簡易檢索 / 詳目顯示

研究生: 吳培文
Pei-Wen Wu
論文名稱: 可調控層間距奈米銀-氧化石墨烯複合薄膜對於醇類脫水效能之影響
Tunable d-spacing of Silver-grapgene oxide Composite Membrane for Dehydration of Water-Alcohol Mixtures
指導教授: 賴君義
Juin-Yih Lai
洪維松
Wei-Song Hung
口試委員: 賴君義
Juin-Yih Lai
洪維松
Wei-Song Hung
胡蒨傑
Chien-Chieh Hu
王志逢
Chih-Feng Wang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 101
中文關鍵詞: 氧化石墨烯銀奈米粒子滲透蒸發分離程序
外文關鍵詞: Graphene oxide, Silver nanoparticles, Pervaportion
相關次數: 點閱:515下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以銀奈米顆粒插層於氧化石墨烯的片層之間,以達成以下兩目的:第一,調控氧化石墨烯的層間距;第二,藉由協同效應,使氧化石墨烯與銀奈米顆粒的抗菌特性被進一步的強化。本研究製備6種不同pH值(1-11)的Ag@GO 水溶液,並且經由壓力輔助裝置將溶液之中的Ag@GO奈米複合物沉積於聚醯胺基材膜上,並分別將其命名為Ag@GOpH1、Ag@GOpH3、Ag@GOpH5、Ag@GOpH7、Ag@GOpH9、Ag@GOpH11奈米複合薄膜,並且探討溶液pH值對於奈米顆粒的尺寸與數量的影響。
雷射奈米粒徑電位分析儀、紫外光-可見光/近紅外光分析儀來分析銀奈米粒子對於氧化石墨烯分散液的影響。掃描式電子顯微鏡、微米水接觸角、拉曼光譜儀,進行薄膜表面型態與物理結構分析。全反射傅立葉轉換紅外光譜儀、X射線光電子能譜儀進行薄膜的化學特性分析,並且討論銀離子與氧化石墨烯的化學反應機制。
在滲透蒸發系統(進料異丙醇:水=70:30)的測試下,Ag@GOpH11的通量能夠達到2756.86(g/m2 h),比純GO薄膜的通量還要高出28.36%;在異丙醇的阻擋率方面,則能夠維持在97.2%以上,與純GO相比,僅損失1.170%。
在抗菌效能的測試之中Ag@GOpH1、Ag@GOpH3、Ag@GOpH9、Ag@GOpH11針對大腸桿菌的抑菌率皆可到達99.99%,明顯高於純GO薄膜的89.3%,證明Ag@GO奈米複合材料的卓越抗菌性。
結合滲透蒸發與抗菌的結果與各項鑑定,將有助於解釋奈米顆粒生成的機制,以及插層對於氧化石墨烯薄膜物化性質的影響。


In this work, silver nanoparticles are suscessfully intercalated between graphene oxide nanosheets to achieve two purposes: First, to tune the d-spacing of graphene oxide nanosheets; Second, to further enhance the antibacterial properties of graphene oxide and silver nanoparticles through synergistic effect. In this work, six Ag@GO aqueous solutions with different pH values (ranging from 1-11) were prepared, and the solutions were deposited on a polyamide substrate through pressure-assisted filtration method. The resulting nanocomposite membranes were named Ag@GOpH1, Ag@GOpH3, Ag@GOpH5, Ag@GOpH7, Ag@GOpH9, Ag@GOpH11, and the influence of the solution’s pH value on the size and amount of nanoparticles were discussed.
Zetasizer, Ultraviolet–visible spectroscopy were performed for the analysis of the aqueous solution. Scanning electron microscope, micro water contact angle, and Raman spectrometer were used for the analysis of the surface morphology and physical structure of the membranes. Attenuated total reflection Fourier transform infrared spectrometer and X-ray photoelectron spectrometer were performed to analyze the chemical properties of the membrane, and the reduction mechanism and intercalation mechanism of silver nanoparticles were further discussed.
Under the pervaporation testing system (feed isopropanol:water = 70:30). In terms of flux, Ag@GOpH11 can reach up to 2756.86 (g/m2 h), which is higher by 28.36% than the flux of pristine GO membrane; in terms of rejection, it can be maintained above 97.2%, which is only 1.170% lower than pristine GO membrane.
In the antibacterial test, Ag@GOpH1, Ag@GOpH3, Ag@GOpH9, Ag@GOpH11 can reach up to 99.99% inhibition rate against Escherichia coli, which is significantly higher than that of pristine GO membrane with 89.3%, which proves the enhanced antibacterial properties of Ag@GO nanocomposites.
The results of pervaporation test, antibacterial test, and various characterization techniques will help to explain the mechanism of nanoparticle generation and the effect of its intercalation on the physical and chemical properties of graphene oxide membranes.

目錄 摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1前言 1 1.2薄膜分離技術 2 1.2.1 薄膜分離概述 2 1.2.2 薄膜材料 4 1.3氧化石墨烯薄膜的改質 12 1.3.1 化學改質 12 1.3.2 物理改質 14 1.4抗菌薄膜材料 16 1.4.1 石墨烯系列材料的抗菌機制 17 1.4.2 金屬抗菌材料的抗菌機制 17 1.4.3 GO/金屬奈米複合材料 18 1.5文獻回顧 20 1.6研究動機與目的 28 第二章 實驗材料與方法 29 2.1實驗藥品 29 2.2實驗儀器 30 2.3實驗步驟 32 2.3.1製備氧化石墨烯 32 2.3.2溶液配置 32 2.3.3薄膜製備 33 2.4材料鑑定與性質檢測 34 2.4.1場發式掃描電子顯微鏡 34 2.4.2原子力顯微鏡 35 2.4.3紫外光-可見光/近紅外光光譜 35 2.4.4雷射奈米粒徑電位分析儀 36 2.4.5高功率X光繞射儀 37 2.4.6微米水接觸角 38 2.4.7衰減全反射式傅立葉紅外光譜儀 39 2.4.8顯微拉曼光譜儀 40 2.4.9 X射線光電子能譜儀 40 2.4.10 滲透蒸發裝置 41 2.4.11 薄膜抗菌效能測試 43 第三章 結果與討論 45 3.1 Ag@GO奈米複合材料於溶液狀態之鑑定與分析 45 3.1.1溶液巨觀分析 45 3.1.2溶液粒徑變化分析 46 3.1.3溶液Zeta電位分析 47 3.1.4溶液組成分析 48 3.2 Ag@GO奈米複合薄膜之鑑定與分析 50 3.2.1薄膜表面型態分析 50 3.2.2薄膜層間距變化 52 3.2.3薄膜表面粗糙度分析 55 3.2.4薄膜表面親疏水性分析 58 3.2.5薄膜物理組成分析 59 3.2.6薄膜化學組成分析 62 3.2.7反應機制 67 3.3 Ag@GO奈米複合薄膜之薄膜分離效能檢測 70 3.3.1針對不同GO:AgNO3添加比例之效能檢測 70 3.3.2針對不同溫度之效能檢測 72 3.3.3針對不同進料醇類之效能檢測 73 3.4 GO與Ag@GO奈米複合薄膜之抗菌效能檢測 76 第四章 結論 78 參考文獻 79

1. 賴君義, 薄膜科技概論 Introduction to membrane science and technology. 2019, 臺北市: 五南圖書出版股份有限公司.
2. Bunch, J.S., et al., Impermeable atomic membranes from graphene sheets. Nano letters, 2008. 8(8): p. 2458-2462.
3. Berry, V., Impermeability of graphene and its applications. Carbon, 2013. 62: p. 1-10.
4. O’Hern, S.C., et al., Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano letters, 2014. 14(3): p. 1234-1241.
5. Nair, R., et al., Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science, 2012. 335(6067): p. 442-444.
6. O’Hern, S.C., et al., Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano letters, 2015. 15(5): p. 3254-3260.
7. Schniepp, H.C., et al., Functionalized single graphene sheets derived from splitting graphite oxide. The Journal of Physical Chemistry B, 2006. 110(17): p. 8535-8539.
8. Gómez-Navarro, C., et al., Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano letters, 2007. 7(11): p. 3499-3503.
9. Eda, G., G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature nanotechnology, 2008. 3(5): p. 270-274.
10. Mattevi, C., et al., Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. Advanced Functional Materials, 2009. 19(16): p. 2577-2583.
11. Robinson, J.T., et al., Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano letters, 2008. 8(10): p. 3441-3445.
12. Robinson, J.T., et al., Reduced graphene oxide molecular sensors. Nano letters, 2008. 8(10): p. 3137-3140.
13. Hu, M. and B. Mi, Enabling graphene oxide nanosheets as water separation membranes. Environmental science & technology, 2013. 47(8): p. 3715-3723.
14. Zhao, Y., et al., Two‐dimensional material membranes: an emerging platform for controllable mass transport applications. Small, 2014. 10(22): p. 4521-4542.
15. Joshi, R., et al., Precise and ultrafast molecular sieving through graphene oxide membranes. science, 2014. 343(6172): p. 752-754.
16. Yang, X., et al., “Clicking” graphite oxide sheets with well-defined polystyrenes: a new strategy to control the layer thickness. Polymer, 2011. 52(14): p. 3046-3052.
17. Yang, H., et al., ‘Click’ Preparation of CuPt Nanorod-Anchored Graphene Oxide as a Catalyst in Water. Small, 2012. 8(20): p. 3161-3168.
18. Zhou, H., et al., Sensitive and selective voltammetric measurement of Hg 2+ by rational covalent functionalization of graphene oxide with cysteamine. Analyst, 2012. 137(2): p. 305-308.
19. Sinitskii, A., et al., Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS nano, 2010. 4(4): p. 1949-1954.
20. Yuan, J., et al., One-step functionalization of graphene with cyclopentadienyl-capped macromolecules via Diels–Alder “click” chemistry. Journal of Materials Chemistry, 2012. 22(16): p. 7929-7936.
21. Rudolfs, W. and J. Balmat, Colloids in sewage: I. Separation of sewage colloids with the aid of the electron microscope. Sewage and Industrial Wastes, 1952: p. 247-256.
22. Lee, S. and C.-H. Lee, Effect of operating conditions on CaSO4 scale formation mechanism in nanofiltration for water softening. Water Research, 2000. 34(15): p. 3854-3866.
23. Drewes, J.E. and P. Fox, Fate of natural organic matter (NOM) during groundwater recharge using reclaimed water. Water Science and Technology, 1999. 40(9): p. 241-248.
24. Ivnitsky, H., et al., Characterization of membrane biofouling in nanofiltration processes of wastewater treatment. Desalination, 2005. 185(1): p. 255-268.
25. Brigger, I., C. Dubernet, and P. Couvreur, Nanoparticles in cancer therapy and diagnosis. Advanced drug delivery reviews, 2012. 64: p. 24-36.
26. Wu, X., et al., Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature biotechnology, 2003. 21(1): p. 41-46.
27. Wierzbicki, M., et al., Graphene Oxide in a Composite with Silver Nanoparticles Reduces the Fibroblast and Endothelial Cell Cytotoxicity of an Antibacterial Nanoplatform. Nanoscale Research Letters, 2019. 14(1).
28. Jaworski, S., et al., Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent. Nanoscale research letters, 2018. 13(1): p. 1-17.
29. Hussain, N., et al., Reduced graphene oxide nanosheets decorated with Au nanoparticles as an effective bactericide: Investigation of biocompatibility and leakage of sugars and proteins. ChemPlusChem, 2014. 79(12): p. 1774-1784.
30. Turcheniuk, K., et al., Plasmonic photothermal destruction of uropathogenic E. coli with reduced graphene oxide and core/shell nanocomposites of gold nanorods/reduced graphene oxide. Journal of Materials Chemistry B, 2015. 3(3): p. 375-386.
31. Yang, Z., et al., Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles. Journal of colloid and interface science, 2019. 533: p. 13-23.
32. Nourmohammadi, A., et al., Graphene oxide sheets involved in vertically aligned zinc oxide nanowires for visible light photoinactivation of bacteria. Journal of alloys and compounds, 2014. 612: p. 380-385.
33. Archana, S., et al., Versatile graphene oxide decorated by star shaped zinc oxide nanocomposites with superior adsorption capacity and antimicrobial activity. Journal of Science: Advanced Materials and Devices, 2018. 3(2): p. 167-174.
34. Chang, Y.-N., et al., Synthesis of magnetic graphene oxide–TiO2 and their antibacterial properties under solar irradiation. Applied Surface Science, 2015. 343: p. 1-10.
35. Geim, A.K., Graphene: Status and Prospects. Science, 2009. 324(5934): p. 1530-1534.
36. Brodie, B.C., XIII. On the atomic weight of graphite. Philosophical transactions of the Royal Society of London, 1859(149): p. 249-259.
37. Segal, M., Selling graphene by the ton. Nature nanotechnology, 2009. 4(10): p. 612-614.
38. Sun, P., et al., Selective Ion Penetration of Graphene Oxide Membranes. ACS Nano, 2013. 7(1): p. 428-437.
39. Kim, H.W., et al., Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes. Science, 2013. 342(6154): p. 91-95.
40. Huang, Y., et al., Ultrafiltration Membranes with Structure-Optimized Graphene-Oxide Coatings for Antifouling Oil/Water Separation. Advanced Materials Interfaces, 2015. 2(2): p. 1400433.
41. Zhao, C., et al., Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. Journal of Environmental Chemical Engineering, 2013. 1(3): p. 349-354.
42. Zhao, J., et al., Fabricating graphene oxide-based ultrathin hybrid membrane for pervaporation dehydration via layer-by-layer self-assembly driven by multiple interactions. Journal of Membrane Science, 2015. 487: p. 162-172.
43. Choi, W., et al., Layer-by-Layer Assembly of Graphene Oxide Nanosheets on Polyamide Membranes for Durable Reverse-Osmosis Applications. ACS Applied Materials & Interfaces, 2013. 5(23): p. 12510-12519.
44. Cassagneau, T. and J.H. Fendler, Preparation and Layer-by-Layer Self-Assembly of Silver Nanoparticles Capped by Graphite Oxide Nanosheets. The Journal of Physical Chemistry B, 1999. 103(11): p. 1789-1793.
45. Zhang, Y., et al., One-pot photochemical synthesis of graphene composites uniformly deposited with silver nanoparticles and their high catalytic activity towards the reduction of 2-nitroaniline. Journal of Materials Chemistry, 2012. 22(15): p. 7245.
46. Vuong Hoan, N.T., et al., Fe<sub>3</sub>O<sub>4</sub>/Reduced Graphene Oxide Nanocomposite: Synthesis and Its Application for Toxic Metal Ion Removal. Journal of Chemistry, 2016. 2016: p. 2418172.
47. Zhu, C., et al., One-step facile synthesis of graphene oxide/TiO2 composite as efficient photocatalytic membrane for water treatment: Crossflow filtration operation and membrane fouling analysis. Chemical Engineering and Processing - Process Intensification, 2017. 120: p. 20-26.
48. Zhu, Y., et al., An electrochemical sensor based on reduced graphene oxide/gold nanoparticles modified electrode for determination of iron in coastal waters. Sensors and Actuators B: Chemical, 2017. 243: p. 1-7.
49. Sun, X.-F., et al., Graphene oxide–silver nanoparticle membrane for biofouling control and water purification. Chemical Engineering Journal, 2015. 281: p. 53-59.
50. Yang, K., et al., Graphene Oxide Nanofiltration Membranes Containing Silver Nanoparticles: Tuning Separation Efficiency via Nanoparticle Size. Nanomaterials, 2020. 10(3): p. 454.
51. Liu, S., et al., Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano, 2011. 5(9): p. 6971-6980.
52. Gurunathan, S., et al., Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. International Journal of Nanomedicine, 2012: p. 5901.
53. Liu, S., et al., Lateral Dimension-Dependent Antibacterial Activity of Graphene Oxide Sheets. Langmuir, 2012. 28(33): p. 12364-12372.
54. Chen, J., et al., Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale, 2014. 6(3): p. 1879-1889.
55. Luan, B., et al., Potential Toxicity of Graphene to Cell Functions via Disrupting Protein–Protein Interactions. ACS Nano, 2015. 9(1): p. 663-669.
56. Baek, Y.-W. and Y.-J. An, Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Science of The Total Environment, 2011. 409(8): p. 1603-1608.
57. Martínez-Castañón, G.A., et al., Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research, 2008. 10(8): p. 1343-1348.
58. Akmaz, S., et al., The Effect of Ag Content of the Chitosan-Silver Nanoparticle Composite Material on the Structure and Antibacterial Activity. Advances in Materials Science and Engineering, 2013. 2013: p. 690918.
59. Pal, S., Y.K. Tak, and J.M. Song, Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Applied and Environmental Microbiology, 2007. 73(6): p. 1712-1720.
60. Azam, A., et al., Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. International Journal of Nanomedicine, 2012: p. 6003.
61. Yang, Z., et al., Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles. Journal of Colloid and Interface Science, 2019. 533: p. 13-23.
62. Liu, J., et al., Gram-scale production of graphene oxide–TiO2 nanorod composites: Towards high-activity photocatalytic materials. Applied Catalysis B: Environmental, 2011.
63. Wang, N., et al., Polyethylenimine mediated silver nanoparticle-decorated magnetic graphene as a promising photothermal antibacterial agent. Nanotechnology, 2015. 26(19): p. 195703.
64. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
65. Wijmans, J.G. and R.W. Baker, The solution-diffusion model: a review. Journal of Membrane Science, 1995. 107(1-2): p. 1-21.
66. Shih, C.-J., et al., Understanding the pH-Dependent Behavior of Graphene Oxide Aqueous Solutions: A Comparative Experimental and Molecular Dynamics Simulation Study. Langmuir, 2012. 28(1): p. 235-241.
67. Desai, R., et al., Size Distribution of Silver Nanoparticles: UV-Visible Spectroscopic Assessment. Nanoscience and Nanotechnology Letters, 2012. 4(1): p. 30-34.
68. Shen, X., et al., Wrinkling in graphene sheets and graphene oxide papers. Carbon, 2014. 66: p. 84-92.
69. Sun, J., et al., Tailoring the microstructure of poly(vinyl alcohol)-intercalated graphene oxide membranes for enhanced desalination performance of high-salinity water by pervaporation. Journal of Membrane Science, 2020. 599: p. 117838.
70. WangJizhuang, et al., Photochemical conversion of AgCl nanocubes to hybrid AgCl–Ag nanoparticles with high activity and long-term stability towards photocatalytic degradation of organic dyes. Canadian Journal of Chemistry, 2012. 90(10): p. 858-864.
71. Kamyar, S., et al., Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. International journal of nanomedicine, 2012. 7: p. 5603-10.
72. Feng, X.J. and L. Jiang, Design and Creation of Superwetting/Antiwetting Surfaces. Advanced Materials, 2006. 18(23): p. 3063-3078.
73. Zhou, Y., et al., Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chemistry of Materials, 2009. 21(13): p. 2950-2956.
74. Kudin, K.N., et al., Raman spectra of graphite oxide and functionalized graphene sheets. Nano letters, 2008. 8(1): p. 36-41.
75. Shao, W., et al., Preparation, Characterization, and Antibacterial Activity of Silver Nanoparticle-Decorated Graphene Oxide Nanocomposite. ACS Applied Materials & Interfaces, 2015. 7(12): p. 6966-6973.
76. Zhu, Z., et al., Preparation of graphene oxide–silver nanoparticle nanohybrids with highly antibacterial capability. Talanta, 2013. 117: p. 449-455.
77. Berthomieu, C. and R. Hienerwadel, Fourier transform infrared (FTIR) spectroscopy. Photosynthesis Research, 2009. 101(2-3): p. 157-170.
78. Lipnizki, F., et al., Organophilic pervaporation: prospects and performance. Chemical Engineering Journal, 1999. 73(2): p. 113-129.
79. Hung, W.-S., et al., Cross-Linking with Diamine Monomers To Prepare Composite Graphene Oxide-Framework Membranes with Varying d-Spacing. Chemistry of Materials, 2014. 26(9): p. 2983-2990.
80. Lecaros, R.L.G., et al., Influence of integrating graphene oxide quantum dots on the fine structure characterization and alcohol dehydration performance of pervaporation composite membrane. Journal of Membrane Science, 2019. 576: p. 36-47.
81. Liu, R., et al., Graphene oxide membrane for liquid phase organic molecular separation. Carbon, 2014. 77: p. 933-938.
82. Zhang, D., X. Liu, and X. Wang, Green synthesis of graphene oxide sheets decorated by silver nanoprisms and their anti-bacterial properties. Journal of Inorganic Biochemistry, 2011. 105(9): p. 1181-1186.

無法下載圖示 全文公開日期 2026/08/31 (校內網路)
全文公開日期 2026/08/31 (校外網路)
全文公開日期 2026/08/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE