簡易檢索 / 詳目顯示

研究生: 陳厚君
Hou-Chun Chen
論文名稱: 具自動主僕均流控制之雙主動全橋式轉換器
Dual-Active-Bridge Converter with Automatic Master-Slave Current-Sharing Control
指導教授: 林景源
Jing-Yuan Lin
口試委員: 邱煌仁
Huang-Jen Chiu
張佑丞
Yu-Chen Chang
林宜鋒
Yi-Feng Lin
林景源
Jing-Yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 114
中文關鍵詞: 雙主動全橋式轉換器輸入並聯輸出並聯系統單相移調變法自動主僕均流控制
外文關鍵詞: Dual-active-bridge (DAB) converter, input-parallel output-parallel (IPOP) system, single-phase-shift (SPS) modulation, automatic master-slave current-sharing control
相關次數: 點閱:314下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來隨著功率需求提高,將多個直流-直流轉換器模組並聯為一種有效且快速的方法,因此本論文提出了由雙主動全橋式(Dual-Active-Bridge, DAB)轉換器組成之輸入並聯輸出並聯(Input-Parallel Output-Parallel, IPOP)系統。由於電路參數不匹配會導致系統功率不平衡,為了改善此問題,對現有的均流控制法進行比較。基於IPOP 系統模組化之需求,選擇了自動主僕均流控制(Automatic Master-Slave Current-Sharing Control)做為系統之均流控制法。此外,本論文基於單相移(Single-Phase-Shift, SPS)調變法分析了其小訊號模型,並根據迴路增益之推導設計其數位控制器,達到閉迴路控制。最後,研製一輸出功率120 kW、輸入及輸出電壓750 VDC 之IPOP 雙主動全橋式轉換器,並完成了輸出功率20 kW 實測。在實驗結果中,平均電流之均流誤差率維持在測試最大輸出負載電流±8%以內,電壓調整率維持在規格輸出電壓±0.1%以內。


With the increasing power requirements in recent years, paralleling multiple DC-DC converter modules is an effective and quick method. Therefore, this thesis proposes an input-parallel output-parallel (IPOP) system composed of dual-active-bridge (DAB) converters. Since the circuit parameters mismatch, it will cause power imbalance. To improve this problem, compared to existing current-sharing control methods. Based on the modularization requirements of the IPOP system, the automatic master-slave current-sharing control is selected. In addition, this thesis analyzes small-signal model of automatic master-slave current-sharing control based on the single-phase-shift (SPS) modulation, and designs digital controller according to the derivation of the loop gain to achieve closedloop control. Finally, design and implement an IPOP DAB converter with output power of 120 kW, input and output voltage of 750 VDC, and complete the experiment of output power of 20 kW. In the experimental results, the average current-sharing error is within ±8% of the testing fullload condition, and the voltage regulation is within ±0.1% of the specified output voltage.

摘要 i Abstract ii 誌謝 iii 目錄 iv 圖索引 vii 表索引 xi 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文大綱 2 第二章 雙主動全橋式轉換器 4 2.1 雙主動全橋式轉換器介紹 4 2.2 單相移調變法介紹 5 2.3 單相移調變法動作原理 6 2.3.1 動作原理分析 7 2.3.2 功率函數推導 12 2.3.3 零電壓切換條件 16 第三章 輸入並聯輸出並聯系統 20 3.1 輸入並聯輸出並聯系統介紹 20 3.2 均流控制法介紹 21 3.2.1 無均流匯流排之均流控制法 22 3.2.2 基於均流匯流排之均流控制法 30 3.3 自動主僕法分析 38 第四章 相移調變法與均流控制法之小訊號建模 42 4.1 廣義平均法 42 4.2 單相移調變法之小訊號建模 44 4.3 自動主僕法之小訊號建模 52 4.3.1 主模組之小訊號分析 53 4.3.2 僕模組之小訊號分析 54 第五章 系統研製 57 5.1 電路規格 57 5.2 開迴路轉移函數驗證 59 5.3 補償器設計與閉迴路轉移函數驗證 61 5.3.1 電壓迴路 61 5.3.2 均流迴路 63 5.4 數位控制規劃與設計 65 5.4.1 韌體流程規劃 67 5.4.2 開機保護程序 69 5.4.3 調變器設計 74 第六章 模擬與實驗結果分析 77 6.1 模擬與實驗結果 78 6.1.1 系統啟動波形 78 6.1.2 雙主動全橋式轉換器波形 79 6.1.3 穩態均流波形 84 6.2 效率量測 91 第七章 結論與未來展望 93 7.1 結論 93 7.2 未來展望 93 參考文獻 95

[1] T. Dragičević, X. Lu, J. C. Vasquez and J. M. Guerrero, “DC microgrids—Part II: A review of power architectures, applications, and standardization issues,” IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3528-3549, May 2016.
[2] B. Zhao, Q. Song, W. Liu and Y. Sun, “A synthetic discrete design methodology of high-frequency isolated bidirectional DC/DC converter for grid-connected battery energy storage system using advanced components,” IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5402-5410, Oct. 2014.
[3] S. A. Assadi, H. Matsumoto, M. Moshirvaziri, M. Nasr, M. S. Zaman and O. Trescases, “Active saturation mitigation in high-density dual-active-bridge DC–DC converter for on-board EV charger applications,” IEEE Transactions on Power Electronics, vol. 35, no. 4, pp. 4376-4387, April 2020.
[4] F. Krismer and J. W. Kolar, “Accurate power loss model derivation of a high-current dual active bridge converter for an automotive application,” IEEE Transactions on Industrial Electronics, vol. 57, no. 3, pp. 881-891, March 2010.
[5] L. Xue, Z. Shen, D. Boroyevich, P. Mattavelli and D. Diaz, “Dual active bridge-based battery charger for plug-in hybrid electric vehicle with charging current containing low frequency ripple,” IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7299-7307, Dec. 2015.
[6] Y. Shi, R. Li, Y. Xue and H. Li, “Optimized operation of current-fed dual active bridge DC–DC converter for PV applications,” IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 6986-6995, Nov. 2015.
[7] T. Liu, X Yang, W. Chen, Y. Li, Y. Xuan, L. Huang and X. Hao, “Design and implementation of high efficiency control scheme of dual active bridge based 10 kV/1 MW solid state transformer for PV application,” IEEE Transactions on Power Electronics, vol. 34, no. 5, pp. 4223-4238, May 2019.
[8] J. Everts, F. Krismer, J. Van den Keybus, J. Driesen and J. W. Kolar, “Optimal ZVS modulation of single-phase single-stage bidirectional DAB AC–DC converters,” IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 3954-3970, Aug. 2014.
[9] 王嘉丞,應用於車輛之雙主動全橋式轉換器研製,國立臺灣科技大學電子工程系碩士論文,2020年。
[10] M. Rolak, C. Sobol, M. Malinowski and S. Stynski, “Efficiency optimization of two dual active bridge converters operating in parallel,” IEEE Transactions on Power Electronics, vol. 35, no. 6, pp. 6523-6532, June 2020.
[11] Y. Panov and M. M. Jovanovic, “Stability and dynamic performance of current-sharing control for paralleled voltage regulator modules,” IEEE Transactions on Power Electronics, vol. 17, no. 2, pp. 172-179, March 2002.
[12] S. K. Mazumder, M. Tahir and K. Acharya, “Master–slave current-sharing control of a parallel DC–DC converter system over an RF communication interface,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 59-66, Jan. 2008.
[13] W. Chen, X. Ruan, H. Yan and C. K. Tse, “DC/DC conversion systems consisting of multiple converter modules: stability, control, and experimental verifications,” IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1463-1474, June 2009.
[14] R. F. Foley, R. C. Kavanagh and M. G. Egan, “Sensorless current estimation and sharing in multiphase buck converters,” IEEE Transactions on Power Electronics, vol. 27, no. 6, pp. 2936-2946, June 2012.
[15] J. Shi, L. Zhou and X. He, “Common-duty-ratio control of input-parallel output-parallel (IPOP) connected DC–DC converter modules with automatic sharing of currents,” IEEE Transactions on Power Electronics, vol. 27, no. 7, pp. 3277-3291, July 2012.
[16] H. Chiang, K. Jen and G. You, “Improved droop control method with precise current sharing and voltage regulation,” IET Power Electron, vol. 9, no. 4, pp. 789-800, May 2016.
[17] C. Jamerson, T. Long and C. Mullett, “Seven ways to parallel a magamp,” Proc. 8th Annual Applied Power Electronics Conference and Exposition, 1993, pp. 469-474.
[18] S. Luo, Z. Ye, R. Lin and F. C. Lee, “A classification and evaluation of paralleling methods for power supply modules,” 30th Annual IEEE Power Electronics Specialists Conference. Record. (Cat. No.99CH36321), vol. 2, 1999, pp. 901-908.
[19] H. Bai and C. Mi, “Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge DC–DC converters using novel dual-phase-shift control,” IEEE Transactions on Power Electronics, vol. 23, no. 6, pp. 2905-2914, Nov. 2008.
[20] L. Yifei, W. Yubin and W. Shanshan, “Sensorless current sharing in two-phase input-parallel output-parallel DC-DC converters,” 2015 18th International Conference on Electrical Machines and Systems (ICEMS), 2015, pp. 1919-1924.
[21] Y. Wang, F. Wang, Y. Lin and T. Hao, “Sensorless parameter estimation and current-sharing strategy in two-phase and multiphase IPOP DAB DC–DC converters,” IET Power Electron, vol. 11, no. 6, pp. 1135-1142, May 2018.
[22] Z. Sun, Q. Wang, L. Xiao and Q. Wu, “A simple sensorless current sharing control for input-parallel output-parallel dual active bridge converters,” IEEE Transactions on Industrial Electronics, vol. 69, no. 11, pp. 10819-10833, Nov. 2022.
[23] B. T. Irving and M. M. Jovanovic, “Analysis design and performance evaluation of droop current-sharing method,” APEC 2000. 15th Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.00CH37058), 2000, pp. 235-241.
[24] 侯文傑,並聯直流電源供應器自動主僕均流技術之研究,國立成功大學電機工程學系碩士論文,2004年。
[25] H. Qin and J. W. Kimball, “Generalized average modeling of dual active bridge DC–DC converter,” IEEE Transactions on Power Electronics, vol. 27, no. 4, pp. 2078-2084, April 2012.
[26] J. A. Mueller and J. W. Kimball, “An improved generalized average model of DC–DC dual active bridge converters,” IEEE Transactions on Power Electronics, vol. 33, no. 11, pp. 9975-9988, Nov. 2018.
[27] Y. Panov, J. Rajagopalan and F. Lee, “Analysis and design of N paralleled DC–DC converters with master-slave current-sharing control,” Proc. of APEC 97 - Applied Power Electronics Conference, 1997, pp. 436-442.
[28] H. Wang, J. Liu and D. Hou, “Derivation method of output impedance of DC-DC converters paralleled system with active current sharing control for system stability analysis,” The 2010 International Power Electronics Conference - ECCE ASIA -, 2010, pp. 213-217.
[29] H. Seong, J. Cho, G. Moon and M. Youn, “Digital load share controller design of paralleled phase-shifted full-bridge converters referencing the highest current,” 2010 IEEE Energy Conversion Congress and Exposition, 2010, pp. 796-801.
[30] 江旻整,均流並聯之數位控制半橋串聯諧振轉換器,國立臺灣科技大學電子工程系碩士論文,2015年。
[31] 江哲瑋,三重相移控制之雙主動全橋式轉換器閉迴路設計,國立臺灣科技大學電子工程系碩士論文,2022年。

無法下載圖示
全文公開日期 2026/07/31 (校外網路)
全文公開日期 2026/07/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE