簡易檢索 / 詳目顯示

研究生: mohammad kor
Mohammad Kor
論文名稱: 使用快速傅立葉變換和韋爾奇方法進行早期短路檢測
Detecting the short-circuit in the early stage by using Fast Fourier Transform and Welch methods
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳社煌
She-huang Wu
口試委員: 黃炳照
Bing Joe Hwang
蘇威年
Wei-Nien Su
吳社煌
She-huang Wu
楊燕玲
yang yan ling
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 141
中文關鍵詞: 鋰金屬電池內部短路 (ISC)快速傅立葉變換 (FFT)功率譜密度 (PSD)韋爾奇法臨界電流密度 (CCD)
外文關鍵詞: Lithium-metal battery, Internal Short-Circuit (ISC), Fast Fourier Transform (FFT), Power Spectral Density (PSD), Welch method, Critical Current Density (CCD)
相關次數: 點閱:312下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Table of Contents Abstract II Acknowledgment VI Table of Figures X List of Tables XVI Chapter 1 Introduction 1 1.1. Background 1 1.2. Research Motivation 4 1.3. Research Objective 5 Chapter 2 Literature Review 7 2.1. Dendrites and other Morphologies Formation 7 2.2. Types of faults in the lithium-ion batteries 12 2.2.1. External Battery Faults 13 2.2.2. Internal Battery Faults 15 2.3. Li-Penetration Types 19 2.4. Lithium-ion Internal Short Circuit and Thermal Runaway 25 2.5. Micro Short-Circuit 31 2.6. Failure Detection in Lithium-ion Batteries 33 2.6.1. Battery Management System (BMS) 33 2.6.2. Failure Detection Algorithms for Lithium-ion batteries 34 2.7. Digital Signal Processing 43 2.7.1. Discrete Fourier Transform 43 2.7.2. Fast Fourier Transform 50 2.8. Power Spectral Density (PSD) estimation-Welch method 57 Chapter 3 Experimental Apparatus and Procedures 62 3.1. Materials 62 3.2. Apparatus and Instrument 62 3.3. Experimental Procedures 62 3.3.1. Experimental Framework 63 3.3.2. Preparation and assembling the Li-metal Battery coin cell 63 3.3.3. Generating MATLAB® code 65 Chapter 4 Result and Discussion 75 4.1. Short-Circuit detection 75 4.2. Frequency range of Internal Short-Circuit (ISC) 81 4.3. Analyzing zone 1 and zone 2 87 4.3.1. Analyzing early-stage of the SEI formation-zone 1 87 4.3.2. Analyzing the SEI formation-zone 1 90 4.3.3. Analyzing early-stage of the dendrite growth-zone 2 95 4.4. Cell polarization-zone 2 96 4.5. Temperature effect on Short-Circuit phenomenon 97 Chapter 5 Conclusion 101 Reference 102

    Reference

    [1] K. Mizushima, P. Jones, P. Wiseman and J. Goodenough, “LixCoO2 (0<x<-1): A new cathode material for batteries of high enegy density,” Materials Research Bulletin, vol. 15, pp. 783-789, 1980.
    [2] M. Yoshio, H. Noguchi, J.-i. Itoh, M. Okada and T. Mouri, “Preparation and properties of LiCoyMnxNi1-y-xO2 as a cathode for lithium ion batteries,” Journal of Power Sources, vol. 90, no. 2, pp. 176-181, 2000.
    [3] Z. Chang, Z. Chen, F. Wu, H. Tang, Z. Zhu, X. Z. Yuan and H. Wang, “Synthesis and characterization of high-density non-spherical Li(Ni1/3Co1/3Mn1/3)O2 cathode material for lithium ion batteries by two-step drying method,” Electrochimica Acta, vol. 53, no. 20, pp. 5927-5933, 2008.
    [4] H. Kitaura, A. Hayashi, K. Tadanaga and M. Tatsumisago, “Electrochemical performance of all-solide-state lithium secondary batteries with Li-Ni-Co-Mn oxide positive electrodes,” Electrochimica Acta, vol. 55, no. 28, pp. 8821-8828, 2010.
    [5] J. K. Ngala, N. A. Chernova, M. Ma, M. Mamak, P. Y. Zavalij and M. S. Whittingham, “The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Co0.2O2 compound,” Journal of Materials Chemistry, vol. 14, no. 2, pp. 214-220, 2004.
    [6] J. Li, J. M. Zheng and Y. Yang, “studies on storage characteristics of LiNi0.4Co0.2Mn0.4O2 as cathode materials in lithium-ion batteries,” Journal of The Electrochemical Society, vol. 154, no. 5, pp. A427-A432, 2007.
    [7] Z. Li, Y. Wang, X. Bie, K. Zhu, C. Wang, G. Chen and Y. Wei, “Low temperature properties of the Li[Li0.2Co0.4Mn0.4]O2 cathode material for Li-ion batteries,” Elecrochemistry Communications, vol. 13, no. 9, pp. 1016-1019, 2011.
    [8] S.-T. Myung, K.-S. Lee, Y.-K. Sun and H. Yashiro, “Development of high power lithium-ion batteries: Layer Li[Ni0.4Co0.2Mn0.4]O2 and spinel Li[Li0.1Al0.05Mn1.85]O4,” Journal of power sources, vol. 196, no. 16, pp. 7039-7043, 2011.
    [9] S. Shi, Y. Mai, Y. Tang, C. Gu, X. Wang and J. Tu, “Preparation and electrochemical performance of ball-like LiMn0.4Ni0.4Co0.2O2 cathode materials,” Electrochimica Acta, vol. 77, pp. 39-46, 2012.
    [10] Y.-K. Sun, D.-H. Kim, H.-G. Jung, S.-T. Myung and K. Amine, “High-voltage performance of concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 cathode material for lithium-ion batteries,” Electrochimica Acta, vol. 55, no. 28, pp. 8621-8627, 2010.
    [11] X. Zhang, C. Yu, X. Huang, J. Zheng, X. Guan, D. Luo and L. Li, “Novel composites Li[LixNi0.34-xMn0.47Co0.19]O2 (0.18<x<0.21): synthesis and application as high-voltage cathode with improved electrochemical performance for lithium ion batteries,” Electrochimica Acta, vol. 81, pp. 233-238, 2012.
    [12] X. Zuo, C. Fan, J. Liu, X. Xiao, J. Wu and J. Nan, “Effect of tris(trimethylsilyl)borate on the high voltage capacity retention of LiNi0.5Co0.2Mn0.3O2/graphite cells,” Journal of Power Sources, vol. 229, pp. 308-312, 2013.
    [13] G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson and W. Wilcke, “Lithium–air battery: promise and challenges,” The Journal of Physical Chemistry Letter, vol. 1, no. 14, pp. 2193-2203, 2010.
    [14] N. P. Balsara and J. Newman, “Comparing the energy content of batteries, fuels, and materials,” Journal of Chemical Education, vol. 90, no. 4, pp. 446-452, 2013.
    [15] D. Aurbach, E. Zinigrad, H. Teller and P. Dan, “Factors which limit the cycle life of rechargeable lithium (Metal) batteries,” Journal of Electrochemical Society, vol. 147, no. 4, pp. 1274-1279, 2000.
    [16] D. Aurbach, E. Zinigrad, Y. Cohen and H. Teller, “A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions,” Solid State Ionics, vol. 148, no. 3-4, pp. 405-416, 2002.
    [17] R. Selim and P. Bro, “Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte.,” Journal of The Electrochemical Society, vol. 121, no. 11, p. 1457, 1974.
    [18] J. Besenhard and G. Eichinger, “High energy density lithium cells. Part I. Electrolytes and anodes,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 68, no. 1, pp. 1-18, 1976.
    [19] I. Epelboin, M. Froment, M. Garreau, J. Thevenin and D. Warin, “Behavior of secondary lithium and aluminum-lithium electrodes in propylene carbonate,” Journal of The Electrochemical Society, vol. 127, no. 10, p. 2100, 1980.
    [20] J.-i. Yamaki, S.-i. Tobishima, K. Hayashi, K. Saito, Y. Nemoto and M. Arakawa, “A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte,” Journal of Power Sources, vol. 74, no. 2, pp. 219-227, 1998.
    [21] T. Arakawa, S. Tsukamoto, Y. Nagamune, M. Nishioka, J.-H. Lee and Y. Arakawa, “Fabrication of InGaAs strained quantum wire structures using selective-area metal-organic chemical vapor deposition growth,” Japanese Journal of Applied Physics, vol. 32, no. 10A, pp. 1377-1379, 1993.
    [22] C. Brissot, M. Rosso, J.-N. Chazalviel, P. Baudry and S. Lascaud, “In situ study of dendritic growth in lithium/PEO-salt/lithium cells,” Electrochimica Acta, vol. 43, no. 10-11, pp. 1569-1574, 1998.
    [23] Y. Ren, Y. Shen, Y. Lin and C.-W. Nan, “Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte,” Electrochemistry Communications, vol. 57, pp. 27-30, 2015.
    [24] J.-N. Chazalviel, “Electrochemical aspects of the generation of ramified metallic electrodeposits.,” Physical Review A, vol. 42, p. 7355–7367, 1990.
    [25] R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J.-P. Bonnet, T. N. T. Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel and M. Armand, “Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries,” Nature Materials, vol. 12, pp. 452-457, 2013.
    [26] C. Cao, Y. Li, Y. Feng, C. Peng, Z. Li and W. Feng, “A solid- state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries,” Energy Storage Materials, vol. 19, pp. 401-407, 2019.
    [27] K. Dai, C. Ma, Y. Feng, L. Zhou, G. Kuang, Y. Zhang, Y. Lai, X. Cui and W. Wei, “A borate-rich, cross-linked gel polymer electrolyte with near-single ion conduction for lithium metal batteries,” Journal of Materials Chemistry A, vol. 7, pp. 18547-18557, 2019.
    [28] L. Gireaud, S. Grugeon, S. Laruelle, B. Yrieix and J.-M. Tarascon, “Lithium metal stripping/plating mechanisms studies: a metallurgical approach,” Electrochemistry Communications, vol. 8, no. 10, pp. 1639-1649, 2006.
    [29] J. L. Barton, J. O&apos and m. Bockris, “The electrolytic growth of dendrites from ionic solutions,” Proceedings of the Royal Society A, vol. 268, pp. 485-505, 1962.
    [30] J. W. Diggle, A. R. Despic and J. O. Bockris, “The mechanism of the dendritic electrocrystallization of zinc,” Journal of The Electrochemical Society, vol. 116, p. 1503, 1969.
    [31] A. Jana and R. E. García, “Lithium dendrite growth mechanisms in liquid electrolytes,” Nano Energy, vol. 41, p. 552–565, 2017.
    [32] E. Peled, “The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model,” Journal of The Electrochemical Society, vol. 126, no. 12, p. 2047, 1979.
    [33] J.-M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature, vol. 414, pp. 171-179, 2011.
    [34] M. L. Meyerson, J. K. Sheavly, A. Dolocan, M. P. Griffin, A. H. Pandit, R. Rodriguez, R. M. Stephens, D. A. V. Bout, A. Hellerbd and C. B. Mullins, “The effect of local lithium surface chemistry and topography on solid electrolyte interphase composition and dendrite nucleation,” Journal of Materials Chemistry A, vol. 7, pp. 14882-14894, 2019.
    [35] J. Steiger, D. Kramer and R. Mönig, “Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium,” Journal of Power Sources, vol. 261, pp. 112-119, 2014.
    [36] J. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin and J.-G. Zhang, “High rate and stable cycling of lithium metal anode,” Nature Communications, vol. 6, p. 6362, 2015.
    [37] P. Bai, J. Li, F. R. Brushett and M. Z. Bazant, “Transition of lithium growth mechanisms in liquid electrolytes,” Energy and Environmental Science, vol. 9, pp. 3221-3229, 2016.
    [38] K. J. Harry, X. Liao, D. Y. Parkinson, A. M. Minor and N. P. Balsara, “Electrochemical deposition and stripping behavior of lithium metal across a rigid block copolymer electrolyte membrane,” Journal of The Electrochemical Society, vol. 162, no. 14, pp. A2699-A2706, 2015.
    [39] E. J. Cheng, A. Sharafi and J. Sakamoto, “Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte,” Electrochimica Acta, vol. 223, pp. 85-91, 2017.
    [40] D. Aurbach, M. L. Daroux, P. W. Faguy and E. Yeager, “Identification of surface films formed on lithium in propylene carbonate solutions,” Journal of Electrochemical Society, vol. 134, no. 7, pp. 1611-1620, 1987.
    [41] C. Monroe and J. Newman, “The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces,” Journal of The Electrochemical Society, vol. 152, no. 2, pp. A396-A404, 2005.
    [42] R. F. Voss and M. Tomkiewicz, “Computer simulation of dendritic electrodeposition,” Journal of The Electrochemical Society, vol. 132, no. 2, pp. 371-375, 1985.
    [43] M. Z. Mayers, J. W. Kaminski and T. F. Miller, “Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries,” The Journal of Physical Chemistry C, vol. 116, no. 50, pp. 26214-26221, 2012.
    [44] M. Rosso, T. Gobron, C. Brissot, J.-N. Chazalviel and S. Lascaud, “Onset of dendritic growth in lithium / polymer cells,” Journal of Power Sources, Vols. 97-98, pp. 804-806, 2001.
    [45] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang and J.-G. Zhang, “Lithium metal anodes for rechargeable batteries,” Energy & Environmental Science, vol. 7, pp. 513-537, 2014.
    [46] P. Barai, K. Higa and V. Srinivasan, “Effect of initial state of lithium on the propensity for dendrite formation: a theoretical study,” Journal of the Electrochemical Society, vol. 164, no. 2, pp. A180-A189, 2017.
    [47] J. A. Maslyn, W. S. Loo, K. D. McEntush, H. J. Oh, K. J. Harry, D. Y. Parkinson and N. P. Balsara, “Growth of lithium dendrites and globules through a solid block copolymer electrolyte as a function of current density,” The Journal of Physical Chemistry C, vol. 122, no. 47, pp. 26797-26804, 2018.
    [48] M.-K. Tran and M. Fowler, “Sensor Fault Detection and Isolation for Degrading Lithium-Ion Batteries in Electric Vehicles Using Parameter Estimation with Recursive Least Squares,” Batteries, vol. 6, no. 1, p. 1, 2020.
    [49] R. Xiong, Q. Yu and W. Shen, “Review on sensors fault diagnosis and fault-tolerant techniques for lithium-ion batteries in electric vehicles,” in 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May-2 June 2018.
    [50] R. Xiong, Q. Yu, W. Shen, C. Lin and F. Sun, “A Sensor Fault Diagnosis Method for a Lithium-Ion Battery Pack in Electric Vehicles,” EEE Transactions on Power Electronics, vol. 34, no. 10, pp. 9709-9718, 2019.
    [51] N. Galushkin, N. Yazvinskaya and D. Galushkin, “Mechanism of Thermal Runaway in Lithium-Ion Cells,” Journal of The Electrochemical Society, vol. 165, no. 7, pp. A1303-A1308, 2018.
    [52] M. Lelie, T. Braun, M. Knips, H. Nordmann, F. Ringbeck, H. Zappen and D. U. Sauer, “Battery Management System Hardware Concepts: An Overview,” Applied Sciences, vol. 8, no. 4, p. 534, 2018.
    [53] C. Zheng, Z. Chen and D. Huang, “Fault diagnosis of voltage sensor and current sensor for lithium-ion battery pack using hybrid system modeling and unscented particle filter,” Energy, vol. 191, p. 116504, 2020.
    [54] Z. Liu, Q. Ahmed, J. Zhang, G. Rizzoni and H. He, “Structural analysis based sensors fault detection and isolation of cylindrical lithium-ion batteries in automotive applications,” Control Engineering Practice, vol. 54, pp. 46-58, 2016.
    [55] G. Xia, L. Cao and G. Bi, “A review on battery thermal management in electric vehicle application,” Journal of Power Sources, vol. 367, pp. 90-105, 2017.
    [56] Z. Liu, Q. Ahmed, G. Rizzoni and H. He, “Fault Detection and Isolation for Lithium-Ion Battery System Using Structural Analysis and Sequential Residual Generation,” in ASME 7th annual dynamic systems and control conference, San antanio, TX, USA, 22-24 0ctober 2014.
    [57] L. Yao, Z. Wang and J. Ma, “Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles,” Journal of Power Sources, vol. 293, pp. 548-561, 2015.
    [58] G. J. Offer, V. Yufit, D. A. Howey, B. Wu and N. P. Brandon, “Module design and fault diagnosis in electric vehicle batteries,” Journal of Power Sources, vol. 206, pp. 383-392, 2012.
    [59] D. Lyu, B. Ren and S. Li, “Failure modes and mechanisms for rechargeable Lithium-based batteries: A state-of-the-art review,” Acta Mechanica, vol. 230, p. 701–727, 2019.
    [60] X. Feng, J. Sun, M. Ouyang, F. Wang, X. He, L. Lu and H. Peng, “Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module,” Journal of Power Sources, vol. 275, pp. 261-273, 2015.
    [61] Y. Liu and J. Xie, “Failure Study of Commercial LiFePO 4 Cells in Overcharge Conditions Using Electrochemical Impedance Spectroscopy,” Journal of The Electrochemical Society, vol. 162, no. 10, p. A2208–A2217, 2015.
    [62] F. Larsson, P. Andersson, P. Blomqvist and B.-E. Mellander, “Toxic fluoride gas emissions from lithium-ion battery fires,” Scientific Reports, vol. 7, p. 10018, 2017.
    [63] D. Ouyang, M. Chen, J. Liu, R. Wei, J. Weng and J. Wang, “Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions,” RSC Advances, vol. 8, pp. 33414-33424, 2018.
    [64] R. Guo, L. Lu, M. Ouyang and X. Feng, “Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries,” Scientific Reports, vol. 6, p. 30248, 2016.
    [65] C. Fear, D. Juarez-Robles, J. A. Jeevarajan and P. P. Mukherjee, “Elucidating Copper Dissolution Phenomenon in Li-Ion Cells under Overdischarge Extremes,” Journal of The Electrochemical Society, vol. 165, no. 9, p. A1639–A1647, 2018.
    [66] D. H. Doughty and E. P. Roth, “A General Discussion of Li Ion Battery Safety,” The Electrochemical Society Interface, vol. 21, pp. 37-44, 2012.
    [67] H. Wang, S. Simunovic, H. Maleki, J. N. Howard and J. A. Hallmark, “Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit,” Journal of Power Sources, vol. 306, pp. 424-430, 2016.
    [68] A. Abaza, S. Ferrari, H. K. Wong, C. Lyness, A. Moore, J. Weaving, M. Blanco-Martin, R. Dashwood and R. Bhagat, “Experimental study of internal and external short circuits of commercial automotive pouch lithium-ion cells,” Journal of Energy Storage, vol. 16, pp. 211-217, 2018.
    [69] B. Mao, H. Chen, Z. Cui, T. Wu and Q. Wang, “Failure mechanism of the lithium ion battery during nail penetration,” International Journal of Heat and Mass Transfer, vol. 112, p. 1103–1115, 2018.
    [70] A. Kriston, A. Pfrang, H. Döring, B. Fritsch, V. Ruiz, I. Adanouj, T. Kosmidou, J. Ungeheuer and L. Boon-Brett, “External short circuit performance of Graphite-LiNi1/3Co1/3Mn1/3O2 and Graphite-LiNi0.8Co0.15Al0.05O2 cells at different external resistances,” Journal of Power Sources , vol. 361, pp. 170-181, 2017.
    [71] A. Rheinfeld, J. Sturm, A. Frank, S. Kosch, S. V. Erhard and A. Jossen, “Impact of Cell Size and Format on External Short Circuit Behavior of Lithium-Ion Cells at Varying Cooling Conditions: Modeling and Simulation,” Journal of The Electrochemical Society, vol. 167, no. 1, p. 13511, 2019.
    [72] S. Panda, B. Sahu and P. Mohanty, “Design and performance analysis of PID controller for an automatic voltage regulator system using simplified particle swarm optimization,” Journal of the Franklin Institute, vol. 349, no. 8, pp. 2609-2625, 2012.
    [73] V. Lystianingrum, B. Hredzak and V. G. Agelidis, “Multiple model estimator based detection of abnormal cell overheating in a Li-ion battery string with minimum number of temperature sensors,” Journal of Power Sources, vol. 273, pp. 1171-1181, 2015.
    [74] V. Ruiz, A. Pfrang, A. Kriston, N. Omar, P. V. d. Bossche and L. Boon-Brett, “A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renew,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 1427-1452, 2018.
    [75] W. Diao, Y. Xing, S. Saxena and M. Pecht, “Evaluation of Present Accelerated Temperature Testing and Modeling of Batteries,” Applied Sciences, vol. 8, no. 10, p. 1786, 2018.
    [76] B. Xu, Y. Shi, D. S. Kirschen and B. Zhang, “Optimal regulation response of batteries under cycle aging mechanisms,” in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, VIC,Australia, 12-15 December 2017.
    [77] J. Xu, R. D. Deshpande, J. Pan, Y.-T. Cheng and V. S. Battaglia, “Electrode Side Reactions, Capacity Loss and Mechanical Degradation in Lithium-Ion Batteries,” Journal of The Electrochemical Society, vol. 162, no. 10, pp. A2026-A2035, 2015.
    [78] L. S. Kanevskii and V. S. Dubasova, “Degradation of Lithium-Ion batteries and how to fight it: A review,” Russian Journal of Electrochemistry, vol. 41, pp. 1-16, 2005.
    [79] S. Ma, M. Jiang, P. Tao, C. Song, J. Wu, J. Wang, T. Deng and W. Shang, “Temperature effect and thermal impact in lithium-ion batteries: A review,” Progress in Natural Science: Materials International, vol. 28, no. 6, p. 653–666, 2018.
    [80] S. Wilke, B. Schweitzer, S. Khateeb and S. Al-Hallaj, “Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study,” Journal of Power Sources, vol. 340, pp. 51-59, 2017.
    [81] E. Kazyak, R. Garcia-Mendez, W. S. LePage, A. Sharafi, A. L. Davis, A. J. Sanchez, K.-H. Chen, C. Haslam, J. Sakamoto and N. P. Dasgupta, “Li Penetration in Ceramic Solid Electrolytes: Operando Microscopy Analysis of Morphology, Propagation, and Reversibility,” Matter, vol. 2, no. 4, pp. 1025-1048, 2020.
    [82] L. E. Marbella, S. Zekoll, J. Kasemchainan, S. P. Emge, P. G. Bruce and C. P. Grey, “7 Li NMR Chemical Shift Imaging to Detect Microstructural Growth of Lithium in All-Solid-State Batteries,” Chemistry of Materials, vol. 31, no. 8, pp. 2762-2769, 2019.
    [83] K. N. Wood, E. Kazyak, A. F. Chadwick, K.-H. Chen, J.-G. Zhang, K. Thornton and N. P. Dasgupta, “Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy,” ACS Central Science, vol. 2, no. 11, pp. 790-801, 2016.
    [84] X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia and X. He, “Thermal runaway mechanism of lithium ion battery for electric vehicles: a review,” Energy Storage Materials, vol. 10, pp. 246-267, 2018.
    [85] Y. Liu, Q. Duan, J. Xu, H. Li, J. Sun and Q. Wang, “Experimentalstudyonanovel safety strategy of lithium-ion battery integrating fire suppression and rapid cooling,” Journal of Energy Storage, vol. 28, p. 101185, 2020.
    [86] A. Perea, A. Paolella, J. Dubé, D. Champagne, A. Mauger and K. Zaghib, “State of charge influence on thermal reactions and abuse tests in commercial lithium-ion cells,” Journal of Power Sources, vol. 399, pp. 392-397, 2018.
    [87] Sony, “Statement regarding Sony’s support of Apple’s recall of lithium ion battery packs used in apple notebook computers.,” 23 December 2019 2006. [Online]. Available: https://sony.net/SonyInfo/News/ Press/200608/06-0825E/.
    [88] Samsung, “Galaxy Note7: What we discovered.,” 23 December 2019 2017. [Online]. Available: https://newssamsung.com/ global/infographic-galaxy-note7-what-we-discovered .
    [89] M. J. Loveridge, G. Remy, N. Kourra, R. Genieser, A. Barai, M. J. Lain, Y. Guo, M. Amor-Segan, M. A. Williams, T. Amietszajew, M. Ellis, R. Bhagat and D. Greenwood, “Looking deeper into the Galaxy (Note 7),” Batteries, vol. 4, no. 1, p. 3, 2018.
    [90] NTSB, “Auxiliary power unit battery fire Japan airlines Boeing 787-8, JA829J, 2013 NTSB/AIR-14/01,” Boston, , 2014.
    [91] J.-H. Shin, “Panel blames electric shock, poor management system for ESS fires, not companies.,” 23 December 2019. [Online]. Available: http://koreaherald.com/view.php?ud=20190611000679 ..
    [92] Arizona Public Service Company, “McMicken investigation continues.,” 23 December 2019. [Online]. Available: https://aps.com/en/About/Our-Company/Newsroom/Articles/Equipment-failure-at- McMicken-Battery-Facility .
    [93] FAA Office of Security and Hazardous Materials Safety, “Events with smoke, fire, extreme heat or explosion involving lithium batteries.,” 23 December 2019. [Online]. Available: https://faa.gov/hazmat/ resources/lithium_batteries/media/Battery_incident_chart.pdf .
    [94] V. Ruiz and A. Pfrang, “JRC exploratory research: safer Li-ion batteries by preventing thermal propagation.,” JRC Petten, , Netherlands, 8–9 March 2018.
    [95] W. Zhao, G. Luo and C.-Y. Wang, “Modeling internal shorting process in large- format Li-ion cells,” Journal of The Electrochemical Society, vol. 162, no. 7, p. A1352, 2015.
    [96] T. Nagaura and K. Tozawa, “Lithium ion rechargeable battery.,” Progress in Batteries & Solar Cells, , pp. 9, 209 , 1990.
    [97] K. Ozawa, “Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system,” Solid State Ionics, vol. 69, no. 3-4, pp. 212-221, 1994.
    [98] V. Ruiz, A. Pfrang, A. Kriston, N. Omar, P. V. d. Bossche and L. Boon-Brett, “A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 1427-1452, 2018.
    [99] W. Zhao, G. Luo and C.-Y. Wang, “Modeling nail penetration process in large- format Li-ion cells,” Journal of The Electrochemical Society, vol. 162, no. 1, p. A207, 2015.
    [100] D. P. Finegan, B. Tjaden, T. M. M. Heenan, R. Jervis, M. D. Michiel, A. Rack, G. Hinds, D. J. L. Brett and P. R. Shearing, “Tracking internal temperature and structural dynamics during nail penetration of lithium-ion cells,” Journal of The Electrochemical Society, vol. 164, p. A3285, 2017.
    [101] B. Mao, H. Chen, Z. Cui, T. Wu and Q. Wang, “Failure mechanism of the lithium ion battery during nail penetration,” International Journal of Heat and Mass Transfer, vol. 122, pp. 1103-1115, 2018.
    [102] A. Abaza, S. Ferrari, H. K. Wong, C. Lyness, A. Moore, J. Weaving, MariaBlanco-Martin, R. Dashwood and R. Bhagat, “Experimental study of internal and external short circuits of commercial automotive pouch lithium-ion cells,” Journal of Energy Storage, vol. 16, pp. 211-217, 2018.
    [103] H. Maleki and J. N. Howard, “Internal short circuit in Li-ion cells,” Journal of Power Sources, vol. 191, no. 2, pp. 568-574, 2009.
    [104] A. Wu, M. Tabaddor, C. Wang and J. Jeevarajan, “Simulation of internal short circuits in lithium ion cells,” in IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 2013.
    [105] (. IEC, “Secondary cells and batteries containing alkaline or other non-acid electrolytes—,” 2017. [Online]. Available: https://iecee.org/dyn/www/f?p=106:49:0::::FSP_STD_ID:32662..
    [106] C. J. Orendorff, E. P. Roth and G. Nagasubramanian, “Experimental triggers for internal short circuits in lithium-ion cells,” Journal of Power Sources, vol. 196, no. 15, pp. 6554-6558, 2011.
    [107] D. P. Finegan, E. Darcy, M. Keyser, B. Tjaden, T. M. M. Heenan, R. Jervis, J. J. Bailey, R. Malik, N. T. Vo, O. V. Magdysyuk, R. Atwood, M. Drakopoulos, M. DiMichiel, A. Rack and G. Hinds, “Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits,” Energy & Environmental Science, vol. 10, pp. 1377-1388, 2017.
    [108] M. Zhang, J. Du, L. Liu, A. Stefanopoulou, J. Siegel, L. Lu, X. He, X. Xie and M. Ouyang, “Internal short circuit trigger method for lithium-ion battery based on shape memory alloy,” Journal of The Electrochemical Society, vol. 164, no. 13, p. A3038, 2017.
    [109] T. Yokoshima, D. Mukoyama, F. Maeda, T. Osaka, K. Takazawa and S. Egusa, “Operando analysis of thermal runaway in lithium ion battery during nail- penetration test using an X-ray inspection system,” Journal of The Electrochemical Society, vol. 166, no. 6, p. A1243, 2019.
    [110] T. Hatchard, S. Trussler and J. Dahn, “Building a ‘smart nail’ for penetration tests on Li-ion cells,” Journal of Power Sources, vol. 247, pp. 821-823, 2014.
    [111] P. Poramapojana, “Experimental investigation of internal short circuits in lithium- ion batteries. PhD Dissertation,,” 2015. [Online]. Available: https://etda. libraries.psu.edu/catalog/26683 .
    [112] T. R. Tanim, M. Garg and C. D. Rahn, “An intelligent nail design for lithium ion battery penetration test,” in ASME 2016 Power Conference (Energy Storage Forum), Charlotte, NC, USA, June 26–30, 2016.
    [113] S. Huang, X. Du, M. Richter, J. Ford, G. M. Cavalheiro, Z. Du, R. T. White and G. Zhang, “Understanding Li-Ion Cell Internal Short Circuit and Thermal Runaway through Small, Slow and In Situ Sensing Nail Penetration,” Journal of The Electrochemical Society, vol. 167, no. 9, p. 90526, 2020.
    [114] Z. Zhang, X. Kong, Y. Zheng, L. Zhou and X. Lai, “Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing low-pass filters,” Energy, vol. 166, pp. 1013-1024, 2019.
    [115] Z. Zhang, X. Kong, Y. Zheng, L. Zhou and X. Lai, “Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing low-pass filters,” Energy, vol. 116, pp. 1013-1024, 2018.
    [116] H. Rahimi-Eichi, U. Ojha, F. Baronti and M.-Y. Chow, “Battery Management System: An Overview of Its Application in the Smart Grid and Electric Vehicles,” IEEE Industrial Electronics Magazine, vol. 7, no. 2, pp. 4-16, 2013.
    [117] M. Brand, S. Gläser, J. Geder, S. Menacher, S. Obpacher, A. Jossen and D. Quinger, “Electrical safety of commercial Li-ion cells based on NMC and NCA technology compared to LFP technology,” World Electric Vehicle Journal, vol. 6, no. 3, pp. 570-580, 2013.
    [118] C. Hendricks, N. Williard, S. Mathew and M. Pecht, “A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries,” Journal of Power Sources, vol. 297, pp. 113-120, 2015.
    [119] L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, “A review on the key issues for lithium-ion battery management in electric vehicles,” Journal of Power Sources, vol. 226, p. 272–288, 2013.
    [120] S. M. M. Alavi, M. F. Samadi and M. Saif, “Diagnostics in Lithium-Ion Batteries: Challenging Issues and Recent Achievements,” in Integration of Practice-Oriented Knowledge Technology: Trends and Prospectives, Springer, Berlin, Heidelberg, Germany, 2013.
    [121] V. Venkatasubramanian, R. Rengaswamy, K. Yin and S. N. Kavuri, “A review of process fault detection and diagnosis,” Computers & Chemical Engineering , vol. 27, no. 3, pp. 293-311, 2003.
    [122] M. Tomasov, M. Kajanova, P. Bracinik and D. Motyka, “Overview of Battery Models for Sustainable Power and Transport Applications,” Transportation Research Procedia, vol. 40, pp. 548-555, 2019.
    [123] S. M. Alavi, M. Samadi and M. Saif, “Plating Mechanism Detection in Lithium-ion batteries, by using a particle-filtering based estimation technique,” in 2013 American Control Conference, Washington, DC, USA, 17-19 June 2013.
    [124] A. Singh, A. Izadian and S. Anwar, “Fault diagnosis of Li-Ion batteries using multiple-model adaptive estimation,” in IECON 2013 - 39th annual conference of the IEEE Industrial Electronics Societ, Vienna, Austria, 10-13 November 2013.
    [125] A. Sidhu, A. Izadian and S. Anwar, “Adaptive Nonlinear Model-Based Fault Diagnosis of Li-Ion Batteries,” IEEE Transactions on Industrial Electronics, vol. 62, no. 2, pp. 1002-1011, 2015.
    [126] W. Chen, W.-T. Chen, M. Saif, M.-F. Li and H. Wu, “Simultaneous Fault Isolation and Estimation of Lithium-Ion Batteries via Synthesized Design of Luenberger and Learning Observers,” IEEE Transactions on Control Systems Technology, vol. 22, no. 1, pp. 290-298, 2014.
    [127] M. Ouyang, M. Zhang, X. Feng, L. Lu, J. Li, X. He and Y. Zheng, “Internal short circuit detection for battery pack using equivalent parameter and consistency method,” Journal of Power Sources Volume, vol. 294, pp. 272-283, 2015.
    [128] X. Feng, C. Weng, M. Ouyang and J. Sun, “Online internal short circuit detection for a large format lithium ion battery,” Applied Energy, vol. 161, p. 168–180, 2016.
    [129] X. Feng, Y. Pan, X. He, L. Wang and M. Ouyang, “Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm,” Journal of Energy Storage, vol. 18, pp. 26-39, 2018.
    [130] M. Seo, T. Goh, M. Park, G. Koo and S. W. Kim, “Detection of Internal Short Circuit in Lithium Ion Battery Using Model-Based Switching Model Method,” Energies, vol. 10, no. 1, p. 76, 2017.
    [131] W. Gao, Y. Zheng, M. Ouyang, J. Li, X. Lai and X. Hu, “Micro-Short-Circuit Diagnosis for Series-Connected Lithium-Ion Battery Packs Using Mean-Difference Model,” IEEE Transactions on Industrial Electronics, vol. 66, no. 3, p. 2132–2142, 2019.
    [132] S. Dey, Z. A. Biron, S. Tatipamula, N. Das, S. Mohon, B. Ayalew and P. Pisu, “On-board Thermal Fault Diagnosis of Lithium-ion Batteries For Hybrid Electric Vehicle Application,” IFAC-PapersOnLine, vol. 48, no. 15, pp. 389-394, 2015.
    [133] S. Dey, Z. A. Biron, S. Tatipamula, N. Das, S. Mohon, B. Ayalew and P. Pisu, “Model-based real-time thermal fault diagnosis of Lithium-ion batteries,” Control Engineering Practice, vol. 56, pp. 37-48, 2016.
    [134] S. Dey, H. E. Perez and S. J. Moura, “Model-Based Battery Thermal Fault Diagnostics: Algorithms, Analysis, and Experiments,” IEEE Transactions on Control Systems Technology, vol. 27, no. 2, pp. 576-587, 2019.
    [135] X. Kong, Y. Zheng, M. Ouyang, L. Lu, J. Li and Z. Zhang, “Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs,” Journal of Power Sources, vol. 395, pp. 358-368, 2018.
    [136] B. Xia, Y. Shang, T. Nguyen and C. Mia, “A correlation based fault detection method for short circuits in battery packs,” Journal of Power Sources, vol. 337, p. 1–10, 2017.
    [137] X. Li and Z. Wang, “A novel fault diagnosis method for lithium-Ion battery packs of electric vehicles,” Measurement, vol. 116, pp. 402-411, 2018.
    [138] J. Hong, Z. Wang and P. Liu, “Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles,” Energies, vol. 10, no. 7, p. 919, 2017.
    [139] Z. Wang, J. Hong, P. Liu and L. Zhang, “Voltage fault diagnosis and prognosis of battery systems based on entropy and Z -score for electric vehicles,” Applied Energy, vol. 196, pp. 289-302, 2017.
    [140] P. Liu, Z. Sun, Z. Wang and J. Zhang, “Entropy-Based Voltage Fault Diagnosis of Battery Systems for Electric Vehicles,” Energies, vol. 11, no. 1, p. 136, 2018.
    [141] J. Xiong, H. Banvait, L. Li, Y. Chen, J. Xie, Y. Liu, M. Wu and J. Chen, “Failure detection for over-discharged Li-ion batteries,” in 2012 IEEE International Electric Vehicle Conference, Greenville, SC, USA, 4–8 March 2012.
    [142] B. Xia, Z. Chen, C. Mi and B. Robert, “External short circuit fault diagnosis for lithium-ion batteries,” in IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA, 15-18 June 2014.
    [143] V. K. S. Muddappa and S. Anwar, “Electrochemical Model Based Fault Diagnosis of Li-Ion Battery Using Fuzzy Logic,” in ASME International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 14-20 November 2014.
    [144] R. Yang, R. Xiong, H. He and Z. Chen, “A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application,” Journal of Cleaner Production, vol. 187, p. 950–959, 2018.
    [145] Y. Zhao, P. Liu, Z. Wang, L. Zhang and J. Hong, “Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods,” Applied Energy, vol. 207, pp. 354-362, 2017.
    [146] M. Djeziri, S. Benmoussa and M. Benbouzid, “Data-driven approach augmented in simulation for robust fault prognosis,” Engineering Applications of Artificial Intelligence, vol. 86, pp. 154-164, 2019.
    [147] Steven W. Smith, “The Scientist and Engineer’s Guide to Digital Signal Processing,” in Second Edition, P.O. Box 502407, San Diego, CA 92150, California Technical Publishing, 1999, p. 141.
    [148] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice- Hall, 1975.
    [149] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Computation of Complex Fourier Series,” American Mathematical society, vol. 19, no. 90, pp. 297-301, 1965.
    [150] H. R. Taylor, “Book Review: The Fast Fourier Transform and its Applications,” The International Journal of Elictrical engineering & Education, vol. 27, no. 3, p. 288, 1990.
    [151] R. B. Blackman and J. W. Tukey, “The measurement of power spectra from the point of view of communications engineering — Part II,” The Bell System Technical Journal , vol. 37, no. 2, pp. 485-569, 1958.
    [152] W. Gardner, “Signal interception: a unifying theoretical framework for feature detection,” IEEE Transactions on Communications , vol. 36, no. 8, pp. 897-906, 1988.
    [153] C. R. Birkl, E. McTurk, M. R. Roberts, P. G. Bruce and D. A. Howey, “A Parametric Open Circuit Voltage Model for Lithium Ion Batteries,” Journal of the Electrochemical Society, vol. 164, no. 12, pp. A2271-A2280, 2015.
    [154] C. Yang, L. Zhang, B. Liu, S. Xu, T. Hamann, D. McOwen, J. Dai, W. Luo, Y. Gong, E. D. Wachsman and L. Hu, “Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework.,” PNAS, vol. 115, no. 15, pp. 3770-3775, 2018.
    [155] F. Sun, R. Moroni, K. Dong, H. Markötter, D. Zhou, A. Hilger, L. Zielke, R. Zengerle, S. Thiele, J. Banhart and I. Manke, “Study of the Mechanisms of Internal Short Circuit in a Li/Li Cell by Synchrotron X‐ray Phase Contrast Tomography,” ACS Energy Letters, vol. 2, pp. 94-104, 2017.

    無法下載圖示 全文公開日期 2031/08/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE