簡易檢索 / 詳目顯示

研究生: 高子豪
Tzu-Hao Kao
論文名稱: 靜電紡絲製備聚氧代氮代苯并環己烷纖維及特性之研究
Characterization and Preparation of Polyacrylonitrile/ Polybenzoxazine Nanofibers by Electrospinning for Bioapplications
指導教授: 陳建光
Jem-Kun Chen
口試委員: 鄭智嘉
Chih-Chia Cheng
蘇清淵
Ching-Yuan Su
黃智
Chih-Feng Huang
李訓清
Hsun-Ching Li
黃介銘
Chien-Ming Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 132
中文關鍵詞: 靜電紡絲氧代氮代苯并環己烷聚丙烯腈抗沾黏低表面自由能
外文關鍵詞: electrospinning, Benzoxazine, Polyacrylonitrile, Antifouling, Low surface energy
相關次數: 點閱:271下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

(1) 靜電紡絲製備聚氧代氮代苯并環己烷/聚丙烯腈混合纖維
聚氧代氮代苯并環己烷(Polybenzoxazine)與聚丙烯腈(PAN)混溶並利用靜電紡絲製備出無氟、無矽烷類的低表面能纖維膜。液態的Benzoxazine在室溫下會固化,因此將PAN和Benzoxazine混溶,以DMF為溶劑,混溶纖維成分範圍從單純的PAN到P5B5。結果表明,50wt%的BA混入PAN中對於靜電紡絲混和纖維無顯著影響。而當BA的濃度提升至70wt%時,混和溶液的靜電紡絲纖維就產生相分離。當PAN/BA混和纖維經過熱交聯固化即得到PAN/PBA摻合纖維並且當PBA的混和在PAN中超過50%就產生超疏水特性,因為有低表面能的PBA。此外,使用共軛焦顯微鏡(LSCM)來觀察混和纖維和摻合纖維對於抗體的吸附程度。結果表明,隨PBA含量的增加蛋白質吸附量明顯的降低。聚合物表面性質和詳細的分子結構都將提供良好的設計以提供低表面自由能纖維改善抗生物沾黏的特性。
(2) 同軸靜電紡絲製備核/殼結構之聚丙烯腈-聚氧代氮代苯并環己烷纖維
在這項研究中,我們使用同軸靜電紡絲製備的核/殼聚丙烯腈(PAN)-聚氧代氮代苯并環己烷(PBA)的纖維。我們採用的PAN和BA溶液,以形成內(核)和外層(殼),分別產生250-1290 nm均勻大小直徑無缺陷的纖維。PAN- PBA核/殼纖維在固化300℃下2小時後得到並顯示出低的表面自由能。我們獲得已改變PAN濃度從8至12%的五組膜-各具有不同纖維直徑,殼厚度和物理特性,然後研究了纖維直徑對孔徑分佈的影響,靜態水接觸角(SWCA),以及液體水進入所製造之纖維膜的壓力。我們也將這些膜直接進行蛋白質的吸附並測試抗沾黏性能。我們發現,PAN-BA核/殼纖維膜具有高疏水性(SWCA>150∘),並在固化之前顯示顯著度蛋白附著。然而固化後,PAN-PBA纖維膜的結垢性質完全消失,因著產生具有低表面自由能之PBA的結果。這種芯/殼,PAN-PBA纖維通過同軸靜電紡絲的製造提出了進一步的設計低表面自由能纖維及其發展,不需要使用氟和矽的元素,並改進的抗污垢等性能。


In this thesis, we prepared the core/shell composited particles with electro- or magnetic-response, dispersing in the suspensions as the display media. The sandwich-like structured device were fabricated and encapsulated with these electrorheological or magnetorheological fluid. Employing the particle-chains displays technique to realize the displays. This thesis divided into two parts:
(1)Miscible and Low-Surface-Free-Energy Polybenzoxazine/Polyacrylonitrile Blend Fibers by Electrospinning:
We introduce poly(3-phenyl-3,4-dihydro-2H-1,3-benzoxazine) (PBA) into polyacrylonitrile (PAN) to generate low-surface-free-energy fibers without fluorine and silicon for electrospinning, which has been extensively used in biomaterial and other applications. Liguid-state BA at room temperature can be solidified through miscible behavior between PAN and BA as fibers by electrospinning. Solutions in DMF allow preparing miscible fibers with composition ranging from pure PAN to PAN/BA 50/50. Results indicate that the mixing below 50 wt% BA into PAN matrix for electrospinning has no significant influence on the dropping of the hybrid fibers when the system is miscible. Electrospun fibers with 70 wt% BA show a clear phase separation according to the observation of dripped fibers. The PAN/PBA blend fibers could be obtained through curing the PBA/BA hybrid fibers, which generated a superhydrophobicity because of the low-surface-free-energy PBA when the PAN fibers blended with 50 wt% PBA. In addition, laser scanning confocal microscope (LSCM) measurements were included to determine the relative amount of antibody that adsorbed to the hybrid and blend fibers to examine the low surface free energy of these fibers. The results showed an obviously decreased protein adsorption amount with increasing PBA blend. The correlations between polymer surface properties and detailed molecular structures would provide insight into the designing and developing of low-surface-free-energy fibers without fluorine and silicon to improve biofouling-resistant property.
(2)Using Coaxial Electrospinning to Fabricate Core/Shell–Structured Polyacrylonitrile–Polybenzoxazine Fibers as Nonfouling Membranes:
In this study we used coaxial electrospinning to produce core/shell polyacrylonitrile (PAN)–polybenzoxazine (PBA) fibers. We employed PAN and BA solutions, both in DMF, to form the inner (core) and outer (shell) layers, respectively, generating uniformly sized, defect-free fibers having diameter of 250–1290 nm. The PAN-PBA core/shell fibers that we obtained after curing at 300 °C for 2 h exhibited low surface free energies. We obtained five sets of mats—each with a different core diameter, shell thickness, and physical properties—by varying the concentration of PAN from 8 to 12 wt% and then studied the effects of the fiber diameter on the pore size distribution, the static water contact angle (SWCA), and the liquid water entry pressure of the fabricated membranes. We also tested these membranes for their nonfouling properties through direct contact membrane adsorption of proteins. We found that the PAN-BA core/shell fibrous membranes having high hydrophobicity (SWCA > 150°) prior to curing displayed significant degrees of protein attachment. After curing, however, the fouling properties of the PAN-PBA fibrous membranes disappeared completely—the result of generating PBA with a low surface free energy. The fabrication of such core/shell PAN-PBA fibers through coaxial electrospinning suggests the further design and development of fibers of low surface free energy, without the need for fluorine and silicon elements, with improved fouling-resistant properties.

審 定 書 ii 摘 要 iii ABSTRACT v 致 謝 vii 目 錄 viii 表目錄 xii 圖目錄 xiii 第一章 緒論 1 1.1 前言 1 1.2 低表面能材料 1 1.3 抗沾黏材料 4 1.4 奈米複合材料 5 1.5 目的與研究動機 7 第二章 文獻回顧與理論 13 2.1 Benzoxazine及Polybenzoxazine介紹 13 2.1.1 Benzoxazine 化學性質 13 2.1.2Benzoxazine 聚合機制 14 2.1.3Benzoxazine和Polybenzoxazine獨特性能 14 2.1.3.1近零的體積變化 14 2.1.3.2低吸水率 14 2.1.3.3玻璃轉移溫度 15 2.1.4Benzoxazine熱性質 15 2.1.5Benzoxazine表面能探討 16 2.2靜電紡絲 17 2.2.1靜電紡絲歷史 17 2.2.2靜電紡絲基本裝置 18 2.2.3靜電紡絲基本現象及其原理 18 2.2.3.1充電流體 18 2.2.3.2泰勒錐原理 19 2.2.4靜電紡絲應用 21 2.2.4.1 溶液參數 21 2.2.4.2分子量 21 2.2.4.3黏度 22 2.2.4.4表面張力 22 2.2.4.5導電率/表面電荷密度 23 2.2.5工作參數 23 2.2.5.1電壓 23 2.2.5.2流速 24 2.2.5.3收集端 24 2.2.5.4收集距離 24 2.2.6環境參數 25 2.2.7靜電紡絲應用 25 2.2.7.1過濾膜 25 2.2.7.2生物醫藥領域 26 2.2.7.3生物感測器 27 2.3聚丙烯腈 28 2.4超疏水原理和機制 29 第三章 實驗步驟與測試 49 3.1靜電紡絲製備PAN/Polybenzoxazine複合纖維 49 3.1.1實驗藥品與材料 49 3.1.2製備3-phenyl-3,4-dihydro-2H-1,3-benzoxazine 單體 50 3.1.3利用靜電訪絲製備PAN/PBA纖維膜 50 3.1.4樣品性質鑑定與結構分析 51 3.1.4.1光譜定性分析 51 3.1.4.2表面形貌與穿透型態分析 51 3.1.5熱性質分析 54 3.2同軸靜電紡絲製備核/殼結構之聚丙烯腈-聚氧代氮代苯并環己烷纖維 55 3.2.1實驗藥品與材料 55 3.2.2製備3-phenyl-3,4-dihydro-2H-1,3-benzoxazine 單體 56 3.2.3製備核/殼結構PAN/PBA纖維膜 56 3.2.4樣品性質鑑定與結構分析 57 3.2.4.1核/殼纖維膜的形態 57 3.2.5纖維膜孔徑分析 58 第四章 低表面自由能聚氧氮苯并環己烷/聚丙烯腈複合纖維及其性質 65 4.1光譜定性與熱性質分析 66 4.2表面形貌分析 69 4.3抗生物沾黏特性 72 4.4結論 73 第五章 核/殼結構聚丙烯腈-聚氧代氮代苯并環己烷纖維及其性質 87 5.1流變性質分析 88 5.2纖維表面和內部型態觀察 90 5.3同軸電紡纖維膜過濾性能 93 5.4抗沾黏特性 95 5.5結論 99 第六章 總結 117 參考文獻 119 附錄 130 授權書 132

[1] Coulson SR, Woodward IS, Badyal JPS, Brewer SA, Willis C . Ultralow Surface Energy Plasma Polymer Films. Chem Mater, 2000;12:2031~ 2038.
[2] Coulson SR, Woodward IS, Badyal JPS, Brewer SA, Willis C .Super-Repellent Composite Fluoropolymer Surfaces. J Phys Chem B, 2000;104:8836~ 8840.
[3] Jin M, Feng X, Xi J, Zhai J, Cho K, Feng L, Super-hydrophobic PDMS surface with ultra-low adhesive force, Macromol. Rapid Commun. 2005; 26:1805–1809.
[4] Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L. A superhydrophobic and super-oleophilic coating mesh film for the separation of oil and water, Angew. Chem. Int. Ed. 2004; 43:2012–2014.
[5] Ramos S.M.M, Dias J.F, Canut B. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics. Journal of Colloid and Interface Science, 2015;440:133–139
[6] Hillborg H, Tomczak N, Olah A, Schonherr H, Vancso GJ. Nanoscale hydrophobic recovery: a chemical force microscopy study of uv/ozone-treated cross-linked poly(dimethylsiloxane), Langmuir 2004; 20:785–794.
[7] Kobayashi H, M.J. Owen, Surface properties of fluorosilicones, Trends Polym. Sci. 3 (1995) 330–335.
[8] Schmidt DL, Coburn CE, DeKoven BM, Potter GE, Meyers GF, Fischer DA, Role of the product in the transformation of a catalyst to its active state, Nature. 1994; 368: 41–45.
[9] Sun T, Wang G, Feng Let al. Reversible switching between superhydrophilicity and superhydrophobicity. Angewandte Chemie 2004; 43:357-360.
[10] Andreas F, Thnemann A L, Bernd Reiner P. Low Surface Energy Coatings from Waterborne Nano-Dispersions of Polymer Complexes. Adv Mater, 1999:11:321~ 324.
[11] James E, Mark A. Some Interesting Things about Polysiloxanes. Chem Res, 2004; 37: 946- 953.
[12] Peter E, Francis FE, Richard J E. Combined Nanoindentation and Adhesion Force Mapping Using the Atomic Force Microscope: Investigations of a Filled Polysiloxane Coating. Langmuir, 2002; 18: 10011~ 10015.
[13] Qi D, Lu N, Xu Het al. Simple approach to wafer-scale self-cleaning antireflective silicon surfaces. Langmuir : the ACS journal of surfaces and colloids 2009; 25:7769-7772.
[14] Lafuma, A.; Quere, D. "Superhydrophobic states". Nature Materials. 2003; 2 : 457–460.
[15] Zhang Y-L, Xia H, Kim E, Sun H-B. Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter 2012; 8:11217.
[16] (a) Chambers L D, Stokes K R, Walsh F C , Wood R. J. K. Modern approaches to marine antifouling coatingsOriginal Research Article. Surface & Coatings Technology, 2006;201:3642–3652; (b) Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling, 2006, 22, 339–360; (c) Yebra D M, Kiil S, Dam-Johansen K, Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings., 2004; 50: 75–104.
[17] Werner C, Maitz MF, Sperling C, Current strategies towards hemocompatible coatings. Journal of Materials Chemistry. 2007; 17:3376.
[18] Wisniewski N, Reichert M, Methods for reducing biosensor membrane biofouling. Colloids Surf B Biointerfaces, 2000; 18: 197–219.
[19] (a) V. P. Torchilin, AAPS J., 2007, 9, E128–E147; (b) H. Otsuka, Y. Nagasaki and K. Kataoka, Adv. Drug Delivery Rev., 2003, 55, 403–419; (c) J. M. Harris and R. B. Chess, Nat. Rev., 2003, 2, 214–221.
[20] M. E. Callow and J. A. Callow, Biologist, 2002, 49, 1–5.
[21] Zhuang XD, Chen Y, Liu Get al. Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect. Advanced materials 2010; 22:1731-1735.
[22] Dr. Abbass Hashim, Syuji Fujii1, Mizuho Kodama, Soichiro Matsuzawa, Hiroyuki Hamasaki, Atsushi Ohtaka and Yoshinobu Nakamura, 2011, Advances in Nanocomposite Technology
[23] Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 2000;28:1-63.
[24] Lin D, Pan W, Wu H. Morphological Control of Centimeter Long Aluminum-Doped Zinc Oxide Nanofibers Prepared by Electrospinning. Journal of the American Ceramic Society 2007; 90:71-76.
[25] Kayaci F, Ozgit-Akgun C, Donmez I, Biyikli N, Uyar T. Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: flexible nylon-ZnO core-shell nanofiber mats and their photocatalytic activity. ACS applied materials & interfaces 2012; 4:6185-6194.
[26] Hwang TH, Lee YM, Kong BS, Seo JS, Choi JW. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano letters 2012; 12:802-807.
[27] Holly FW, Cope AC. Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydrogy benzylamine, J. Am. Chem. Soc. 1944;66: 1875–1879.
[28] Burke WJ., 3,4-Dihydro-1,3,2H-benzoxazines. Reaction of psubstituted phenols with N,N-dimethylolamines, J. Am. Chem. Soc. 1949;71: 609–612.
[29] Burke WJ, Weatherbee C. 3,4-Dihydro-1,3,2H-benzoxazines. Reaction of polyhydroxybebnzenes with N-methylamines, J. Am. Chem. Soc. 1950;72: 4691–4694.
[30] Burke WJ, Stephens CW. Monomeric products from the condensation of phenol with formaldehyde and primary amines, J. Am. Chem. Soc. 1952;74:1518–1520.
[31] Burke WJ, Kolbezen MJ, C.W. Stephens, Condensation of naphthols with formaldehyde and primary amines, J. Org. Chem. 1952;74:3601–3605.
[32] Burke WJ, Smith RP, Weatherbee C. N,N-bis-(hydroxybenzyl)- amines: synthesis from phenols, formaldehyde and primary amines, J. Am. Chem. Soc. 1952;74: 602–605.
[33] Burke WJ, Murdoch KC, Ec G. Condensation of hydroxyaromatic compounds with formaldehyde and primary aromatic amines, J. Am. Chem. Soc. 1954;76: 1677–1679.
[34] Burke WJ, Glennie EL, Weatherbee C. Condensation of halophenols with formaldehyde and primary amines, J. Org. Chem. 1964; 29:909–912.
[35] Burke WJ, Bishop JL, Glennie EL, Bauer WN. A new aminoalkylation reaction. Condensation of phenols with dihydro-1,3- aroxazines, J. Org. Chem. 1965;30 3423–3427.
[36] Dunkers J., E.A. Zarate, H. Ishida, Crystal structure and hydrogen bonding characteristics of N,N-bis(3,5-dimethyl-2-hydroxybenzyl) methylamine: a benzoxazine dimer, J. Phys. Chem. 1996 ;100: 13514–13520.
[37] J.P. Dunkers, Ph.D. Thesis, Case Western Reserve University, Cleveland, Ohio, 1994.
[38] Liu X, Gu Y. Effects of molecular structure parameters on ringopening reaction of benzoxazines, Sci. China. B 2001;44:552–560.
[39]Huerta R, Toscano RA, Castillo I. 1,4-Bis(8-ter-butyl-6-methyl- 4H-1,3-benzoxazin-3-yl)benzewne, Acta. Cryst. 2006;62: 2938–2940.
[40] Chen XL, Wu MH. 3-Benzyl-6-methyl-s,4-dihydro-2H-1,3-benzoxazine, Acta. Cryst. 2007; 63:3684.
[41] Ranjith S, Thenmozhi S, Manikannan R, Muthusubramanian S, Subbiahpandi A. 3,30-(p-Phenylene)bis(3,4-dihydro-2H-1,3-benzoxazine), Acta. Cryst. 2009;65: 581.
[42] Reiss G, Schwob JM, Guth G, Roche M, Lande B, Culbertson B M, McGrath JE. Advances in Polymer Synthesis, Plenum, 1985;27–49
[43] Dunkers J, Ishida H, Reaction of benzoxazine-based phenolic resins with strong and weak carboxylic acids and phenols as catalysts, J. Polym. Sci. Part. A. Polym. Chem. 1999;37: 1913–1921.
[44] Wang YX, Ishida H. Synthesis and properties of new thermoplastic polymers from substituted 3,4-dihydro-2H-1,3-benzoxazine, Macromolecules 2000;33:2839–2847.
[45] Sudo A, Kudo R, Nakayama H, Arima K, Endo T, Selective formation of poly(N,O-acetal) by polymerization of 1,3-benzoxazine and its main chain rearrangement, Macromolecules 2008;41: 9030–9034.
[46] Chutayothin P, Ishida H. Cationic ring-opening polymerization of 1,3-benzoxazines: mechanistic study using model compounds, Macromolecules 2010;43: 4562–4572.
[47] Rodriguez Y, Ishida H. Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry.Polymer 1995; 36: 3151
[48] Dunkers J, Ishida H. Reaction of benzoxazine-based phenolic resins with strong and weak carboxylic acids and phenols as catalysts. J. Polym. Sci. Part A:Polym. Chem. 1999;37: 1913
[49] Russell JD, Cure shrinkage of thermoset composites, SAMPE.Quart. 1993;24: 28–33
[50] Dong JP, Chie SG, Hsu MW, Huang YJ. Effects of reactive low-profile additives on the volume shrinkage and internal pigmentability for low-temperature cure of unsaturated polyester, J. Appl.Polym. Sci. 2006;100: 967–979.
[51]Alcoutlabi M, McKenna GB, Simon SL. Analysis of the development of isotropic residual stresses in a bismaleimide/spiro orthocarbonate thermosetting resin for composite materials, J. Appl.Polym. Sci. 2003;88: 227–244.
[52] Ishida H, Low HY. A study on the volumetric expansion of benzoxazine-based phenolic resin, Macromolecules. 1997;30: 1099–1106.
[53]Liu X, Gu Y. Study on the volumetric change during ring-opening polymerization of benzoxazines, Acta. Polym. Sinica. 2000;612–619.
[54] Liu X, Gu Y. Study on the volumetric expansion of benzoxazine curing with different catalysts, J. Appl. Polym. Sci. 2002;84:1107–1113.
[55] Maggana C, Pissis P.Water sorption and diffusion studies in an epoxy resin system, J. Polym. Sci. B. Polym. Phys. 1999 ;37:1165–1182.
[56] Lee S.B., Rochett TJ, Hoffman RD. Interactions of water with unsaturated polyester, vinyl ester and acrylic resins, Polymer 1992;33: 3691–3697.
[57] Gellert EP, Turley DM. Seawater immersion ageing of glass-fibre reinforced polymer laminates for marine applications, Compos. Part A 1999;30: 1259–1265.
[58] Ghosh S, Klett R, Fink D, Dwivedi KK, Vacik J, Hnatowicz V. On the penetration of aqueous solutions into pristine and radiation damaged polyimide, Rad. Phys. Chem. 1999;55:271–284.
[59] Ishida H, Allen DJ. Physical and mechanical characterization of near-zero shrinkage polybenzoxazines, J. Polym. Sci. Phys. Ed. 1999 ;34: 1019–1030.
[60] Ishida H, Sanders DP. Regioselectivity and solid-state structure of alkyl-substituted aromatic amine-based polybenzoxazines, Macromolecules 2000; 33:8149–8157.
[61] Tarek Agag, Tsutomu Takeichi . Synthesis and Characterization of Novel Benzoxazine Monomers Containing Allyl Groups and Their High Performance Thermosets. Macromolecules 2003; 36: 6010-6017
[62]Ning X, Ishida H. Phenolic mateials via ring-opening polymerization of benzoxazines: effect of molecular structure on mechanical and dynamic mechanical properties, J. Polym. Sci. Phys. 1994 ;32:921–927.
[63] Ishida H, Rimdusit S. Heat capacity measurement of boron nitridefilled polybenzoxazines: the composite structure-insensitive property, J. Thermal. Anal. Carolimet. 1999;58: 497–507.
[64] (a) X.Ning, H. Ishida, Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-Abased benzoxazines and their polymers, J. Polym. Sci. A Polym. Chem. 32 (1994) 1121–1129. (b) Y.X. Wang, H. Ishida, Cationic ring-opening polymerization of benzoxazines, Polymer 40 (1999) 4563–4570. (c) J.A.Macko, H. Ishida, Structural effects of phenols on the photooxidative degradation of polybenzoxazines, Polymer 42 (2001) 227–240.
[65] Ishida H, Allen DJ. Physical and mechanical characterization of near-zero shrinkage polybenzoxazines, J. Polym. Sci. B Polym. Phys. 1996; 34: 1019–1030.
[66] Ishida H, Rodriguez Y. Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry, Polymer 1995;36: 3151–3158.
[67] Kim HD, Ishida H. A study on hydrogen-bonded network structure of polybenzoxazines, J. Phys. Chem. A 2002; 106: 3271–3280.
[68] Liao CS, Wu JS, Wang CF, Chang FC. Modification of polymer substrates with low surface free energy material by low-temperature cured polybenzoxazine, Macromol. Rapid Commun. 2008;29: 52–56.
[69]Wang CF, Chiou SF, Ko FH, Chen JK, Chou CT, Huang CF. Polybenzoxazine as a mold-release agent for nanoimprint lithography, Langmuir2007;23: 5868–5871.
[70]Rutledge GC, Fridrikh SV (2007) Formation of fibers by electrospinning. Adv Drug Delivery Rev 59(14):1384–1391
[71]Shin YM. Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer. 2001;42:9955–9967
[72]Yarin AL, Koombhongse S, Reneker DH. Taylor Cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys2001;90:4836–4846
[73]Demir MM. Electrospinning of polyurethane fibers. Polymer 2002;43:3303–3309
[74] Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272.
[75] Eda G, Shivkumar S. Bead-to-fiber transition in electrospun polystyrene. J Appl Polym Sci 2007;106:475–487.
[76] Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer 1999;40:4585–4592.
[77] Lee KH, Kim HY, Bang HJ, Jung YH, Lee SG The change of bead morphology formed on electrospun polystyrene fibers. Polymer 2003;44:4029–4034.
[78] Yang Q, Li Z, Hong Y, Zhao Y, Qiu S, Wang C, Wei Y. Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. J Polym Sci, Part B: Polym Phys 2004;42:3721–3726.
[79] Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett 2004;58:493–497.
[80] Zhao YY, Yang QB, Lu XF, Wang C, Wei Y. Study on correlation of morphology of electrospun products of polyacrylamide with ultrahigh molecular weight. J Polym Sci, Part B: Polym Phys 2005;43:2190–2195.
[81] Larrondo L, St. John Manley R. Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci: Polym Phys Ed 1981;19:909–920.
[82] Sukigara S, Gandhi M, Ayutsede J, Micklus M, Ko F. Regeneration of Bombyx mori silk by electrospinning—part 1: Processing parameters and geometric properties. Polymer 2003;44:5721–5727.
[83] Ding B, Kim H-Y, Lee S-C, Shao C-L, Lee D-R, Park S-J, Kwag G-B, Choi K-J. Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method. J Polym Sci, Part B: Polym Phys 2002;40:1261–1268.
[84] Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH. Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer 2005 ;46:5094–5102.
[85] Kim K-H, Jeong L, Park H-N, Shin S-Y, Park W-H, Lee S-C, Kim T-I, Park Y-J, Seol Y-J, Lee Y-M, Ku Y, Rhyu I-C, Han S-B, Chung C-P. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol. 2005;120:327–339.
[86] Lee JS, Choi KH, Ghim HD, Kim SS, Chun DH, Kim HY, Lyoo WS. Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. J Appl Polym Sci 2004;93(4):1638–1646.
[87] Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang Z-M. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res Part B: Appl Biomater. 2005;72:156–165.
[88] Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002;43:4403–4412.
[89] Huang C, Chen S, Lai C, Reneker Darrell H, Qiu H, Ye Y, Hou H. Electrospun polymer nanofibres with small diameters. Nanotechnology. 2006;17:1558–1563.
[90] Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced byelectrospinning. Nanotechnology. 1996;7:216–223.
[91] Yuan X, Zhang Y, Dong C, Sheng J (2004) Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym Int 53(11):1704–1710.
[92] Buchko CJ, Chen LC, Shen Y, Martin DC. Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 1999;40:7397–7407.
[93] Demir MM, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers. Polymer 2002;43:3303–3309.
[94] Zhang C, Yuan X, Wu L, Han Y, Sheng J. Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J 2005;41:423–432.
[95] Wang X, Um IC, Fang D, Okamoto A, Hsiao BS, Chu B. Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments. Polymer 2005;46:4853–4867.
[96] Sundaray B, Subramanian V, Natarajan TS, Xiang R-Z, Chang C–C, Fann W-S. Electrospinning of continuous aligned polymer fibers. Appl Phys Lett 2004;84:1222–1224
[97] Li D, Wang Y, Xia Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater 2004;16:361–366.
[98] Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering. Biomaterials 2004;25(5):877–886.
[99] Ki CS, Kim JW, Hyun JH, Lee KH, Hattori M, Rah DK, Park YH. Electrospun three dimensional silk fibroin nanofibrous scaffold. J Appl Polym Sci 2007;106:3922–3928.
[100]Mit-uppatham C, Nithitanakul M, Supaphol P. Ultrafine electrospun polyamide-6 fibers: Effect of solution conditions on morphology and average fiber diameter. Macromol Chem Phys 2004;205:2327–2338.
[101] Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF. Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process. Macromolecules 2004;37:573–578.
[102] Liang Y, Ji L, Guo B, Lin Z, Yao YF, Li Y, Alcoutlabi M, Qiu Y, Zhang X. Preparation and electrochemical characterization of ionicconducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators. J Power Sources 2011;196:436–41.
[103] Schildknecht CE. Vinyl and related polymers; their preparations, properties and applications in rubbers, plastics and in medical and industrial arts. New York: Wiley-Interscience; 1952. p. 3878.
[104] Perepelkin KE, Klyuchnikova NV, Kulikova NA. Experimental evaluation of man-made fibre brittleness. Fibre Chem 1989;21: 145–8.
[105] Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 2007;92:1421–32.
[106] Litmanovich AD, Plate NA. Alkaline hydrolysis of polyacrylonitrile; on the reaction mechanism. Macromol Chem Phys 2000;201:2176–80.
[107] Khajuria A, Balaguru PN. Plastic shrinkage characteristics of fiber reinforced cement composites. In: Swamy RN, editor. Fibrereinforced cement composites. London: Routledge, Taylor & Francis; 1992. p. 82–90.
[108] Bai YJ, Wang CG, Lun N, Wang YX, Yu MJ, Zhu B. HRTEM microstructures of PAN precursor fibers. Carbon 2006;44:1773–8.
[109] Sarmadi AM, Noel CJ, Birch JB. Effects of heat treatment on dyeability, glass transition temperature, and tensile properties of poly(acrylonitrile) fibers. Ind Eng Chem Res 1990;29:1640–6.
[110] Mathur RB, Mittal J, Bahl OP, Sandle NK. Characteristics of KMnOmodified PAN fibers – its influence on the resulting carbon fibers properties. Carbon 1994;32:71–7.
[111] Nabieva I, Chazanova M, Ergasev K, Person JS. Preparation for the dyeing of blended yarns made from cotton and PAN fibres. Int Textile Bull 2004;50:64–5.
[112] Yoshikazu N, Yoshiyuki N. Carbon fibers and Nonwoven fabrics. US Patent 5536486; 1996.
[113] Mittal J, Mathur RB, Bahl OP. Post spinning modification of PAN fibers – a review. Carbon 1997;35:1713–22.
[114] Capone GJ. Acrylic fiber technology, acrylic fiber technology and applications; wet-spinning technology. New York: Marcel Dekker Inc.; 1995. p. 69–103.
[115] Xiaomei Z, Juan H, Jiongxin Z, Youwei Z, Ding P. Investigating the jet stretch in the wet spinning of PAN fiber. J Appl Polym Sci 2007;106:2267–73.
[116] Edie DD. Carbon fiber processing and structure/property relations. In: Rand B, Appleyard SP, Yardim MF, editors. Design and control of structure of advanced carbon materials for enhanced performance. Netherlands: Kluwer Academic Publishers; 2001. p. 163–81.
[117] Edie DD. The effect of processing on the structure and properties of carbon fibers. Carbon 1998;36:345–62.
[118] Toshiyuki K, Seiji T. High strength polyacrylonitrile fiber and method of producing the same. US Patent 4535027; 1985.
[119] Yoon K, Kim K, Wang X, Fang D, Hsiao BS, Chu B. High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 2006;47:2434–41.
[120] Menkhaus TJ, Varadaraju H, Zhang L, Schneiderman S, Bjustrom S, Liubc L, Fong H. Electrospun nanofiber membranes surface functionalized with3-dimensional nanolayers as an innovative adsorption medium with ultra-high capacity and throughput. Chem Commun 2010;46:3720–2.
[121] Ji L, Zhang X. Ultrafine polyacrylonitrile/silica composite fibers via electrospinning. Mater Lett 2008;62:2161–4.
[122] Qin XH, Yang EL, Li N, Wang SY. Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution. J Appl Polym Sci 2007;103:3865–70.
[123] Qin XH, Wana YQ, Heb JH, Juan Z, Yu JY, Wang SY. Effect of LiCl on electrospinning of PAN polymer solution: theoretical analysis and experimental verification. Polymer 2004;45:6409–13.
[124] Agend F, Naderi N, Reza FA. Fabrication and electrical characterization of electrospun polyacrylonitrile-derived carbon nanofibers. J Appl Polym Sci 2007;106:255–9.
[125] Fennessey SF, Farris RJ. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer 2004;45:4217–25.
[126] Agag T, Takeichi T. Synthesis and Characterization of Novel Benzoxazine Monomers Containing Allyl Groups and Their High Performance Thermosets. Macromolecules 2003;36:6010-7.
[127] Gao LC, McCarthy TJ. Contact Angle Hysteresis Explained. Langmuir 2006;22:6234-7.
[128] Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc 1944;40:546-51.
[129] Wenzel RN. Resistance of solid surface to wetting by water .Ind Eng Chem 1936;28:988-94.
[130] Khayet, M.; Matsuura, T.; Preparation and Characterization of Polyvinylidene Fluoride Membranes for Membrane Distillation, Ind. Eng. Chem. Res. 2001, 40, 5710–5718.
[131] Li, D.; Frey, M. W.; Joo, Y. L. C.; Characterization of nanofibrous membranes with capillary flow porometry, J. Membr. Sci. 2006, 286,104–114.
[132] Dalton S, Heatley F, Budd PM. Thermal stabilization of polyacrylonitrile fibres. Polymer 1999;40:5531-43.
[133]Agag T, Takeichi T. Synthesis and Characterization of Novel Benzoxazine Monomers Containing Allyl Groups and Their High Performance Thermosets. Macromolecules 2003;36:6010-7.
[134]Houtz RC. "Orlon" Acrylic Fiber: Chemistry and Properties. Text Res J 1950;20:786-801.
[135]Grassie N, McGuchan R. Pyrolysis of polyacrylonitrile and related polymers—III. Thermal analysis of preheated polymers. Eur Polym J 1971;7:1357-71.
[136] Burlant WJ, Parsons JL. Pyrolysis of polyacrylonitrile. J Polym Sci 1956;22:249-56.
[137] LaCombe EM. Degradation of long chain molecules by ultrasonic waves. VII. Effect of viscosity and surface tension on cavitation. J Polym Sci 1956;24:152-4.
[138] Burlant WJ, Parsons JL. Pyrolysis of polyacrylonitrile. J Polym Sci 1956;22:249-56.
[139] Wang C, Su Yi, Kuo S, Huang C, Sheen Y, Chang F. Low-Surface-Free-Energy Materials Based on Polybenzoxazines. Angew Chem Int Ed 2006; 45:2248-51.
[140] Grassie N, McGuchan R. Pyrolysis of polyacrylonitrile and related polymers—III. Thermal analysis of preheated polymers. Eur Polym J 1971;7:1357-71.
[141] Ma M, Mao Y, Gupta M, Gleason KK, Rutledge GC. Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition. Macromolecules 2005;38: 9742-8.
[142] Chen J-K, Wang J-H, Fan S-K, Chang J-Y. Reversible Hydrophobic/Hydrophilic Adhesive of PS-b-PNIPAAm Copolymer Brush Nanopillar Arrays for Mimicking the Climbing Aptitude of Geckos. J Phys Chem C 2012;116:6980-92.
[143] Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K. Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets. Langmuir 2002;18: 5818-22.
[144] Öner D, McCarthy TJ. Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability. Langmuir 2000;16:7777-83.
[145] Bargeman D. Contact angles on nonpolar solids. J Colloid Interface Sci 1972;40:344-8.
[146] Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY. Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2003;2:461-3.
[147] Grabowski, D. A.; Schmidt, C.; Simultaneous Measurement of Shear Viscosity and Director Orientation of a Side-Chain Liquid-Crystalline Polymer by Rheo-NMR, Macromolecules. 1994, 27, 2632–2634.
[148] Scott. Blair, G. W.; Hening, J. C.; Wagstaff, A.; The Flow of Cream through Narrow Glass Tubes, J. Phys. Chem. 1939, 43, 853–864.
[149] Zhang, D.; Karki, A. B.; Rutman, D.; Young, D. P.; Wang, A.; Cocke, D.; Ho, T. H.; Guo, Z.; Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis, Polymer. 2009, 50, 4189–4198.
[150] Liu, W.; Cheng, L.; Zhang, H.; Zhang, Y.; Wang, H.; Yu, M.; Rheological Behaviors of Polyacrylonitrile/1-Butyl-3-Methylimidazolium Chloride Concentrated Solutions, Int. J. Mol. Sci. 2007, 8, 180–188.
[151] Zhu, J.; Wei, S.; Chen, X.; Karki, A. B.; Rutman, D.; Young, D. P.; Guo, Z.; Electrospun Polyimide Nanocomposite Fibers Reinforced with Core−Shell Fe-FeO Nanoparticles, J. Phys. Chem. C 2010, 114, 8844–8850.
[152] Fridrikh, S. V.; Yu, J. H.; Brenner, M. P.; Rutledge, G. C.; Controlling the Fiber Diameter during Electrospinning, Phys. Rev. Lett. 2003, 90, 144502.
[153] Yu, J. H.; Fridrikh, S. V.; Rutledge, G. C.; Production of Submicrometer Diameter Fibers by Two-Fluid Electrospinning, Adv. Mater. 2004, 16, 1562–1566.
[154] Li, D.; Babel, A.; Jenekhe, S. A.; Xia, Y. N.; Nanofibers of Conjugated Polymers Prepared by Electrospinning with a Two-Capillary Spinneret, Adv. Mater. 2004, 16, 2062–2066.
[155] Kao, T.-H.; Chen, J. K.; Cheng, C. C.; Su, C. I.; Chang, F. C.; Low-surface-free-energy polybenzoxazine/polyacrylonitrile fibers for biononfouling membrane, Polymer 2013, 54, 258–268.
[156] Hardman, S. J.; Muhamad-Sarih, N.; Riggs, H. J.; Thompson, R. L.; Rigby, J.; Bergius, W. N. A.; Hutchings, L. R.; Electrospinning Superhydrophobic Fibers Using Surface Segregating End-Functionalized Polymer Additives, Macromolecules 2011, 44, 6461–6470.
[157] Qi, W.; Lu, C.; Chen, P.; Han, L.; Yu, Q.; Xu, R.; Electrochemical performances and thermal properties of electrospun Poly(phthalazinone ether sulfone ketone) membrane for lithium-ion battery, Mater. Lett. 2012, 66, 239–241.
[158] Lalia, B. S.; Guillen-Burrieza, E.; Arafat, H. A.; Hashaikeh, R.; Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation, J. Membr. Sci. 2013, 428, 104–115.
[159] Wanga, R.; Liu, Y.; Li, B.; Hsiao, B. S.; Chu, B.; Electrospun nanofibrous membranes for high flux microfiltration, J. Membr. Sci. 2012, 392– 393, 167–174.
[160] Yoon, Y.; Hsiao, B. S.; Chu, B.; High flux ultrafiltration nanofibrous membranes based on polyacrylonitrile electrospun scaffolds and crosslinked polyvinyl alcohol coating, J. Membr. Sci. 2009, 338, 145–152.
[161] Lowe, A. B.; McCormick, C. L.; Synthesis and Solution Properties of Zwitterionic Polymers, Chem. Rev. 2002, 102, 4177–4190.
[162] Cheng, G.; Zhang, Z.; Chen, S.; Bryers, J. D.; Jiang, S.; Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces, Biomaterials 2007, 28, 4192–4199.
[163] Shi, Q.; Ye, S.; Kristalyn, C.; Su, Y.; Jiang, Z.; Chen, Z.; Probing Molecular-Level Surface Structures of Polyethersulfone/Pluronic F127 Blends Using Sum-Frequency Generation Vibrational Spectroscopy, Langmuir 2008, 24, 7939–7946.
[164] Ma Z, Masaya K, Ramakrishna S. Immobilization of Cibacron blue F3GA on electrospun polysulphone ultra-fine fiber surfaces towards developing an affinity membrane for albumin adsorption. Journal of Membrane Science 2006; 282: 237–244
[165] Ahn YC, Park SK, Kim GT, Hwang YJ, Lee CG, Shin HS, Lee JK; Development of high efficiency nanofilters made of nanofibers. Curr Appl Phys 2006, 6,1030–1035.
[166] Aussawasathien D, Teerawattananon C, Vongachariya A; Separation of micron tosub-micron particles from water: electrospun nylon-6 nanofibrous membranes as pre-filters.J Membr Sci 2008,315,11–19.
[167] Jeong EH, Yang H, Youk JH; Preparation of polyurethane cationomer nanofiber mats
for use in antimicrobial nanofilter applications. Mater Lett 2007,61,3991–3994.
[168] Lala NL, Ramaseshan R, Li BJ, Sundarrajan S, Barhate RS, Liu YJ, Ramakrishna S; Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants. Biotechnol Bioeng 2007, 97, 1357–1365.
[169] Xiao Wang, Tsung-Ming Yeh, Zhe Wang, Rui Yang, Ran Wang, Hongyang Ma, Benjamin S. Hsiao, Benjamin Chu; Nanofiltration membranes prepared by interfacial polymerization on thin-film nanofibrous composite scaffold, Polymer 2014 ,55,1358-1366
[170] Vu D, Li ZY, Zhang HN, Wang W, Wang ZJ, Xu XR, Dong B, Wang C; Adsorption of Cu (II) from aqueous solution by anatase mesoporous TiO2 nanofibers prepared via electrospinning. J Colloid Interface Sci 2012,367,429–435.
[171] Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE; Release of tetracycline hydrochloride from electrospun poly(ethylene-covinylacetate), poly(lactic acid), and a blend. J Controlled Release 2002,81,57–64.
[172] Moradzadegan A, Ranaei-Siadat SO, Ebrahim-Habibi A, Barshan-Tashnizi M, Jalili R, Torabi SF, Khajeh K; Immobilization of acetylcholinesterase in nanofibrous PVA/BSA membranes by electrospinning. Eng Life Sci 2010, 10, 57–64.
[173] Piperno S, Tse Sum Bui B, Haupt K, Gheber LA; Immobilization of molecularly imprinted polymer nanoparticles in electrospun poly (vinyl alcohol) nanofibers. Langmuir 2011, 27, 1547–1550.
[174] Kim WJ, Chang JY; Molecularly imprinted polyimide nanofibers prepared by electrospinning. Mater Lett 2011,65,1388–1391.
[175] Tsibouklis J, Nevell T G; Ultra-Low Surface Energy Polymers: The Molecular Design Requirements. Adv. Mater. 2003, 14, 647
[176] Carlson DP, Schmiegel W; Ullmann’s Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft: Weinheim, 1988, p 393
[177] Labouriau A, Earl W L; Titanium solid-state NMR in anatase, brookite and rutile. Chemical Physics Letter 1997,270,278-284.
[178] S. Herminghaus; Roughness-induced non-wetting. Europhys. Lett. 2000, 52, 165

無法下載圖示 全文公開日期 2020/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE