簡易檢索 / 詳目顯示

研究生: 林正凱
Cheng-Kai Lin
論文名稱: 無轉軸偵測元件內藏式永磁同步電動機驅動系統之非線性控制器設計
Nonlinear Controller Design of a Sensorless Interior Permanent Magnet Synchronous Motor Drive System
指導教授: 劉添華
Tian-Hua Liu
口試委員: 許源浴
none
劉昌煥
Chang-Huan Liu
廖聰明
none
林法正
none
徐國鎧
none
陳建富
none
賴炎生
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 189
中文關鍵詞: 內藏式永磁同步電動機轉軸角度估測適應性步階回歸控制器輸入-輸出回授線性化數位訊號處理器
外文關鍵詞: IPMSM, rotor position estimator, adaptive backstepping controller, input-output feedback linearization controller, digital signal processor.
相關次數: 點閱:247下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出內藏式永磁同步電動機的非線性控制器及其轉軸角度估測器設計。首先,提出一種轉軸角度估測方法,經由偵測電動機的端電壓及相電流,計算延伸型磁通鏈,以準確估測內藏式永磁同步電動機的轉軸角度與速度。此估測方法相當簡單,只需計算延伸型磁通鏈,即可估測轉軸角度,與電動機參數並無明顯的關係。本論文所提轉軸角度估測方法,可應用在定轉矩區及弱磁區。
其次,提出兩種非線性控制法則,包含輸入-輸出回授線性化及適應性步階回歸控制法測,以改善內藏式永磁同步電動機的控制性能,達到快速的暫態響應、良好的干擾拒斥性及追蹤能力。此兩種控制方法皆可搭配轉軸角度估測法則應用在內藏式永磁同步電動機的控速系統上。
最後,本文使用德州儀器公司所生產的TMS320LF2407數位訊號處理器,進行轉軸角度及速度估測、空間向量脈波寬度調變、速度控制器等計算,藉以達到簡化硬體電路之目的。而實驗結果與電腦模擬十分接近,說明本文理論的正確性及可行性。


The dissertation proposes a nonlinear speed controller design and rotor position estimator for an interior permanent magnet synchronous motor (IPMSM) drive system. First, a rotor position estimating technique is presented. By measuring voltages and currents of the motor, and then compute the extended flux linkage, the rotor position and speed of the motor can be estimated accurately. The position estimation is simple and is obtained by only calculating the extended flux linkage. The estimating technique is not strongly related to the parameters of the motor. In this dissertation, the estimating technique is used to both the constant torque region and the field weakening region.
Next, two nonlinear control schemes including input-output feedback linearization controller and adaptive backstepping controller, are proposed for the IPMSM drive system. The IPMSM drive system can be improved by using the two control schemes. In addition, a fast transient response, good load disturbance rejection capability, and satisfactory tracking ability can be achieved. Both the nonlinear control schemes can be applied to the speed control system of the IPMSM drive system based on the proposed sensorless method.
Finally, a Texas Instruments digital signal processor, TMS320LF2407, is used to execute the rotor position/velocity estimation, space vector pulse width modulation, and speed control. As a result, the hardware is very simple. Several experimental results and simulations show the correctness and feasibility of the proposed drive system.

第一章緒論I 1.1 研究動機1 1.2 文獻回顧3 1.3 目的6 1.4 大綱10 第二章內藏式永磁同步電動機11 2.1 簡介11 2.2 結構及特性11 2.3 數學模式14 2.4 永磁同步電動機的轉矩控制21 第三章轉軸角度估測22 3.1 簡介22 3.2 轉軸角度估測原理23 3.3 轉軸角度估測器設計31 第四章 驅動系統39 4.1 簡介39 4.2 空間向量脈波寬度調變策略40 4.3無轉軸偵測元件驅動系統介紹54 4.4 弱磁策略56 第五章 控制器設計61 5.1 簡介61 5.2方法一:輸入-輸出回授線性化控制器設計62 5.3 方法二:適應性步階回歸控制器設計74 第六章系統研製85 6.1 簡介85 6.2 硬體電路87 6.3 軟體程式96 第七章模擬與實測108 7.1 簡介108 7.2 電腦模擬109 7.3 模擬及實測結果112 第八章結論與建議155

[1]C. S. Paresh, “Electric motor drives and control-past, present, and future,” IEEE Trans. Ind. Electron., vol. 37, no. 6, pp. 562-575, Dec. 1990.
[2]T. A. Lipo, “Recent progress in the development in solid-state AC motor drives,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 105-117, Apr. 1988.
[3]B. K. Bose, “High performance control and estimation in AC drive,” IEEE IECON-1997, pp. 377-385, 1997.
[4]J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control : a survey,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 2-22, Feb. 1993.
[5]L. H. Hoang, “Microprocessors and digital IC's for motion control,” IEEE Trans. Power Electron., vol. 16, no. 4, pp. 527-534, Aug. 1994.
[6]B. K. Bose, “Power electronics and motion control-technology status and recent trends,” IEEE Trans. Ind. Applicat., vol. 29, no. 5, pp. 902-909, Sep./ Oct. 1993.
[7]H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto, and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” IEEE IAS-1999, vol. 2, pp. 840-845, 1999.
[8]W. L. Soong and N. Ertugrul, “Field-weakening performance of interior permanent-magnet motors,” IEEE Trans. Ind. Applicat., vol. 38, no. 5, pp. 1251-1258, Sep./ Oct. 2002.
[9]B. H. Bae, S. K. Sul, J. H. Kwon, and J. S. Byeon, “Implementation of sensorless vector control for super-high-speed PMSM of turbo-compressor,” IEEE Trans. Ind. Applicat., vol. 39, no. 3, pp. 811-818, May/June 2003.
[10]A. Consoli, G. Scarcella, and A. Testa, “Industry application of zero speed sensorless control techniques for PM synchronous motors,” IEEE Trans. Ind. Applicat., vol. 37, no. 2, pp. 513-521, Mar./ Apr. 1993.
[11]P. Pillay and R. Krishnan, “Modeling of permanent magnet motor drives,” IEEE Trans. Ind. Electron., vol. 35, no. 4, pp. 537-541, Nov. 1988.
[12]E. Cerruto, A. Consoli, A. Raciti, and A. Testa, “A robust adaptive controller for PM motor drives in robotic applications,” IEEE Trans. Power Electron., vol. 10, no. 1, pp. 62-71, Jan. 1995.
[13]W. L. Soong and T. J. E. Miller, “Field-weakening performance of brushless synchronous AC motor drives,” IEE Proc.-Electr. Prower Applicat., vol. 141, no. 6, pp. 331-340, Nov. 1994.
[14]G. G. Lopez, S. G. Fani, and E. W. James, “Optimum torque control of permanent-magnet AC machines in the field-weakened region,” IEEE Trans. Ind. Applicat., vol. 41, no. 4, pp. 1020-1028, July/Aug. 2005.
[15]K. Kurihara and M. A. Rahman, “High-efficiency line-start interior permanent-magnet synchronous motors,” IEEE Trans. Ind. Applicat., vol. 40, no. 3, pp. 789-796, May/June. 2004.
[16]C. H. Zhao, N. Yang, and X. W. Wang, “The structure optimization of IPM synchronous machine,” IEEE IECON-2007, pp. 1092-1096, 2007.
[17]G. H. Kang, J. P. Hong, G. T. Kim, and J. W. Park, “Improved parameter modeling of interior permanent magnet synchronous motor based on finite element analysis,” IEEE Trans. Magn., vol. 36, no. 4, pp. 1867-1870, July, 2000.
[18]A. Kioumarsi, M. Moallem, and B. Fahimi, “Mitigation of torque ripple in interior permanent magnet motors by optimal shape design,” IEEE Trans. Magnetics, vol. 42, no. 11, pp. 3706-3711, Nov. 2006.
[19]V. Z. Kukolj, W. L. Soong, and N. Ertugrul, “Iron loss reduction in an interior PM automotive alternator,” IEEE Trans. Ind. Applicat., vol. 42, no. 6, pp. 1478-1486, Nov./ Dec. 2006.
[20]D. F. Chen and T. H. Liu, “Implementation of a Novel matrix converter PMSM drive,” IEEE Trans. Aerosp. Electron. Syst. vol. 37, no. 3, pp. 863-875, July. 2001.
[21]M. N. Uddin, T. S. Radwan, and M. A. Rahman, “Fuzzy-logic-controller- based cost-effective four-switch three-phase inverter-fed IPM synchronous motor drive system,” IEEE Trans. Ind. Applicat., vol. 42, no. 1, pp. 21-30, Jan./ Feb. 2006.
[22]J. Y. Chai, Y. H. Ho, Y. C. Chang, and C. M. Liaw, “On acoustic-noise-reduction control using random switching technique for switch-mode rectifiers in PMSM drive,” IEEE Trans. Ind. Applicat., vol. 55, no. 3, pp. 1295-1309, Mar. 2008.
[23]C. G. Chen, T. H. Liu, M. T. Lin, and C. A. Tai, “Position control of a sensorless synchronous reluctance motor,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 15-25, Feb. 2004.
[24]J. L. Shi, T. H. Liu, and Y. C. Chang, “Position control of an interior permanent-magnet synchronous motor without using a shaft position sensor,” IEEE Trans. Ind. Applicat., vol. 54, no. 4, pp. 1989-2000, Aug. 2007.
[25]Z. Xu and M. F. Rahman, “Direct torque and flux regulation of an IPM synchronous motor drive using variable structure control approach,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2487-2498, Nov. 2007.
[26]M. F. Rahman, L. Zhong, M. E. Haque, and M. A. Rahman, “A direct torque controlled interior permanent magnet synchronous motor drive without a speed sensor,” IEEE Trans. Energy Conversion, vol. 18, no. 1, pp. 17-22, Mar. 2003.
[27]L. Tang, L. Zhong, M. F. Rahman, and Y. Hu, “A novel direct torque control for interior permanent-magnet synchronous machine drive with low ripple in torque and flux-a speed-sensorless approach,” IEEE Trans. Ind. Applicat., vol. 23, no. 2, pp. 1748-1785, Nov./ Dec. 2003.
[28]T. H. Liu, S. H. Chen, and D. F. Chen, “Desigh and implementation of a matrix converter PMSM Drive without a shaft sensor,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 1, pp. 228-243, Jan. 2003.
[29]J. K. Seok, J. K. Lee, and D. C. Lee, “Sensorless speed control of nonsalient permanent-magnet synchronous motor using rotor-position-tracking PI controller,” IEEE Trans. Ind. Applicat., vol. 53, no. 2, pp. 399-405, Apr. 2006.
[30]S. Bolognani, R. Oboe, and M. Zigliotto, “Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position,” IEEE Trans. Ind. Applicat., vol. 46, no. 1, pp. 184-191, Feb. 1999.
[31]G. Zhu, A. Kaddouri, L. A. Dessaint, and O. Akhrif, “A Nonlinear State Observer for the sensorless control of a permanent-magnet AC machine,” IEEE Trans. Ind. Applicat., vol. 48, no. 6, pp. 1098-1108, Dec. 2001.
[32]S. Shinnaka, “New “D-state-observer”-based vector control for sensorless drive of permanent-magnet synchronous motors,” IEEE Trans. Ind. Applicat., vol. 41, no. 3, pp. 825-833, May/June 2005.
[33]S. Morimoto, M. Sanada, and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” IEEE Trans. Ind. Applicat., vol. 42, no. 5, pp. 1241-1248, Sep./ Oct. 2006.
[34]Z. Chen, M. Tomita, S. Doki, and S. Okuma, “An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors,” IEEE Trans. Ind. Applicat., vol. 50, no. 2, pp. 288-295, Apr. 2003.
[35]V. Petrovic, A. M. Stankovic, and V. Blasko, “Position estimation in salient PM synchronous motors based on PWM excitation transients,” IEEE Trans. Ind. Applicat., vol. 39, no. 3, pp. 835-843, May/June 2003.
[36]O. Wallmark, L. Harnefors, and O. Carlson, “An improved speed and position estimator for salient permanent-magnet synchronous motors,” IEEE Trans. Ind. Applicat., vol. 52, no. 1, pp. 255-262, Feb. 2005.
[37]C. Silva, G. M. Asher, and M. Sumner, “Hybrid rotor position observer for wide speed-range sensorless PM motor drives including zero speed,” IEEE Trans. Ind. Applicat., vol. 53, no. 2, pp. 373-378, Apr. 2006.
[38]T. Aihara, A. Toba, T. Yanase, A. Mashimo, and K. Endo, “Sensorless torque control of salient-pole synchronous motor at zero-speed operation,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 202-208, Jan. 1999.
[39]G. D. Andreescu, C. I. Pitic, and I. Boldea, “Combined flux observer with signal injection enhancement for wide speed range sensorless direct torque control of IPMSM drives,” IEEE Trans. Energy Conversion, vol. 23, no. 2, pp. 393-402, June 2008.
[40]M. Tursini, R. Petrella, and F. Parasiliti, “Initial rotor position estimation method for PM motors,” IEEE Trans. Ind. Applicat., vol. 39, no. 6, pp. 1630-1640, Nov./ Dec. 2003.
[41]P. Pillay, “Vector control of AC permanent magnet machines,” IEEE PESC-1989, pp. 293-297, 1989.
[42]R. J. Wai, “Total Sliding-Mode Controller for PM Synchronous Servo Motor Drive Using Recurrent Fuzzy Neural Network,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 926-944, Oct. 2001.
[43]C. C. Kung and K. H. Su, “Adaptive fuzzy position control for electrical servodrive via total-sliding-mode technique,” IEE Proc.-Electr. Power Applicat., vol. 152, no. 6, pp. 1489-1502, Nov. 2005.
[44]K. H. Kim, I. C. Baik, S. K. Chung, and M. J. Youn, “Robust speed control of brushless DC motor using adaptive input–output linearization technique,” IEE Proc.-Electr. Power Applicat., vol. 144, no. 6, pp. 469–475, 1997.
[45]I. C. Baik, K. H. Kim, and M. J. Youn, “Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique,” IEEE Trans. Contr. Syst. Technol., vol. 8, no. 1, pp. 47-54, Jan. 2000.
[46]J. Zhou and Y. Wang, “Adaptive backstepping speed controller design for a permanent magnet synchronous motor”, IEE Proc.-Electr. Power Applicat., vol. 149, no. 2, pp. 165-172, Mar. 2002.
[47]M. A. Rahman, D. M. Vilathgamuwa, M. N. Uddin, and K. J. Tseng, “Nonlinear control of interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Applicat., vol. 39, no. 2, pp. 408-416, Mar./ Apr. 2003.
[48]J. L. Shi, T. H. Liu, and Y. C. Chang, “Adaptive controller design for a sensorless IPMSM drive system with a maximum torque control,” IEE Proc.-Electr. Power Applicat., vol. 153, no. 6, pp. 823-833, Nov. 2006.
[49]M. J. Corley and R. D. Lorenz, “Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds,” IEEE Trans. Ind. Applicat., vol. 34, no. 4, pp. 784-789, July/Aug. 1998.
[50]S. Ogasawara and H. Akagi, “Implementation and position control performance of a position-sensorless IPM motor drive system based on magnetic saliency,” IEEE Trans. Ind. Applicat., vol. 34, no. 4, pp. 806-812, July/Aug. 1998.
[51]C. Zhiqian, M. Tomita, S. Doki, and S. Okuma, “An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 50, no. 2, pp. 288-295, Apr. 2003.
[52]S. Morimoto, K. Kawamoto, M. Sanada, and Y. A. T. Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Applicat., vol. 38, no. 4, pp. 1054-1061, Jul/Aug. 2002.
[53]J. Solsona, M. I. Valla, and C. Muravchik, “A nonlinear reduced order observer for permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 43, no. 4, pp. 492-497, Aug. 1996.
[54]C. Wang and L. Xu, “A novel approach for sensorless control of PM machines down to zero speed without signal injection or special PWM technique,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1601-1607, Nov. 2004.
[55]D. Grenier, L. A. Dessaint, O. Akhrif, Y. Bonnassieux, and B. L. Pioufle, “Experimental nonlinear torque control of a permanent-magnet synchronous motor using saliency,” IEEE Trans. Ind. Electron., vol. 44, no. 5, pp. 680-687, Oct. 1997.
[56]H. Wang, W. Xu, T. Shen, and G. Yang, “Stator flux and torque decoupling control for induction motors with resistances adaptation,” IEE Proc. Contr. Theory Appl., vol. 154, no. 4, pp. 363-370, July 2005.
[57]Z. Xu and M. F. Rahman, “An adaptive sliding stator flux observer for a direct-torque-controlled IPM synchronous motor drive,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2398-2406, Oct. 2007.
[58]M. A. Lee, L. C. Fu, C. Y. Tsai, and Y. C. Lin, “Nonlinear adaptive speed and torque control of induction motors with unknown rotor resistance,” IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 391-401, Apr. 2001.
[59]T. J. Kim, S. M. Hwang, K. T. Kim, W. B. Jung, and C. U. Kim, “Comparison of dynamic responses for IPM and SPM motors by considering mechanical and magnetic coupling,”IEEE Trans. Magn., vol. 37, no. 4, pp. 2818-2820, July 2001.
[60]M. N. Uddin and M. M. I. Chy, “Online parameter-estimation-based speed control PM AC motor drive in flux-weakening region,” IEEE Trans. Ind. Applicat., vol. 44, no. 5, pp. 1486-1494, Sep./ Oct. 2008.
[61]Y. S. Kim, Y. K. Choi, and J. H. Lee, “Speed-sensorless vector control for permanent-magnet synchronous motors based on instantaneous reactive power in the wide-speed region,” IEE Proc.-Electr. Power Applicat., vol. 152, no. 5, pp. 1343-1349, Sep. 2005.
[62]M. N. Uddin, T. S. Radwan, and M. A. Rahman, “Performance of interior permanent magnet motor drive over wide speed range,” IEEE Trans. Energy Conversion, vol. 17, no. 1, pp. 79–84, Mar. 2002.
[63]Y. A. R. I. Mohamed and T. K. Lee, “Adaptive self-tuning MTPA vector controller for IPMSM drive system,” IEEE Trans. Energy Conversion, vol. 21, no. 3, pp. 636-644, Sep. 2006.
[64]S. M. Sue and C. T. Pan, “Voltage-constraint-tracking-based field-weakening control of IPM synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 340-347, Jan. 2008.
[65]L. Tang, Limin Zhong, M. F. Rahman, and Y. Hu, “A novel direct torque controlled interior permanent magnet synchronous machine drive with low ripple in flux and torque and fixed switching frequency,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 346-354, Mar. 2004.
[66]K. Gulez, A. A. Adam, and H. Pastaci, “A novel direct torque control algorithm for IPMSM with minimum harmonics and torque ripples,” IEEE/ASME Trans. Mechatron., vol. 12, no. 2, pp. 223-227, Apr. 2007.
[67]L. Ying and N. Ertugrul, “A novel, robust DSP-based indirect rotor position estimation for permanent magnet AC motors without rotor saliency,” IEEE Trans. Power Electron., vol. 18, no. 2, pp. 539-546, Mar. 2003.
[68]S. Morimoto, K. Kawamoto, M. Sanada, and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Applicat., vol. 38, no. 4, pp. 1054-1061, July/Aug. 2002.
[69]C. D. Angelo, G. Bossio, J. Solsona, G. O. Garcia, and M. I. Valla, “Mechanical sensorless speed control permanent-magnet AC motors drivinig an unknown load,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 406-414, Apr. 2006.
[70]B. N. Mobarakeh, F. M. Tabar, and F. M. Sargos, “Back EMF estimation-based sensorless control PMSM: robustness with respect to measurement errors and inverter irregularities,” IEEE Trans. Ind. Applicat., vol. 43, no. 2, pp. 485-494, Mar./ Apr. 2007.
[71]J . A. Solsona and M. I. Valla, “Disturbance and nonlinear luenberger observers for estimating mechanical variables in permanent magnet synchronous motors under mechanical parameters uncertainties,” IEEE Trans. Ind. Electron., vol. 50, no. 4, pp. 717-725, Aug. 2003.
[72]S. Y. Kim and I. J. Ha, “A new observer design method for HF signal injection sensorless control of IPMSMs,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2525-2529, June 2008.
[73]M. E. Haque, L. Zhong, and M. F. Rahman, “The effect of offset error and its compensation for a direct torque controlled interior permanent magnet synchronous motor drive,” IEEE IEMDC-2001, pp. 814-819, 2001.
[74]M. Cirrincione, M. Pucci, G. Cirrincione, and G. A. Capolino, “A new adaptive integration methodology for estimating flux in induction machine drives,” IEEE Trans. Power Electron., vol. 19, no. 1, pp. 25-34, Jan. 2004.
[75]Y. A.-R. I. Mohamed and E. F. EI-Saadany, “A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems,” IEEE Trans. Energy Conversion, vol. 23, no. 1, pp. 92-100, Mar. 2008.
[76]Z. Yu and D. Figoli, “AC induction motor control using constant V/Hz principle and space vector PWM technique with TMS320C240,” Texas Instruments.
[77]C. T. Pan and S. M. Sue, “A robust field-weakening control strategy for surface-mounted permanent-magnet motor drives,” IEEE Trans. Energy Conversion, vol. 20, no. 4, pp. 701-709, Dec. 2005.
[78]C. T. Pan and S. M. Sue, “A linear maximum torque per ampere control for IPMSM drives over full-speed range,” IEEE Trans. Energy Conversion, vol. 20, no. 2, pp. 359-366, June 2005.
[79]Alberto Isidori, Nonlinear Control Systems. Springer, 1995.
[80]J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[81]J. Solsona, M. I. Valla, and C. Muravchik, “Nonlinear control of a permanent magnet synchronous motor with disturbance torque estimation,” IEEE Trans. Energy Conversion, vol. 15, no. 2, pp. 163-168, June 2000.
[82]G. Zhu, L. A. Dessaint, O. Akhrif, and A. Kaddouri, “Speed tracking control of a permanent-magnet synchronous motor with state and load torque observer,” IEEE Trans. Ind. Electron., vol. 47, no. 2, pp. 346-355, 2000.
[83]K. H. Kim and M. J. Youn, “A nonlinear speed control for a PM synchronous motor using a simple disturbance estimation technique,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 524-535, June 2002.
[84]Y. A.-R. I. Mohamed, “A hybrid-type variable-structure instantaneous torque control with a robust adaptive torque observer for a high-performance direct-drive PMSM,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2491-2499, Oct. 2007.
[85]T. Senjyu, T. Shingaki, and K. Uezato, “Sensorless vector control of synchronous reluctance motors with disturbance torque observer,” IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 402-407, Dec. 2001
[86]M. Boussak, “Implementation and experimental investigation of sensorless speed control with initial rotor position estimation for interior permanent magnet synchronous motor drive,” IEEE Trans. Power Electron., vol. 20, no. 6, pp.1413-1422, Nov. 2005.
[87]G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems. Reading, MA: Addison-Wesley, 1994.
[88]M. Krstić, I. Kanellakopoulos, and P. V. Kokotović, “Adaptive nonlinear control without overparametrization,” Syst. Contr. Lett., vol. 19, pp. 177-185, 1996.
[89]M. Krstić, I. Kanellakopoulos, and P. V. Kokotović, Nonlinear and Adaptive Control Design. New York: John Wiley & Sons, 1995
[90]I. Kanellakopoulos, P. V. Kokotović, and A. S. Morse, “Systematic design of adaptive controllers for feedback linearizable systems,” IEEE Trans. Automat. Contr., vol. 36, no. 11, pp. 1241-1253, Nov. 1991.
[91]P. V. Kokotović, “The joy of feedback: nonlinear and adaptive,” IEEE Contr. Sysmt. Mag., vol. 12, pp. 7-17, June 1992.
[92]K. S. Narendra, Y. H. Lin, and L. S. Valavani, “Stable adaptive controller design, part II: proof of stability,” IEEE Trans. Automat. Contr., vol. AC-25, no. 3, pp. 440-448, June 1980.
[93]Spectrum Digital, TMS320LF2407 Evaluation Module Technical Reference, 2000.
[94]Spectrum Digital, TMS320C2xx/C24x Code Composer User’s Guide, 2000.
[95]Texas Instruments, TMS320C24x DSP Design Workshop Student Guide, 1998.
[96]Texas Instruments, TMS320C1x/C2xx/C5x Assembly Language Tools User’s Guide, 1995.
[97]Texas Instruments, TMS320F/C240 DSP Controllers Peripherals Library and Specific Devices Reference Guide, 1999.
[98]Texas Instruments, TMS320LF/LC240x DSP Controllers System and Peripherals Reference Guide, 2000.

QR CODE