簡易檢索 / 詳目顯示

研究生: 呂文瑞
WEN-RUI LU
論文名稱: 外轉子式多極永磁同步電動機驅動系統研製
Design and Implementation of Outer Rotor Type Multipole Permanent Magnet Synchronous Motor Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 許源浴
Yuan-Yih Hsu
廖聰明
Chang-Ming Liaw
徐國鎧
Kuo-Kai Shyu
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 148
中文關鍵詞: 弱磁控制預測型控制器外轉子永磁同步電動機多極
外文關鍵詞: flux-weakening, predictive controller, outer rotor permanent magnet synchronous motor, multipole
相關次數: 點閱:230下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討一部3相1仟瓦,36槽,12極的外轉子表貼式永磁同步電動機驅動系統。此部外轉子式電動機與內轉子式不同,轉子位於電動機外側,因此在運轉時的轉動慣量較大。此外,極數為12極亦較常見的內轉子式4極更多,為了擴展高速運轉範圍,本文中探討弱磁控制來讓電動機運轉在高於額定轉速之上,並且採用最大轉矩/伏特,進一步擴展高速範圍。
    本文亦探討預測型速度控制器與預測型電流控制器取代傳統比例-積分控制器,改善閉迴路驅動系統的動態速度響應,及減少電動機的電流諧波,以提升電動機的整體性能。包括:良好的加載回復能力、快速的動態響應等。
    本文使用德州儀器公司所生產的數位訊號處理器,編號為TMS320F28035 ,進行驅動系統的核心控制,實驗結果說明本文所提方法的可行性與正確性。


    This thesis investigates a 3-phase, 1kW, 36-slot, 12-pole outer rotor surface-mounted permanent-magnet synchronous motor (SPMSM) drive system. Compared to a regular internal rotor SPMSM, this outer rotor SPMSM has a higher inertia and also has 12 poles, which is higher than regular internal rotor which has 4 poles.
    In order to extend the high speed operating range, the flux-weakening control is studied to operate the outer rotor SPMSM beyond its rated speed. In addition, the maximum torque/volt is also investigated.
    This thesis also proposes a predictive speed controller and a predictive current controller to replace the PI controllers, and then improve its closed-loop dynamic response, and also reduces harmonic currents. These improvements include achieving better recovery ability and obtaining better transient dynamics.
    A digital signal processor, typed TMS-320F-28035, manufactured by Texas Instruments, is used as a control center for the outer rotor SPMSM drive system. Experimental results validate the feasibility and correctness of the proposed methods.

    中文摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 X 符號索引 XI 第一章 緒論 1 1.1背景 1 1.2文獻回顧 3 1.3研究目的 6 1.4論文大綱 7 第二章 永磁同步電動機設計 8 2.1 前言 8 2.2 電機設計 8 2.3 數學模型 22 2.4 參數量測 29 第三章 變頻器與脈波寬度調變 36 3.1 前言 36 3.2 變頻器 37 3.3 空間向量脈波寬度調變 38 第四章 驅控系統 52 4.1 前言 52 4.2 閉迴控制 53 4.3 弱磁控制方法 55 第五章 預測型控制器設計 65 5.1 前言 65 5.2 基本原理 65 5.3 預測型速度控制器 66 5.4 預測型電流控制器 73 第六章 系統研製 83 6.1 前言 83 6.2硬體電路 84 6.2.1變頻器 85 6.2.2電流偵測電路 86 6.2.3電壓偵測電路 87 6.2.4過電流保護電路 88 6.2.5過電壓保護電路 89 6.2.6閘極驅動電路 90 6.2.7編碼器電路 91 6.2.8電源供應電路 92 6.2.9數位訊號處理器 93 6.3軟體程式 94 6.3.1 主程式 94 6.3.2 中斷副程式 96 第七章 實測結果 98 7.1 前言 98 7.2 實測結果 100 第八章 結論及未來研究方向 122 參考文獻 123

    [1] C. T. Liu, Y. X. Li, S. C. Yen, Y. W. Hsu, T. Y. Luo, P. C. Shih and S. Y. Lin, "Structural optimizations of high-efficiency direct-on-line synchronous reluctance motors for metal industry applications," IEEE Transactions on Industry Applications, vol. 57, no. 3, pp. 3004-3011, May-June 2021.
    [2] C. Guerrero, V. Santibanez, Y. A. Olvera, E. I. Figueroa and B. P. Perez, "Control of velocity of dC motors by classical and passivity methods measuring only position: theory and experimental comparison," IEEE Latin America Transactions, vol. 18, no. 05, pp. 962-970, May 2020.
    [3] S. Wang, J. Hong, Y. Sun and H. Cao, "Analysis and reduction of electromagnetic vibration of PM brush DC motors," IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 4605-4612, Sept.-Oct. 2019.
    [4] A. Dalal and P. Kumar, "Analytical model for permanent magnet motor with slotting effect, armature reaction, and ferromagnetic material property," IEEE Transactions on Magnetics, vol. 51, no. 12, pp. 1-10, Dec. 2015.
    [5] S. He, Y. Li, G. Zhou, J. Gai, Y. Hu, Y. Li, Y. Zhang, Y. Chen, D. Luo, Y. Feng and Z. Shuai, "Digital collaborative development of a high reliable auxiliary electric drive system for etransportation: from dual three-phase PMSM to control algorithm," IEEE Access, vol. 8, pp. 178755-178769, 2020.
    [6] Y. Xu, Z. Xu and M. Ai, "Application of ring winding in induction motor," IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, pp. 1-5, Nov. 2021.
    [7] M. R. Park, H. J. Kim, Y. Y. Choi, J. P. Hong and J. J. Lee, "Characteristics of IPMSM according to rotor design considering nonlinearity of permanent magnet," IEEE Transactions on Magnetics, vol. 52, no. 3, pp. 1-4, March 2016.
    [8] C. He and T. Wu, "Analysis and design of surface permanent magnet synchronous motor and generator," CES Transactions on Electrical Machines and Systems, vol. 3, no. 1, pp. 94-100, March 2019.
    [9] A. Kalimov and S. Shimansky, "Optimal design of the synchronous motor with the permanent magnets on the rotor surface," IEEE Transactions on Magnetics, vol. 51, no. 3, pp. 1-4, March 2015.
    [10] J. Lee, Y. C. Kwon and S. K. Sul, "Identification of IPMSM flux-linkage map for high-accuracy simulation of IPMSM drives," IEEE Transactions on Power Electronics, vol. 36, no. 12, pp. 14257-14266, Dec. 2021.
    [11] S. G. Lee, K. S. Kim, J. Lee and W. H. Kim, "A novel methodology for the demagnetization analysis of surface permanent magnet synchronous motors," IEEE Transactions on Magnetics, vol. 52, no. 3, pp. 1-4, March 2016.
    [12] M. J. Hossain, Y. A. Shuvo, M. M. Hossen, M. A. Kader and M. Z. Islam, "Optimization of interior permanent magnet machine embedded with ferrite magnets by varying air-gap and width of permanent magnets," 2020 IEEE Region 10 Symposium, 2020.
    [13] L. Gao, Z. Cai, Y. Liang, D. Wang, Q. Niu and J. Li, "An improved analytical model of magnetic field in surface-mounted permanent magnet synchronous motor with magnetic pole cutting," IEEE Access, vol. 9, pp. 142804-142814, 2021.
    [14] J. W. Jung, H. I. Park, J. P. Hong and B. H. Lee, "A novel approach for 2-D electromagnetic field analysis of surface mounted permanent magnet synchronous motor taking into account axial end leakage flux," IEEE Transactions on Magnetics, vol. 53, no. 11, pp. 1-4, Nov. 2017.
    [15] V. Z. Faradonbeh, A. Rahideh, M. M. Ghahfarokhi, E. Amiri, A. D. Aliabad and G. A. Markadeh, "Analytical modeling of slotted, surface-mounted permanent magnet synchronous motors with different rotor frames and magnet shapes," IEEE Transactions on Magnetics, vol. 57, no. 1, pp. 1-13, Jan. 2021.
    [16] T. Ishikawa, M. Yamada and N. Kurita, "Design of magnet arrangement in interior permanent magnet synchronous motor by response surface methodology in consideration of torque and vibration," IEEE Transactions on Magnetics, vol. 47, no. 5, pp. 1290-1293, May 2011.
    [17] W. Wang, C. Liu, S. Liu, Z. Song, H. Zhao and B. Dai, "Current harmonic suppression for permanent-magnet synchronous motor based on chebyshev filter and PI controller," IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1-6, Feb. 2021.
    [18] A. V. Sant, K. R. Rajagopal and N. K. Sheth, "Permanent magnet synchronous motor drive using hybrid PI speed controller with inherent and noninherent switching functions," IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 4088-4091, Oct. 2011.
    [19] M. Preindl and S. Bolognani, "Model predictive direct speed control with finite control set of PMSM drive systems," IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 1007-1015, Feb. 2013.
    [20] F. Niu,X. Chen, S. Huang, X. Huang, L. Wu, K. Li and Y. Fang, "Model predictive current control with adaptive-adjusting timescales for PMSMs," CES Transactions on Electrical Machines and Systems, vol. 5, no. 2, pp. 108-117, June 2021.
    [21] Z. Wang, S. Niu, S. L. Ho, W. N. Fu and J. Zhu, "A position detection strategy for sensorless surface mounted permanent magnet motors at low speed using transient finite-element analysis," IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 1003-1006, Feb. 2012.
    [22] R. Errouissi, M. Ouhrouche, W. Chen and A. M. Trzynadlowski, "Robust cascaded nonlinear predictive control of a permanent magnet synchronous motor with antiwindup compensator," IEEE Transactions on Industrial Electronics, vol. 59, no. 8, pp. 3078-3088, Aug. 2012.
    [23] J. Beerten, J. Verveckken and J. Driesen, "Predictive direct torque control for flux and torque ripple reduction," IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 404-412, Jan. 2010.
    [24] A. Emadi, Y. J. Lee and K. Rajashekara, "Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles," IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2237-2245, June 2008.
    [25] K. Li and Y. Wang, "Maximum torque per ampere (MTPA) control for IPMSM drives based on a variable-equivalent-parameter MTPA control law," IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 7092-7102, July 2019.
    [26] T. Inoue, Y. Inoue, S. Morimoto and M. Sanada, "Mathematical model for MTPA control of permanent-magnet synchronous motor in stator flux linkage synchronous frame," IEEE Transactions on Industry Applications, vol. 51, no. 5, pp. 3620-3628, Sept.-Oct. 2015.
    [27] K. Li and Y. Wang, "Maximum torque per ampere (MTPA) control for IPMSM drives using signal injection and an MTPA control law," IEEE Transactions on Industrial Informatics, vol. 15, no. 10, pp. 5588-5598, Oct. 2019.
    [28] Z. Mynar, L. Vesely and P. Vaclavek, "PMSM model predictive control with field-weakening implementation," IEEE Transactions on Industrial Electronics, vol. 63, no. 8, pp. 5156-5166, Aug. 2016.
    [29] Z. Zheng and D. Sun, "Model predictive flux control with cost function-based field weakening strategy for permanent magnet synchronous motor," IEEE Transactions on Power Electronics, vol. 35, no. 2, pp. 2151-2159, Feb. 2020.
    [30] C. H. Song, I. S. Song, H. S. Shin, C. H. Lee and K. C. Kim, "A design of IPMSM for high-power electric vehicles with wide-field-weakening control region," IEEE Transactions on Magnetics, vol. 58, no. 2, pp. 1-5, Feb. 2022.
    [31] D. Hu, L. Zhu and L. Xu, "Maximum torque per volt operation and stability improvement of PMSM in deep flux-weakening region," 2012 IEEE Energy Conversion Congress and Exposition, 2012.
    [32] L. Sepulchre, M. Fadel, M. Pietrzak-David and G. Porte, "MTPV flux-weakening strategy for PMSM high speed drive," IEEE Transactions on Industry Applications, vol. 54, no. 6, pp. 6081-6089, Nov.-Dec. 2018.
    [33] P. Lin and Y. Lai, "Novel voltage trajectory control for field-weakening operation of induction motor drives," IEEE Transactions on Industry Applications, vol. 47, no. 1, pp. 122-127, Jan.-Feb. 2011.
    [34] Z. Huang, C. Lin and J. Xing, "A parameter-independent optimal field-weakening control strategy of IPMSM for electric vehicles over full speed range," IEEE Transactions on Power Electronics, vol. 36, no. 4, pp. 4659-4671, April 2021.
    [35] X. Zhang and G. H. B. Foo, "Overmodulation of constant-switching-frequency-based DTC for reluctance synchronous motors incorporating field-weakening operation," IEEE Transactions on Industrial Electronics, vol. 66, no. 1, pp. 37-47, Jan. 2019.
    [36] R. S. Rebeiro and M. N. Uddin, "Performance analysis of an FLC-based online adaptation of both hysteresis and PI controllers for IPMSM drive," IEEE Transactions on Industry Applications, vol. 48, no. 1, pp. 12-19, Jan.-Feb. 2012.
    [37] M. S. Aspalli and S. J. Patil, "Study of AI and PI controller using SVPWM technique for induction motor speed control," 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques, 2017.
    [38] L. P. Wang, "Model predictive control system design and implementation using Matlab," Springer, London, 2009.
    [39] J. R. Hendershot J. R. and T. J. E. Miller, "Design Of Brushless Permanent-Magnet Motors, " Magna Physics Publishing And Clarendon Press, Oxford, 1994.
    [40] G.Wang, Reduced DC-link Capacitance AC Motor Drives, Springer, Singapore, 2020.
    [41] A. Mishra, S. save and R. Sen, "Space vector pulse width modulation," IEEE Transactionson Industrial Electronics, vol. 5, no. 2, Feb. 2014.
    [42] TMS320F2803x Piccolo Technical Reference Manual, 2018.

    QR CODE