簡易檢索 / 詳目顯示

研究生: 曾為隆
Wei-Lung Tzeng
論文名稱: 鈦酸鍶粉體形貌控制對其微結構影響之研究
Study of SrTiO3 powder morphology control and the influences on microstructure
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 段維新
Wei-Hsing Tuan
林士剛
Shih-kang Lin
鍾仁傑
Ren-Jei Chung
顏怡文
Yee-Wen Yen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 183
中文關鍵詞: 鈦酸鍶噴霧熱裂解粉體形貌Σ3晶界導電率
外文關鍵詞: Strontium titanate, Spray pyrolysis, Particle morphology, Σ3 grain boundary, Conductivity
相關次數: 點閱:231下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈦酸鍶目前應用廣泛,如電容器、壓敏電阻及固態氧化物電池等。而這些應用皆與鈦酸鍶微結構相關,因此如果能夠控制並操控多晶鈦酸鍶微結構將可提升性質上的表現。多晶材料微結構與起始粉體形貌、結構、粒徑分佈息息相關。固本研究藉由噴霧熱解法合成鈦酸鍶粉體,並於前驅物中添加含有不同OH基之添加物(檸檬酸,醋酸,雙氧水),改變鈦酸鍶粉體形貌、結構及粒徑分佈。配合熱重損分析前驅物物理性質,X光繞射技術分析粉體結晶結構,電子顯微鏡觀察粉體形貌及結構。實驗結果發現,添加物的使用,改變鈦酸鍶粉體樣貌與結構,且並無明顯阻礙鈦酸鍶粉體成分。綜合實驗結果並加以分析推論出鈦酸鍶粉體形貌及結構成形機制。後續將合成鈦酸鍶粉體進行壓錠與高溫燒結(1500 oC),利用電子顯微鏡背向散射繞射技術觀察多晶鈦酸鍶晶粒尺寸與Σ3晶界數量;並量測鈦酸鍶於各溫度下導電度。由實驗結果發現,添加物中的OH基可降低鈦酸鍶晶體表面(111)的表面能;造成晶體表面形成非立方體結構形貌。此外,較多(111)平面於晶體表面有助於在燒結過程中,Σ3晶界的形成。而在電性上的表現也發現,較多Σ3晶界數量存在多晶鈦酸鍶塊材內,可提高鈦酸鍶的導電度並降低晶界活化能。本研究成功利用噴霧熱解法操控起鈦酸鍶始粉體形貌及結構。而藉由起始粉體形貌及結構之控制,可於燒結過程中提升多晶鈦酸鍶Σ3晶界數量,進而改善多晶鈦酸鍶導電度及活化能。


    Microstructures of polycrystalline material relate with particle morphologies, structure and size distributions of starting powder. Hence this study synthesized SrTO3 powder by spray pyrolysis with various additives (citric acid, acetic acid and hydrogen peroxide) to manipulate particle morphologies, structures and size distributions. To characterize the physic properties of precursor solution, crystallographic structures of synthesized powder, particle morphologies and structures, thermogravimetric analysis, X-ray diffractometer, scanning electron microscopy and transmission electron microscopy were applied. According the experimental results and analyses, the mechanisms of particle formation were proposed. To investigate the influences of starting powder with various structures on sintering process, the synthesized SrTiO3 powders were sintered (1500 oC). Grain boundary orientations and grain sizes were carried out by electron backscatter diffraction technique; in addition, the conductivities were also measured under different temperatures. The results showed that the additives with OH groups reduce surface energy of (111) and crystal surfaces have more (111) orientation; furthermore, the crystal surfaces with (111) orientation induce Σ3 grain boundaries formation. The conductivity results indicate that the higher Σ3 grain boundary populations increase conductivity.

    中文摘要 I ABSTRACT III ACKNOWLEDGEMENT V Chapter 1 Introduction 1 1.1 Photocatalysts 1 1.2 SOFC 6 1.3 Motivation 9 Chapter 2 Literature review 10 2.1 Basic properties of strontium titanate 10 2.1.1 Crystal structure of SrTiO3 10 2.1.2 Phase composition of SrTiO3 13 2.2 Electrical property of SrTiO3 16 2.2.1 The influence between electrical conductivity and temperature 16 2.2.2 The influence between electrical conductivity and atmosphere 18 2.2.3 The influence between electrical conductivity and dopants 19 2.2.4 The influence between electrical conductivity and microstructures 21 2.3 Structures of grain boundaries 30 2.3.1 Normal grain boundary 30 2.3.2 Coincidence-site lattice grain boundary 32 2.3.3 Surface and grain boundary energy 35 2.3.4 Grain boundary plane populations of SrTiO3 42 Chapter 3 Techniques 44 3.1. X-ray diffraction technique 44 3.1.1 X-Ray radiation 45 3.1.2 Characteristic X-Ray 47 3.1.3 Bragg’s law 49 3.2 Thermogravimetric analysis 50 3.3 Scanning electron microscope (FE-SEM) 53 3.3.1 Electron gun 54 3.3.2 Interactions of electrons and specimen 57 3.4 Electron backscatter diffraction (EBSD) 61 3.4.1 EBSD pattern formation 61 3.4.2 Orientation determination of crystal normal 63 3.5 Transmission electron microscopy (TEM) 64 3.5.1 Beam energy and resolution 65 3.5.2 Image contrast of TEM 66 Chapter 4 Manipulation of morphology of strontium titanate particles by spray pyrolysis 71 Abstract 72 4.1 Introduction 73 4.2 Experimental 78 4.3 Results 81 4.4 Discussion 90 4.5 Conclusions 94 Chapter 5 Template-free synthesis of hollow porous strontium titanate particles 95 Abstract 96 5.1 Introduction 97 5.2 Experimental 101 5.3 Results 104 5.4 Discussion 111 5.5 Conclusions 117 Chapter 6 Grain Boundary Engineering by Shape-Control of SrTiO3 Nanocrystals 118 Abstract 119 6.1 Introduction 120 6.2 Experimental 124 6.3 Results 128 6.4 Discussion 139 6.5 Conclusions 147 Chapter 7 Grain boundary engineering for improving conductivity of polycrystalline SrTiO3 148 Abstract 149 7.1 Introduction 150 7.2 Experimental 152 7.3 Results 155 7.4 Discussion 164 7.5 Conclusions 168 Summary 170 References 171

    [1] Z. Zhang, L. Zhao, X. Wang, J. Yang, The preparation and electrical properties of SrTiO3-based capacitor-varistor double-function ceramics, J. Sol-Gel Sci. Technol., 32 367-370.
    [2] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-38.
    [3] M. Zheng, J. Wu, One-step synthesis of nitrogen-doped ZnO nanocrystallites and their properties, Applied Surface Science, 255 (2009) 5656-5661.
    [4] Q. Fang, J. Tang, H. Zou, T. Cai, Q. Deng, Preparation of N-Doped Mesoporous TiO2 Using Nitromethane as Nitrogen Source and Their High Photocatalytic Performance, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 46 (2016) 766-774.
    [5] H. Yu, J. Liu, X. Fan, W. Yan, L. Han, J. Han, X. Zhang, T. Hong, Z. Liu, Bionic micro-nano-bump-structures with a good self-cleaning property: The growth of ZnO nanoarrays modified by polystyrene spheres, Mater. Chem. Phys., 170 (2016) 52-61.
    [6] X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based Photocatalytic Hydrogen Generation, Chemical Reviews, 110 (2010) 6503-6570.
    [7] C. Yang, T. Liu, Z. Cheng, H. Gan, J. Chen, Study on Mn-doped SrTiO3 with first principle calculation, Physica B: Condensed Matter, 407 (2012) 844-848.
    [8] Y.J. Choi, Z. Seeley, A. Bandyopadhyay, S. Bose, S.A. Akbar, Aluminum-doped TiO2 nano-powders for gas sensors, Sens. Actuators, B, 124 (2007) 111-117.
    [9] H.W. Kang, S.N. Lim, S.B. Park, Co-doping schemes to enhance H2 evolution under visible light irradiation over SrTiO3:Ni/M (M = La or Ta) prepared by spray pyrolysis, International Journal of Hydrogen Energy, 37 (2012) 5540-5549.
    [10] P. Vozdecky, A. Roosen, Q. Ma, F. Tietz, H.P. Buchkremer, Properties of tape-cast Y-substituted strontium titanate for planar anode substrates in SOFC applications, J. Mater. Sci., 46 (2011) 3493-3499.
    [11] S. Mondal, J.-L. Her, F.-H. Chen, S.-J. Shih, T.-M. Pan, Improved Resistance Switching Characteristics in Ti-Doped Yb2O3 for Resistive Nonvolatile Memory Devices, IEEE Electro. Device L., 33 (2012) 1069-1071.
    [12] S. Tonda, S. Kumar, O. Anjaneyulu, V. Shanker, Synthesis of Cr and La-codoped SrTiO3 nanoparticles for enhanced photocatalytic performance under sunlight irradiation, Physical Chemistry Chemical Physics, 16 (2014) 23819-23828.
    [13] T. Puangpetch, T. Sreethawong, S. Chavadej, Hydrogen production over metal-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalysts: Effects of metal type and loading, Int. J. Hydrogen Energy, 35 (2010) 6531-6540.
    [14] T. Ohno, T. Tsubota, Y. Nakamura, K. Sayama, Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light, Applied Catalysis A: General, 288 (2005) 74-79.
    [15] J.W. Liu, G. Chen, Z.H. Li, Z.G. Zhang, Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3, J. Solid State Chem., 179 (2006) 3704-3708.
    [16] H. Irie, Y. Maruyama, K. Hashimoto, Ag+- and Pb2+-Doped SrTiO3 Photocatalysts. A Correlation Between Band Structure and Photocatalytic Activity, The Journal of Physical Chemistry C, 111 (2007) 1847-1852.
    [17] R. Konta, T. Ishii, H. Kato, A. Kudo, Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation, The Journal of Physical Chemistry B, 108 (2004) 8992-8995.
    [18] Q. Kuang, S. Yang, Template Synthesis of Single-Crystal-Like Porous SrTiO3 Nanocube Assemblies and Their Enhanced Photocatalytic Hydrogen Evolution, ACS Applied Materials & Interfaces, 5 (2013) 3683-3690.
    [19] L.-L. Feng, X. Zou, J. Zhao, L.-J. Zhou, D.-J. Wang, X. Zhang, G.-D. Li, Nanoporous Sr-rich strontium titanate: a stable and superior photocatalyst for H2 evolution, Chemical Communications, 49 (2013) 9788-9790.
    [20] H.W. Kang, S.B. Park, H2 evolution under visible light irradiation from aqueous methanol solution on SrTiO3:Cr/Ta prepared by spray pyrolysis from polymeric precursor, International Journal of Hydrogen Energy, 36 (2011) 9496-9504.
    [21] N.Q. Minh, Ceramic Fuel Cells, J. Am. Ceram. Soc., 76 (1993) 563-588.
    [22] N.Q. Minh, Ceramic fuel-cells, J. Am. Ceram. Soc., 76 (1993) 563-588.
    [23] S.C. Singhal, Science and Technology of Solid-Oxide Fuel Cells, MRS Bulletin, 25 (2000) 16-21.
    [24] A.J. Jacobson, Materials for Solid Oxide Fuel Cells, Chem. Mat., 22 (2009) 660-674.
    [25] G.M. Christie, F.P.F. van Berkel, Microstructure — ionic conductivity relationships in ceria-gadolinia electrolytes, Solid State Ionics, 83 (1996) 17-27.
    [26] Y. Guan, Y. Gong, W. Li, J. Gelb, L. Zhang, G. Liu, X. Zhang, X. Song, C. Xia, Y. Xiong, H. Wang, Z. Wu, Y. Tian, Quantitative analysis of micro structural and conductivity evolution of Ni-YSZ anodes during thermal cycling based on nano-computed tomography, Journal of Power Sources, 196 (2011) 10601-10605.
    [27] W.Z. Zhu, S.C. Deevi, A review on the status of anode materials for solid oxide fuel cells, Mater. Sci. Eng., A, 362 (2003) 228-239.
    [28] A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells, Nat Mater, 3 (2004) 17-27.
    [29] D. Simwonis, F. Tietz, D. Stöver, Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells, Solid State Ionics, 132 (2000) 241-251.
    [30] A. Okazaki, M. Kawaminami, Lattice constant of strontium titanate at low temperatures, Mater. Res. Bull., 8 (1973) 545-550.
    [31] U. Balachandran, N.G. Eror, Electrical conductivity in strontium titanate, J. Solid State Chem., 39 (1981) 351-359.
    [32] C. Ohly, S. Hoffmann-Eifert, X. Guo, J. Schubert, R. Waser, Electrical Conductivity of Epitaxial SrTiO3 Thin Films as a Function of Oxygen Partial Pressure and Temperature, J. Am. Ceram. Soc., 89 (2006) 2845-2852.
    [33] T. Kolodiazhnyi, A. Petric, The Applicability of Sr-deficient n-type SrTiO3 for SOFC Anodes, J Electroceram, 15 (2005) 5-11.
    [34] S. Hui, A. Petric, Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells, J. Eur. Ceram. Soc., 22 (2002) 1673-1681.
    [35] D. Burnat, A. Heel, L. Holzer, D. Kata, J. Lis, T. Graule, Synthesis and performance of A-site deficient lanthanum-doped strontium titanate by nanoparticle based spray pyrolysis, J. Power Sources, 201 (2012) 26-36.
    [36] P. Blennow, K.K. Hansen, L.R. Wallenberg, M. Mogensen, Electrochemical characterization and redox behavior of Nb-doped SrTiO3, Solid State Ionics, 180 (2009) 63-70.
    [37] C. Chen, T. Zhang, R. Donelson, T.T. Tan, S. Li, Effects of yttrium substitution and oxygen deficiency on the crystal phase, microstructure, and thermoelectric properties of Sr1−1.5xYxTiO3−δ (0 ⩽ x ⩽ 0.15), J. Alloys Compd., 629 (2015) 49-54.
    [38] H.W. Kang, S.B. Park, A.-H.A. Park, Effects of charge balance with Na+ on SrTiO3:Mo6+ prepared by spray pyrolysis for H2 evolution under visible light irradiation, Int. J. Hydrogen Energy, 38 (2013) 9198-9205.
    [39] K. Abe, S. Komatsu, Dielectric constant and leakage current of epitaxially grown and polycrystalline SrTiO3 thin films, Jpn. J. Appl. Phys., Part 1, 32 (1993) 4186-4189.
    [40] O.A. Marina, N.L. Canfield, J.W. Stevenson, Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate, Solid State Ionics, 149 (2002) 21-28.
    [41] Y.C. Kang, D.J. Seo, S.B. Park, H.D. Park, Direct synthesis of strontium titanate phosphor particles with high luminescence by flame spray pyrolysis, Mater. Res. Bull., 37 (2002) 263-269.
    [42] K.T. Jacob, G. Rajitha, Thermodynamic properties of strontium titanates: Sr2TiO4, Sr3Ti2O7, Sr4Ti3O10, and SrTiO3, J. Chem. Thermodyn., 43 (2011) 51-57.
    [43] S. Hui, A. Petric, Electrical properties of yttrium-doped strontium titanate under reducing conditions, J. Electrochem. Soc., 149 (2002) J1-J10.
    [44] S. Okamoto, H. Kobayashi, H. Yamamoto, Enhancement of characteristic red emission from SrTiO3 : Pr3+ by Al addition, J. Appl. Phys., 86 (1999) 5594-5597.
    [45] M.J. Weber, R.R. Allen, Nuclear Magnetic Resonance Study of the Phase Transition in Strontium Titanate, J. Chem. Phys., 38 (1963) 726-729.
    [46] R.D. Leapman, L.A. Grunes, P.L. Fejes, Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory, Phys. Rev. B: Condens. Matter, 26 (1982) 614-635.
    [47] W. Kingery, H. Bowen, D. Uhlmann, Introduction to ceramics, 1976, New York, 788-1016.
    [48] R.O. Bell, G. Rupprecht, Phys. Rev., Physical Review, 129 (1963) 90-94.
    [49] A.C.L.S. Marques, Advanced Si pad detector development and SrTiO3 studies by emission channeling and hyperfine interaction experiments, (2009).
    [50] N.H. Chan, R. Sharma, D.M. Smyth, Nonstoichiometry in SrTiO3, J. Electrochem. Soc., 128 (1981) 1762-1769.
    [51] S. Witek, D.M. Smyth, H. Piclup, Variability of the Sr/Ti ratio in SrTiO3, J. Am. Ceram. Soc., 67 (1984) 372-375.
    [52] S.N. Ruddlesden, P. Popper, The compound Sr3Ti2O7 and its structure, Acta Cryst., 11 (1958) 54-55.
    [53] R. Roy, Phase diagrams for ceramists, American Ceramic Society, Columbus, Ohio, 1964.
    [54] J.H. Haeni, C.D. Theis, D.G. Schlom, W. Tian, X.Q. Pan, H. Chang, I. Takeuchi, X.-D. Xiang, Epitaxial growth of the first five members of the Srn+1TinO3n+1 Ruddlesden–Popper homologous series, Appl. Phys. Lett., 78 (2001) 3292-3294.
    [55] P. Cox, Transition metal oxides: An Introduction to their electronic structure and properties, Clarendon Press, Oxford, 1992.
    [56] V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, F.M. Figueiredo, J.R. Frade, A.A. Yaremchenko, E.N. Naumovich, Faradaic efficiency and oxygen permeability of Sr0.97Ti0.60Fe0.40O3−δ perovskite, Solid State Ionics, 128 (2000) 117-130.
    [57] U. Balachandran, N. Eror, Electrical conductivity in lanthanum‐doped strontium titanate, J. Electrochem. Soc., 129 (1982) 1021-1026.
    [58] R. Astala, P.D. Bristowe, Ab initio and classical simulations of defects in SrTiO3, Comp. Mater. Sci., 22 (2001) 81-86.
    [59] C.D. Savaniu, D.N. Miller, J.T.S. Irvine, Scale up and anode development for La-doped SrTiO3 anode-supported SOFCs, J. Am. Ceram. Soc., 96 (2013) 1718-1723.
    [60] Q. Ma, F. Tietz, D. Stöver, Nonstoichiometric Y-substituted SrTiO3 materials as anodes for solid oxide fuel cells, Solid State Ionics, 192 (2011) 535-539.
    [61] P. Blennow, A. Hagen, K.K. Hansen, L.R. Wallenberg, M. Mogensen, Defect and electrical transport properties of Nb-doped SrTiO3, Solid State Ionics, 179 (2008) 2047-2058.
    [62] L. Heyne, Electrochemistry of mixed ionic-electronic conductors, in: S. Geller (Ed.) Solid Electrolytes, Springer Berlin Heidelberg, Berlin, Heidelberg, 1977, pp. 169-221.
    [63] S. Hui, A. Petric, Electrical conductivity of yttrium-doped SrTiO3: influence of transition metal additives, Mater. Res. Bull., 37 (2002) 1215-1231.
    [64] X. Li, H. Zhao, F. Gao, N. Chen, N. Xu, La and Sc co-doped SrTiO3 as novel anode materials for solid oxide fuel cells, Electrochem. Commun., 10 (2008) 1567-1570.
    [65] B.R. Sudireddy, K. Agersted, Sintering and Electrical Characterization of La and Nb Co-doped SrTiO3 Electrode Materials for Solid Oxide Cell Applications, Fuel Cells, 14 (2014) 961-965.
    [66] I. Denk, J. Claus, J. Maier, Electrochemical Investigations of SrTiO3 Boundaries, J. Electrochem. Soc., 144 (1997) 3526-3536.
    [67] H.L. Tuller, Ionic conduction in nanocrystalline materials, Solid State Ionics, 131 (2000) 143-157.
    [68] R.A. De Souza, J. Fleig, J. Maier, Z. Zhang, W. Sigle, M. Rühle, Electrical resistance of low-angle tilt grain boundaries in acceptor-doped SrTiO3 as a function of misorientation angle, J. Appl. Phys., 97 (2005) 053502.
    [69] M. Leonhardt, J. Jamnik, J. Maier, In situ monitoring and quantitative analysis of oxygen diffusion through schottky‐barriers in SrTiO3 bicrystals, Electrochem. Solid-State Lett., 2 (1999) 333-335.
    [70] P. Lejček, Grain boundaries: description, structure and thermodynamics, grain boundary segregation in metals, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 5-24.
    [71] D.G. Brandon, The structure of high-angle grain boundaries, Acta Metall., 14 (1966) 1479-1484.
    [72] G.A. Chadwick, D.A. Smith, Grain boundary structure and properties, Academic Press, New York, 1976.
    [73] W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to ceramics, John Wiley, New York, 1976.
    [74] D.G. Brandon, Structure of high-angle grain boundaries, Acta Metall., 14 (1966) 1479-1484.
    [75] M.J. Weins, H. Gleiter, B. Chalmers, Computer calculations of the structure and energy of high‐angle grain boundaries, Journal of Applied Physics, 42 (1971) 2639-2645.
    [76] S. Tsurekawa, T. Fukino, T. Matsuzaki, In-situ SEM/EBSD observation of abnormal grain growth in electrodeposited nanocrystalline nickel, International Journal of Materials Research, 100 (2009) 800-805.
    [77] H.S. Lee, T. Mizoguchi, J. Mistui, T. Yamamoto, S.J.L. Kang, Y. Ikuhara, Defect energetics in SrTiO3 symmetric tilt grain boundaries, Phys. Rev. B: Condens. Matter, 83 (2011) 104110.
    [78] V. Randle, The role of the grain boundary plane in cubic polycrystals, Acta Mater., 46 (1998) 1459-1480.
    [79] V. Randle, Relationship between coincidence site lattice, boundary plane indices, and boundary energy in nickel, Mater. Sci. Tech. Ser., 15 (1999) 246-252.
    [80] M.W. Finnis, Accessing the Excess: An Atomistic Approach to Excesses at Planar Defects and Dislocations in Ordered Compounds, Phys. Status Solidi A, 166 (1998) 397-416.
    [81] Y. Ishida, M. McLean, Burgers vectors of boundary dislocations in ordered grain boundaries of cubic metals, Philos. Mag., 27 (1973) 1125-1134.
    [82] M. Déchamps, F. Baribier, A. Marrouche, Grain-boundaries: Criteria of specialness and deviation from CSL misorientation, Acta Metall., 35 (1987) 101-107.
    [83] G. Palumbo, K.T. Aust, E.M. Lehockey, U. Erb, P. Lin, On a More Restrictive Geometric Criterion for “Special” CSL Grain Boundaries, Scripta Mater., 38 (1998) 1685-1690.
    [84] D.G. Brandon, B. Ralph, S. Ranganathan, M.S. Wald, A field ion microscope study of atomic configuration at grain boundaries, Acta Metall., 12 (1964) 813-821.
    [85] J.W. Gibbs, H.A. Bumstead, W.R. Longley, The collected works of J. Willard Gibbs, Longmans, Green and Company1928.
    [86] D.M. Saylor, D.E. Mason, G.S. Rohrer, Experimental method for determining surface energy anisotropy and its application to magnesia, J. Am. Ceram. Soc., 83 (2000) 1226-1232.
    [87] G. Wulff, XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen, Zeitschrift für Kristallographie - Crystalline Materials, 1901, pp. 449.
    [88] L. Priester, Grain boundary order/disorder and energy, grain boundaries: from theory to engineering, Springer Netherlands, Dordrecht, 2013, pp. 93-132.
    [89] T. Sano, D.M. Saylor, G.S. Rohrer, Surface energy anisotropy of SrTiO3 at 1400°C in air, J. Am. Chem. Soc., 86 (2003) 1933-1939.
    [90] W. Rheinheimer, M. Bäurer, H. Chien, G.S. Rohrer, C.A. Handwerker, J.E. Blendell, M.J. Hoffmann, The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution, Acta Mater., 82 (2015) 32-40.
    [91] D.M. Saylor, B. El Dasher, T. Sano, G.S. Rohrer, Distribution of grain boundaries in SrTiO3 as a function of five macroscopic parameters, J. Am. Ceram. Soc., 87 (2004) 670-676.
    [92] G.S. Rohrer, Grain boundary energy anisotropy: a review, J. Mater. Sci., 46 (2011) 5881-5895.
    [93] W.T. Read, W. Shockley, Dislocation models of crystal grain boundaries, Phys. Rev., 78 (1950) 275-289.
    [94] N.A. Gjostein, F.N. Rhines, Absolute interfacial energies of [001] tilt and twist grain boundaries in copper, Acta Metall., 7 (1959) 319-330.
    [95] Y. Ikuhara, T. Watanabe, T. Yarnamoto, T. Saito, H. Yoshida, T. Sakuma, Grain Boundary Structure and Sliding of Alumina Bicrystals, MRS Online Proceedings Library Archive, 601 (1999) 125 (128 pages).
    [96] G. Dhalenne, M. Déchamps, A. Revcolevschi, Relative Energies of 〈011〉 Tilt Boundaries inNiO, J. Am. Ceram. Soc., 65 (1982) C-11-C-12.
    [97] D.M. Saylor, A. Morawiec, B.L. Adams, G.S. Rohrer, Misorientation dependence of the grain boundary energy in magnesia, Interface Sci., 8 (2000) 131-140.
    [98] J.K. Mackenzie, The distribution of rotation axes in a random aggregate of cubic crystals, Acta Metall., 12 (1964) 223-225.
    [99] F. Ernst, M.L. Mulvihill, O. Kienzle, M. Ruhle, Preferred grain orientation relationships in sintered perovskite ceramics, J. Am. Ceram. Soc., 84 (2001) 1885-1890.
    [100] S.-J. Shih, C. Bishop, D.J.H. Cockayne, Distribution of Sigma 3 misorientations in polycrystalline strontium titanate, J. Eur. Ceram. Soc., 29 (2009) 3023-3029.
    [101] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prentice-Hall, Inc, New Jersey, USA, 2001.
    [102] W.H. Bragg, W.L. Bragg, The reflection of X-rays by crystals, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 88 (1913) 428-438.
    [103] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309-319.
    [104] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platium, J. Am. Chem. Soc., 40 (1918) 1361-1403.
    [105] Y. Leng, Scanning Electron Microscopy, Materials Characterization, Wiley-VCH Verlag GmbH & Co. KGaA2013, pp. 127-161.
    [106] J. Goldstein, Practical scanning electron microscopy: electron and ion microprobe analysis, Springer Science & Business Media2012.
    [107] Y. Leng, Transmission Electron Microscopy, Materials Characterization, Wiley-VCH Verlag GmbH & Co. KGaA2013, pp. 83-126.
    [108] J.I. Goldstein, H. Yakowitz, Practical Scanning Electron Microscopy, Plenum Press, New York, 1977.
    [109] Y. Leng, Scanning Electron Microscopy, Materials Characterization, John Wiley & Sons (Asia) Pte Ltd2008, pp. 121-144.
    [110] Y. Leng, Transmission Electron Microscopy, Materials Characterization, John Wiley & Sons (Asia) Pte Ltd2008, pp. 79-119.
    [111] D.B. Williams, C.B. Carter, Dispersion Surfaces, Transmission Electron Microscopy: A Textbook for Materials Science, Springer US, Boston, MA, 2009, pp. 245-256.
    [112] Z.Y. Zhang, L.L. Zhao, X.W. Wang, J.S. Yang, The preparation and electrical properties of SrTiO3-based capacitor-varistor double-function ceramics, Journal of Sol-gel Science and Technology, 32 (2004) 367-370.
    [113] S.Q. Hui, A. Petric, Electrical properties of yttrium-doped strontium titanate under reducing conditions, J. Electrochem. Soc., 149 (2002) J1-J10.
    [114] A.L. Podkorytov, M.I. Pantyukhina, V.M. Zhukovskii, N.V. Sherstneva, V.V. Simonov, Solid-state synthesis of strontium titanate niobates, Inorg. Mater., 32 (1996) 85-88.
    [115] D.A. Fumo, J.R. Jurado, A.M. Segadaes, J.R. Frade, Combustion synthesis of iron-substituted strontium titanate perovskites, Mater. Res. Bull., 32 (1997) 1459-1470.
    [116] R. Thomas, D.C. Dube, M.N. Kamalasanan, S. Chandra, A.S. Bhalla, Structural, electrical, and low-temperature dielectric properties of sol-gel derived SrTiO3 thin films, J. Appl. Phys., 82 (1997) 4484-4488.
    [117] V. Kumar, Solution-precipitation of fine powders of barium titanate and strontium titanate, J. Am. Ceram. Soc., 82 (1999) 2580-2584.
    [118] K. Nonaka, S. Hayashi, k. Okada, N. Otsuka, T. Yano, Characterization and control of phase segregation in the fine particles of BaTiO3 and SrTiO3 synthesized by the spray pyrolysis method, J. Mater. Res., 6 (1991) 1750-1756.
    [119] J. Ortega, T.T. Kodas, Control of particle morphology during multicomponent metal oxide powder generation by spray pyrolysis, J. Aerosol Sci., 23 (1992) 253-256.
    [120] K.H. Kim, J.K. Park, C.H. Kim, H.D. Park, H. Chang, S.Y. Choi, Synthesis of SrTiO3 : Pr,Al by ultrasonic spray pyrolysis, Ceram. Int., 28 (2002) 29-36.
    [121] I.W. Lenggoro, C. Panatarani, K. Okuyama, One-step synthesis and photoluminescence of doped strontium titanate particles with controlled morphology, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 113 (2004) 60-66.
    [122] G.L. Messing, S.C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray-pyrolysis, J. Am. Ceram. Soc., 76 (1993) 2707-2726.
    [123] B.E. Yoldas, Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters, J. Mater. Sci., 21 (1986) 1087-1092.
    [124] K. Nonaka, Y. Onishi, S. Hayashi, T. Okada, K. Yano, K. Uematsu, A. Saito, N. Otsuka, Spray-pyrolytic synthesis of BaTiO3-based fine powders and effect of Ba/Ti ratio and CuO addition on their sinterability, J. Ceram. Soc. Jpn., 98 (1990) 794-800.
    [125] S.J. Shih, P.R. Herrero, G. Li, C.Y. Chen, S. Lozano-Perez, Three-dimensional structures of mesoporous ceria particles using electron tomography, Microsc. Microanal., 17 (2011) 54-60.
    [126] D.P. Birnie III, Esterification kinetics in titanium isopropoxide-acetic acid solutions, J. Mater. Sci., 35 (2000) 367-374.
    [127] R.A. Assink, R.W. Schwartz, Proton and carbon-13 NMR investigations of lead zirconate titanate (Pb(Zr,Ti)O3) thin-film precursor solutions, Chem. Mater., 5 (1993) 511-517.
    [128] H.G. McAdie, The pyrosynthesis of strontium zincate, J. Inorg. Nucl. Chem., 28 (1966) 2801-2809.
    [129] C.F. Kao, W.D. Yang, Preparation and electrical characterisation of strontium titanate ceramic from titanyl acylate precursor in strong alkaline solution, Ceramics International, 22 (1996) 57-66.
    [130] B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, Prentice-Hall, Inc., New Jersey, USA, 2001.
    [131] S.J. Shih, Y.Y. Wu, C.Y. Chen, C.Y. Yu, Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis, J. Nanopart. Res., 14 (2012) 1-9.
    [132] A. Seidell, Solubilities of inorganic and organic substances, D. Van Nostrand Company, New York, USA, 1919.
    [133] H. Liu, H. Dong, X. Meng, F. Wu, First-principles study on strontium titanate for visible light photocatalysis, Chem. Phys. Lett., 555 (2013) 141-144.
    [134] Y. Hu, O.K. Tan, W. Cao, W. Zhu, A low temperature nano-structured SrTiO3 thick film oxygen gas sensor, Ceram. Int., 30 (2004) 1819-1822.
    [135] H.W. Kang, S.B. Park, Preparation of novel SrTiO3:Rh/Ta photocatalyst by spray pyrolysis and its activity for H2 evolution from aqueous methanol solution under visible light, Int. J. Hydrogen Energy, 38 (2013) 823-831.
    [136] T. Sato, P. Zhang, S. Yin, High performance visible light responsive photocatalysts for environmental cleanup via solution processing, Prog. Cryst. Growth Charact. Mater, 58 (2012) 92-105.
    [137] W. Dong, X. Li, J. Yu, W. Guo, B. Li, L. Tan, C. Li, J. Shi, G. Wang, Porous SrTiO3 spheres with enhanced photocatalytic performance, Mater. Lett., 67 (2012) 131-134.
    [138] S. Mondal, S.J. Shih, F.H. Chen, T.-M. Pan, Structural and Electrical Characteristics of Lu2O3 Dielectric Embedded MIM Capacitors for Analog IC Applications, IEEE T. Electron Dev., 59 (2012) 1750-1756.
    [139] A. Tkach, P.M. Vilarinho, A.M.R. Senos, A.L. Kholkin, Effect of nonstoichiometry on the microstructure and dielectric properties of strontium titanate ceramics, J. Eur. Ceram. Soc., 25 (2005) 2769-2772.
    [140] Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, G. Han, Formation of single-crystal SrTiO3 dendritic nanostructures via a simple hydrothermal method, J. Cryst. Growth, 311 (2009) 2519-2523.
    [141] M.-L. Li, M.-X. Xu, Effect of dispersant on preparation of barium–strontium titanate powders through oxalate co-precipitation method, Mater. Res. Bull., 44 (2009) 937-942.
    [142] J. Ortega, T.T. Kodas, Control of particle morphology during multicomponent metal oxide powder generation by spray pyrolysis, J. Aerosol Sci., 23, Supplement 1 (1992) 253-256.
    [143] P. Manivasakan, A. Karthik, V. Rajendran, Mass production of Al2O3 and ZrO2 nanoparticles by hot-air spray pyrolysis, Powder Technol., 234 (2013) 84-90.
    [144] S.H. Choi, Y.N. Ko, J.K. Lee, Y.C. Kang, Dielectric properties of nano-sized Ba0.7Sr0.3TiO3 powders prepared by spray pyrolysis, Ceram. Int., 38 (2012) 4029-4033.
    [145] S.-J. Shih, Y.-Y. Wu, C.-Y. Chen, C.-Y. Yu, Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis, J. Nanopart. Res., 14 (2012).
    [146] P.P. Ahonen, U. Tapper, E.I. Kauppinen, J.C. Joubert, J.L. Deschanvres, Aerosol synthesis of Ti–O powders via in-droplet hydrolysis of titanium alkoxide, Mater. Sci. Eng., A, 315 (2001) 113-121.
    [147] H.K. Varma, P.K. Pillai, T.V. Mani, K.G.K. Warrier, A.D. Damodaran, Spray drying of metal alkoxide sol for strontium titanate ceramics, J. Am. Ceram. Soc., 77 (1994) 129-132.
    [148] J.A. Duisman, S.A. Stern, Vapor pressure and boiling point of pure nitric acid, J. Chem. Eng. Data, 14 (1969) 457-459.
    [149] E.W. Washburn, Internal Critical Tables of Numerical Data, Physic, Chemistry and Technology, McGRAW-Hill1926.
    [150] H.S. Kang, Y.C. Kang, H.Y. Koo, S.H. Ju, D.Y. Kim, S.K. Hong, J.R. Sohn, K.Y. Jung, S.B. Park, Nano-sized ceria particles prepared by spray pyrolysis using polymeric precursor solution, Mater. Sci. Eng., B, 127 (2006) 99-104.
    [151] H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedure for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley & Sons, New York, 1974.
    [152] S.-J. Shih, P.R. Herrero, G. Li, C.Y. Chen, S. Lozano-Perez, Characterization of Mesoporosity in Ceria Particles Using Electron Microscopy, Microsc. Microanal., 17 (2011) 54-60.
    [153] S.G. Cho, P.F. Johnson, R.A. Condrate Sr, Thermal decomposition of (Sr, Ti) organic precursors during the Pechini process, J. Mater. Sci., 25 (1990) 4738-4744.
    [154] K.S. Koh, I.W. Shim, H.C. Jung, J.H. Yang, W.K. Choo, The preparation of BaTiO3 and Ba0.65Sr0.35TiO3 powders from complex acetate precursors, J. Korean Phys. Soc., 32 (1998) S1227-S1230.
    [155] C.F. Kao, W.D. Yang, Preparation of barium strontium titanate powder from citrate precursor, Appl. Organomet. Chem., 13 (1999) 383-397.
    [156] W.-D. Yang, K.-M. Hung, C.-F. Kao, Preparation and dielectric properties of semiconducting lanthanum-doped strontium titanate ceramics from titanyl citrate precursors, Ceram. Int., 26 (2000) 475-484.
    [157] G.L. Messing, S.-C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, J. Am. Ceram. Soc., 76 (1993) 2707-2726.
    [158] R.J. Lang, Ultrasonic Atomization of Liquids, J. Acoust. Soc. Am., 34 (1962) 6-8.
    [159] T. Ogihara, H. Aikiyo, N. Ogata, N. Mizutani, Synthesis and sintering of barium titanate fine powders by ultrasonic spray pyrolysis, Adv. Powder Technol., 10 (1999) 37-50.
    [160] W.P. Guo, A.K. Datye, T.L. Ward, Synthesis of barium titanate powders by aerosol pyrolysis of a Pechini-type precursor solution, J. Mater. Chem., 15 (2005) 470-477.
    [161] S.-J. Shih, W.-L. Tzeng, Manipulation of morphology of strontium titanate particles by spray pyrolysis, Powder Technol., 264 (2014) 291-297.
    [162] M. Kakihana, T. Okubo, M. Arima, Y. Nakamura, M. Yashima, M. Yoshimura, Polymerized Complex Route to the Synthesis of Pure SrTiO3 at Reduced Temperatures: Implication for Formation of Sr-Ti Heterometallic Citric Acid Complex, J. Sol-Gel Sci. Technol., 12 (1998) 95-109.
    [163] K.K. Lee, Y.C. Kang, K.Y. Jung, J.H. Kim, Preparation of nano-sized BaTiO3 particle by citric acid-assisted spray pyrolysis, J. Alloys Compd., 395 (2005) 280-285.
    [164] O. Kienzle, M. Exner, F. Ernst, Atomistic structure of Σ = 3, (111) grain boundaries in strontium titanate, Phys. Status Solidi (A), 166 (1998) 57-71.
    [165] F. Ernst, O. Kienzle, M. Rühle, Structure and composition of grain boundaries in ceramics, J. Eur. Ceram. Soc., 19 (1999) 665-673.
    [166] S. Hutt, S. Köstlmeier, C. Elsässer, Density functional study of the Σ3 (111) [1 ̅10] symmetrical tilt grain boundary in SrTiO3, J. Phys. Condens. Matter, 13 (2001) 3949.
    [167] J. Seaton, C. Leach, Formation and retention of low S interfaces in PTC thermistors, Acta Materialia, 53 (2005) 2751-2758.
    [168] J. Seaton, C. Leach, Evolution of low sigma grain boundaries in PTC thermistors during sintering, J. Eur. Ceram. Soc., 25 (2005) 3055-3058.
    [169] S.J. Shih, C. Bishop, D.J.H. Cockayne, Distribution of S3 misorientations in polycrystalline strontium titanate, J. Eur. Ceram. Soc., 29 (2009) 3023-3029.
    [170] A.P. Sutton, R.W. Balluffi, Mechanisms and models for sharp interfaces, Interfaces in crystalline materials, Oxford University Press, Oxford, 1995, pp. 526-573.
    [171] F. Ernst, M.L. Mulvihill, O. Kienzle, M. Rühle, Preferred grain orientation relationships in sintered perovskite ceramics, J. Am. Ceram. Soc., 84 (2001) 1885-1890.
    [172] J.K. Mackenzie, M.J. Thomson, Some statistics associated with the random disorientation of cubes, Biometrika, 44 (1957) 205-210.
    [173] J.K. Mackenzie, Second Paper on Statistics Associated with the Random Disorientation of Cubes, Biometrika, 45 (1958) 229-240.
    [174] R.I. Eglitis, Nanodevices and Nanomaterials for Ecological Security, Springer, Dordrecht, 2012.
    [175] L. Dong, H. Shi, K. Cheng, Q. Wang, W. Weng, W. Han, Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals, Nano Res., 7 (2014) 1311-1318.
    [176] K. Nonaka, S. Hayashi, K. Okada, N. Otsuka, T. Yano, Characterization and control of phase segregation in the fine particles of BaTiO3 and SrTiO3 synthesized by the spray pyrolysis method, J. Mater. Res., 6 (1991) 1750-1756.
    [177] V.M. McNamara, A Wet Chemical Method for the Preparation of Oxide Mixtures Applicable to Electronic Ceramics, Journal of the Canadian Ceramic Society, 34 (1965) 103-120.
    [178] M.K. Mondal, M. Lenka, Solubility of CO2 in aqueous strontium hydroxide, Fluid Phase Equilibria, 336 (2012) 59-62.
    [179] W.L. Tzeng, S.J. Shih, Template-Free Synthesis of Hollow Porous Strontium Titanate Particles, J. Am. Ceram. Soc., 98 (2015) 386-391.
    [180] G.L. Messing, S.C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, J. Am. Ceram. Soc., 76 (1993) 2707-2726.
    [181] E. Heifets, R.I. Eglitis, E.A. Kotomin, J. Maier, G. Borstel, Ab initio modeling of surface structure for SrTiO3 perovskite crystals, Physical Review B, 64 (2001) 235417.
    [182] S. von Alfthan, N.A. Benedek, L. Chen, A. Chua, D. Cockayne, K.J. Dudeck, C. Elsässer, M.W. Finnis, C.T. Koch, B. Rahmati, M. Rühle, S.J. Shih, A.P. Sutton, The Structure of Grain Boundaries in Strontium Titanate: Theory, Simulation, and Electron Microscopy, Annual Review of Materials Research, 40 (2010) 557-599.
    [183] A. Pojani, F. Finocchi, C. Noguera, Polarity on the SrTiO3 (111) and (110) surfaces, Surface Science, 442 (1999) 179-198.
    [184] C. Bae, J.G. Park, Y.H. Kim, H. Jeon, Abnormal Grain Growth of Niobium-Doped Strontium Titanate Ceramics, J. Am. Ceram. Soc., 81 (1998) 3005-3009.
    [185] T. Sano, D.M. Saylor, G.S. Rohrer, Surface energy anisotropy of SrTiO3 at 1400oC in air, J. Am. Ceram. Soc., 86 (2003) 1933-1939.
    [186] T. Watanabe, S. Tsurekawa, X. Zhao, L. Zuo, The Coming of Grain Boundary Engineering in the 21st Century, in: A. Haldar, S. Suwas, D. Bhattacharjee (Eds.) Microstructure and Texture in Steels, Springer London2009, pp. 43-82.
    [187] M. Leonhardt, J. Jamnik, J. Maier, In situ monitoring and quantitative analysis of oxygen diffusion through Schottky-barriers in SrTiO3 bicrystals, Electrochemical and Solid State Letters, 2 (1999) 333-335.
    [188] O. Kienzle, F. Ernst, Effect of Shear Stress on the Atomistic Structure of a Grain Boundary in Strontium Titanate, J. Am. Ceram. Soc., 80 (1997) 1639-1644.
    [189] C. Sánchez-Bautista, A.J. Dos santos-García, J. Peña-Martínez, J. Canales-Vázquez, The grain boundary effect on dysprosium doped ceria, Solid State Ionics, 181 (2010) 1665-1673.
    [190] S.-J. Shih, Y.-J. Chou, L.V.P. Panjaitan, Synthesis and characterization of spray pyrolyzed mesoporous bioactive glass, Ceram. Int., 39 (2013) 8773-8779.
    [191] S.J. Shih, S. Lozano-Perez, D.J.H. Cockayne, Investigation of grain boundaries for abnormal grain growth in polycrystalline SrTiO3, J. Mater. Res., 25 (2010) 260-265.
    [192] E. Heifets, R.I. Eglitis, E.A. Kotomin, J. Maier, G. Borstel, Ab initio modeling of surface structure for SrTiO3 perovskite crystals, Phys. Rev. B: Condens. Matter, 64 (2001) 235417.
    [193] S. von Alfthan, N.A. Benedek, C. Lin, A. Chua, D. Cockayne, K.J. Dudeck, C. Elsässer, M.W. Finnis, C.T. Koch, B. Rahmati, M. Rühle, S.J. Shih, A.P. Sutton, The structure of grain boundaries in strontium titanate: theory, simulation, and electron microscopy, Annu. Rev. Mater. Res., 40 (2010) 557-599.
    [194] L.F. Zagonel, N. Barrett, O. Renault, A. Bailly, M. Baeurer, M. Hoffmann, S.J. Shih, D.J.H. Cockayne, Orientation-dependent surface composition of in situ annealed strontium titanate, Surf. Interface Anal., 40 (2008) 1709-1712.
    [195] F. Noll, W. Münch, I. Denk, J. Maier, SrTiO3 as a prototype of a mixed conductor Conductivities, oxygen diffusion and boundary effects, Solid State Ionics, 86–88, Part 2 (1996) 711-717.
    [196] P. Balaya, M. Ahrens, L. Kienle, J. Maier, B. Rahmati, S.B. Lee, W. Sigle, A. Pashkin, C. Kuntscher, M. Dressel, Synthesis and characterization of nanocrystalline SrTiO3, J. Am. Ceram. Soc., 89 (2006) 2804-2811.

    QR CODE