簡易檢索 / 詳目顯示

研究生: 鄭立琦
Li-chi Cheng
論文名稱: 離子束濺鍍法沉積氧化銦錫透明導電膜之特性分析
Characterization of transparent conducting ITO thin films prepared by ion beam sputter deposition
指導教授: 趙良君
Liang-chiun Chao
口試委員: 黃鶯聲
Ying-sheng Huang
黃柏仁
Bohr-ran Huang
李奎毅
Kuei-yi Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 72
中文關鍵詞: 透明導電膜氧化銦錫
外文關鍵詞: transparent conductive oxide, indium tin oxide
相關次數: 點閱:245下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗使用離子束濺鍍法在玻璃基板上沉積氧化銦錫薄膜,利用改變基板溫
度及退火溫度來觀察薄膜特性的變化,分別使用室溫、100 及200℃來沉積薄膜。
在室溫下沉積未退火的ITO 薄膜呈現非晶結構,當薄膜退火250℃以上時結晶性
會有明顯改善,結果顯示當基板溫度增加會使薄膜結晶性變好,所以在100℃及200℃下沉積薄膜皆為多晶結構。在電性方面,隨著沉積溫度上至200℃電阻率從室溫7.6×10-3 降至6.5×10-4 Ω cm,而且退火250℃時電阻率會再下降至4.1×10-4 Ω cm,前者電阻率下降原因是當基板溫度升高導致薄膜內缺乏氧氣關係造成載子濃度增加,後者則是由於退火會恢復晶體的結構和降低缺陷,使原子會重新排列形成穩定的多晶薄膜,所以電阻率會降低。在光學方面,可以發現不管沉積溫度為何,退火後在可見光區穿透率有80%以上,歸因於是結晶性的改善, 使薄膜變得更緻密,所以可得到較高的光穿透率。


ITO thin films have been deposited on glass substrates by reactive ion beam sputter deposition at 25, 100 and 200C. The effect of growth temperature and annealing conditions on the property of ITO thin films are investigated. ITO thin films deposited at room temperature are amorphous, while samples deposited at 100 and 200C are polycrystalline. The crystalline quality of the thin film is further improved after annealing. The resistivity of ITO thin films decreases from 7.610-3 to 6.510-4 Ω cm as deposition temperature increases from 25 to 250C, which is due to increased amount of oxygen vacancy defects that act as donors. The resistivity is further improved after post-growth annealing which result from improved crystalline quality. After annealing, the transmittance of the ITO thin film is higher than 80% in the visible region.

論文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 透明導電薄膜 (transparent conductive oxide ,TCO) 簡介 3 2.2氧化銦錫簡介 5 2.2.1 ITO薄膜的特性 5 2.2.2 ITO薄膜之導電機制 6 2.2.3 ITO薄膜製程方式及特性分析 8 2.3離子束濺鍍介紹 20 2.3.1毛細式離子束(Capillary gas field ion source) 20 2.3.2離子束濺鍍沉積法(Ion beam sputter deposition) 21 2.4反射光譜法量測理論 22 第三章 實驗步驟與量測系統 24 3.1 實驗流程圖 24 3.2實驗步驟 25 3.3分析及量測儀器介紹 28 3.3.1場發射掃描式電子顯微鏡 (field emission scanning electron microscope, FE-SEM) 28 3.3.2反射光譜法 (spectroscopic reflectometry) 29 3.3.3 X-ray 繞射(X-ray diffraction, XRD) 30 3.3.4四點探針儀(four-point probe) 31 3.3.5 穿透率量測 (transmission) 35 第四章 實驗結果與討論 37 4.1 場發射掃描式電子顯微鏡分析 37 4.2 反射光譜法分析 39 4.3 X-ray 繞射儀分析 41 4.4四點探針量測分析 44 4.5穿透率分析 49 第五章 結論與未來展望 52 參考文獻 54

[1] K. Badeker, “Concerning the electricity conductibility and the thermoelectric energy of several heavy metal bonds,” Ann. Phys. (Leipzig), Vol. 22, pp. 749-766, 1907.
[2] 楊明輝,「金屬氧化物透明導電材料的基本原理」,工業材料,第一百七十九卷,第134-144頁 (2001).
[3] K. L. Chopra, S. Major, and D. K. Pandaya, “Transparent conductors—a status review, ” Thin Solid Films, Vol. 102, pp. 1-46, 1983.
[4] 李玉華,「透明導電膜及其應用」,科儀新知,第十二卷,第一期,第94-102頁 (1990).
[5] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, “Dependence of oxygen flow on optical and electrical properties of dc-magnetron sputtered ITO films, ” Thin Solid Films, Vol.326, pp. 72–77, 1998.
[6] H. Han, J. W. Mayer, and T. L. Alford, “Band gap shift in the indium-tin-oxide films on polyethylene napthalate after thermal annealing in air,” J. Appl. Phys., Vol. 100, pp. 083715-1-083715-6, 2006.
[7] M. Quaas, C. Eggs, and H. Wulff, “Structural studies of ITO thin films with the rietveld method,” Thin Solid Films, Vol. 332, pp. 277-281, 1998.
[8] W. F. Wu and B. S. Chiou, “Properties of radio-frequency magnetron sputtered ITO films without in-situ substrate heating and post-deposition annealing,” Thin Solid Films, Vol. 247, pp. 201-207, 1994.
[9] K. Nishio, T. Sei, and T.Tsuchiya, “Preparation and electrical properties of ITO thin films by dip-coating process ,” J. Mater. Sci., Vol. 31, pp. 1761-1766, 1996.
[10] J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surface and Coatings Technology, Vol. 132, pp. 45-48, 2000.
[11] E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev., Vol. 93, pp. 632-633, 1954.
[12] Y. Han, D. Kim, J. S. Cho, S. K. Koh, and Y. S. Song, “Tin-doped indium oxide (ITO) film deposition by ion beam sputtering,” Sol. Energy Mater. Sol. Cells, Vol. 65, pp. 211-218, 2001.
[13] Y. Hu, X. Diao, C. Wang, W. Hao, and T. Wang, “Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering,” Vac., Vol. 75, pp. 183-188, 2004.
[14] J. Lee, D. -G. Lim, W. Song, and J. Yi, “Influence of annealing temperature and atmosphere on the properties of ITO films deposited using a powdery target,” J. Korean Phys.Soc., Vol. 51, pp. 1143-1146, 2007.
[15] S. Song, T. Yang, J. Liu, Y. Xin, Y. Li, and S. Han, “Rapid thermal annealing of ITO films,” Appl. Surf. Sci, Vol. 257, pp. 7061–7064, 2011.
[16] P. K. Song, Y. Shigesato, I. Yasui, C. W. Ow-Yang, and D. C. Paine, “Study on crystallinity of tin-doped indium oxide films deposited by dc magnetron sputtering”, Jpn. J. Appl. Phys, Vol. 37, pp. 1870–1896, 1998.
[17] T. Minami, H. Sonohara, T. Kakumu, and S. Takata, “Physics of very thin ITO conducting films with high transparency prepared by dc magnetron sputtering”, Thin Solid Films, Vol. 270, pp. 37–42, 1995.
[18] N. Manavizadeh, A. Khodayari, E. Asl Soleimani, S. Bagherzadeh, and M. H. Maleki, “Structural properties of post annealed ITO thin films at different temperatures,” Iran. J. Chem. Chem. Eng, Vol. 28, pp. 57-61, 2009.
[19] J. F. Mahoney, J. Perel, and A. T. Forrester, “Capillaritron︰A new, versatile ion source,” Appl. Phys. Lett., Vol. 38, pp. 320-322, 1981.
[20] Chr. Weissmantel, O. Fiedler, G. Hecht, and G. Reisse, “Ion beam sputtering and its application for the deposition of semiconducting films,” Thin Solid Films, Vol. 13, pp. 359-366, 1972.
[21] S. M. Kane and K. Y. Ahn, “Characteristics of ion-beam-sputtered thin films,” J. Vac. Sci. Technol., Vol. 16, pp. 171-174, 1979.
[22] Y. Suzuki, T. Yotsuya, K. Takiguchi, M. Yoshitake, and S. Ogawa, “The effect of charged particles when preparing ZnO thin film by ion beam sputtering deposition,” Appl. Surf. Sci., Vol. 33-34, pp. 1114-1119, 1988.
[23] S. B. Krupanidhi, H. Hu, and V. Kumar, “Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films,” J. Appl. Phys., Vol. 71, pp. 376-388, 1992.
[24] C. C. Lee, J. C. Hsu, D. T. Wei, and J. H. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films, Vol. 308-309, pp. 74-78, 1997.
[25] T. Tsurumi, S. Nishizawa, N. Ohashi, and T. Ohgaki, “Electric properties of zinc oxide epitaxial films grown by ion-beam sputtering with oxygen-radical irradiation,” Jpn. J. Appl. Phys., Vol. 38, pp. 3682-3688, 1999.
[26] C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci., Vol. 171, pp. 151-156, 2001.
[27] H. A. Macleod, “Thin-film optical filters,” 2nd ed., Macmillan Publishing
Company, N. Y. Adam Hilger Ltd, Bristol, 1986.
[28] E Hecht, Optics, 4th ed., Pearson Education, Delhi, 2004.
[29] V. A. Kheraj, C. J. Panchal, M. S. Desai, and V. Potbhare, “Simulation of reflectivity spectrum for non-absorbing multilayer optical thin films,” Pramana-J. Phys., Vol. 72, pp. 1011-1022, 2009.
[30] X. Wang, T. Yang, G. Du, H. Liang, Y. Chang, W. Liu, and Y. Xu, “Preparation and study of stoichiometric ZnO by MOCVD technique,” J. Cryst. Growth, Vol. 285, pp. 521-526, 2005.
[31] Dieter K. Schroder, “Semiconductor Material and Device Characterization,” 3rd ed., John Wiley and Sons Inc, 2006.
[32] J. Albers and H. L. Berkowitz, “An alternative approach to the calculation of four-probe resistances on nonuniform structures,” J. Electrochem. Soc., Vol. 132, pp. 2453-2456, 1985.
[33] M. P. Albert and J. F. Combs, “Correction factors for radial resistivity gradient evaluation of semiconductor slices,” IEEE Trans. Electron Dev., Vol. 11, pp. 148-151, 1964.
[34] H. J. Kim, J. W. Bae, J. S. Kim, K.S. Kim, Y. C. Jang, G. Y. Yeom, and N. E. Lee, “Electrical, optical, and structural characteristics of ITO thin films by krypton and oxygen dual ion-beam assisted evaporation at room temperature,” Thin Solid Films, Vol. 377-378, pp. 115-121, 2000.
[35] J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi., Vol. 15, pp. 627-637, 1966.
[36] J. A. Thornton, “Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings,” J. Vac. Sci Technol., Vol. 12, pp. 830-835, 1975.
[37] H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi , H. Murata, Z. H. Kafafi, and D. B. Chrisey, “ Electrical optical and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys., Vol. 86, pp. 6451-6461, 1999.
[38] K. Sun, W. Zhou, X. Tang, Z. Huang, F. Luo, and Dongmei Zhu, “Effects of airannealing on the structure, resistivity, infraredemissivity and transmission of indium tin oxide films,” Surf. Coat. Technol., Vol. 206, pp. 4905-4908, 2012.

無法下載圖示 全文公開日期 2017/06/18 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE