEEE standards for local area networks: carrier sense multiple access
    with collision detection (CSMA/CD) access method and physical layer
    specifications, ANSI/IEEE Std 802.3-1985.
    [18] Altera , http://www.altera.com/literature/ug/ug_fft.pdf
    [19] 彭振淇,應用於正交分頻多工通訊系統及ARM平台之快速傅立葉轉換器與矽
    智財產生器設計, 碩士論文, 中央大學,2004。

    QR CODE