簡易檢索 / 詳目顯示

研究生: 陳姿伶
Zi-Ling Chen
論文名稱: 應用模擬退火法進行普通蒸餾程序最適啟動研究
Optimal Startup Strategies of a Conventional Distillation Column by Simulated Annealing Approach
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 周宜雄
Yi-Shyong Chou
王國彬
Gow-Bin Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 110
中文關鍵詞: 動態操作蒸餾塔啟動最適化模擬退火法
外文關鍵詞: Dynamic operation, Distillation startup, Optimization, Simulated annealing
相關次數: 點閱:210下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蒸餾塔啟動 (startup) 是化學工業中最複雜的動態操作之一,而且此過程是時間和能量的消耗程序,在達到常態操作前不具有生產性,進而影響不合乎規格的總產物量與能耗量,因此減少達到常態操作的時間是很重要的。本研究將利用 Aspen Plus Dynamics程序模擬軟體,簡化程序建模的複雜度,並以內建的ColumnStartup啟動範例作為研究程序,聚焦於蒸餾塔啟動操作策略。
    最適化啟動策略可分為四個部分,第一個部分為進料控制方法,以凝液罐液位高度來決定進料的時間點,其次為塔底產物排放方法,當塔底產物達到規格後才進行排出,以減少未合乎規格的總產物量,第三部分為迴流與塔頂產物切換方法,分別以MT演算法和全迴流操作下塔頂產物的濃度趨勢來決定切換點,最後為塔底升溫方法,將模擬退火法應用於動態模擬,使尋求最佳升溫的方法簡單化,並減少所需時間。最佳模擬結果與ColumnStartup啟動範例相比,啟動時間約減少0.3小時,且可以節省41%不合乎規格的總產物量和17%再沸器能耗量,此外,並針對啟動現象進行不同條件的測試與探討。


    The startup of a distillation column represents one of the most complicated dynamic operations in the chemical industry. The startup procedure is time and energy consuming and the process is unproductive during this transient period before the steady state. It is desirable to reduce the transient period and consequently the startup time. This work proposes the optimization of startup for the conventional distillation column. Based on the column startup example in Aspen Plus Dynamics, different startup strategies have been applied in this process.
    The optimal startup strategies can be divided into four parts. The first part is the feed control method, determining when to feed by the height of sump level. Second is the bottom flow control method to decrease the amount of the off-specification bottom product. The third one is reflux control method. The switch point is determined by the top product composition or MT algorithm which can be found the minimum summation of temperature difference with nominal state under total reflux condition. The last part is heating medium temperature control method. Combination of simulated annealing approach and dynamic simulation, the optimal heating steps can be found easily and also save the calculation of this time consuming task. The results showed 41 % improvement in the off-specification product and 17 % improvement in reboiler duty as compared to the column startup example in Aspen Plus Dynamics.

    致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.1.1 蒸餾塔啟動 1 1.1.2 蒸餾塔啟動動態行為特徵階段 2 1.1.3 蒸餾塔啟動操作步驟 2 1.1.4 蒸餾塔啟動操作策略 3 1.2 文獻回顧 4 1.2.1 普通蒸餾 4 1.2.2 批次蒸餾 5 1.2.3 共沸蒸餾 7 1.2.4 反應蒸餾 8 1.2.5 熱整合蒸餾 10 1.2.6 國內蒸餾塔啟動研究 13 1.3 研究動機與目的 14 1.4 組織章節 14 第二章 普通蒸餾塔程序 15 2.1 前言 15 2.2 程序描述 15 2.2.1 穩態程序 15 2.2.2 動態程序 18 2.3 蒸餾塔啟動 20 2.3.1 初始化 20 2.3.2 啟動步驟 20 2.4 模擬結果之探討 21 2.5 以三成份圖分析啟動過程 24 第三章 最適化啟動策略 29 3.1 前言 29 3.2 基本控制環路 29 3.2.1 進料控制 29 3.2.2 塔底產物排放 29 3.3 進階控制環路 30 3.3.1 迴流與塔頂產物切換 30 3.3.2 塔底升溫方法 32 3.4 模擬退火法 33 3.4.1 模擬退火原理 33 3.4.2 模擬退火演算法 34 3.4.3 模擬退火法的應用 37 第四章 不同啟動策略的探討與模擬 38 4.1 控制架構 38 4.1.1 初始啟動控制架構 38 4.1.2 常態操作控制架構 39 4.2 啟動策略 41 4.3 迴流與塔頂產物切換點為啟動時間1.33 hr 43 4.3.1 啟動策略A之模擬結果 43 4.3.2 啟動策略B之模擬結果 45 4.3.3 啟動策略C之模擬結果 47 4.3.4 啟動策略D之模擬結果 49 4.3.5 模擬結果之探討 51 4.3.6 啟動策略A以三成份圖分析啟動過程 52 4.4 迴流與塔頂產物切換點為xCHCl3= 50 wt% 57 4.4.1 啟動策略E之模擬結果 57 4.4.2 啟動策略F之模擬結果 59 4.4.3 啟動策略G之模擬結果 61 4.4.4 啟動策略H之模擬結果 63 4.4.5 模擬結果之探討 65 4.4.6 啟動策略F以三成份圖分析啟動過程 66 4.5 啟動現象之改善 71 4.5.1 迴流現象 71 4.5.2 填充塔頂產物於迴流罐 75 4.5.3 模擬結果之探討 87 4.6 擾動測試 88 第五章 結論 91 參考文獻 92

    中華民國行政院經濟部能源局2012能源產業技術白皮書, http://web3.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=62&sub_menu_id=148
    許展誌,“利用ASPEN執行化學工廠操作程序動態模擬之研究”,碩士論文,國立成功大學,民國一百年七月。
    Arellano-Garcia, H.; Carmona, I.; Wozny, G. A New Operation Mode for Reactive Batch Distillation in Middle-Vessel Columns: Start-up and Operation, Comput. Chem. Eng., 2008, 32, 161-169.
    Cheng, J.-K.; Lee, H.-Y.; Huang, H.-P.; Yu, C.-C. Optimal Steady-State Design of Reactive Distillation Processes Using Simulated Annealing, J. Taiwan Inst. Chem. Eng., 2009, 40, 188-196.
    Eden, M. R.; Koggersbol, A.; Hallager, L.; Jorgensen, S. B. Dynamics and Control During Startup of Heat Integrated Distillation Column, Comput. Chem. Eng., 2000, 24, 1091-1097.
    Elgue, S.; Prat, L.; Cabassud, M.; Lann, J. M. L.; Cezerac, J. Dynamic Models for Start-up Operations of Batch Distillation Columns with Experimental Validation, Comput. Chem. Eng., 2004, 28, 2735-2747.
    Fabro, J. A.; Arruda, L. V. R.; Neves, F. Startup of a Distillation Column Using Intelligent Control Techniques, Comput. Chem. Eng., 2005, 30, 309-320.
    Forner, F.; Brehelin, M.; Rouzineau, D.; Meyer, M.; Repke, J. U. Startup of a Reactive Distillation Process with a Decanter, Chem. Eng. Process, 2008, 47, 1976-1985.
    Gruetamann, S.; Fieg, G.; Skogestad, S. Experimental and Theoretical Studies on the Start-up Operation of a Multivessel Batch Distillation Column, Ind. Eng. Chem. Res., 2009, 48, 5336-5343.
    Hanke, M.; Li, P. Simulated Annealing for the Optimization of Batch Distillation Processes, Comput. Chem. Eng., 2000, 24, 1-8.
    Junior, F. N.; Martin, J. A. Heterogeneous Control and Qualitative Supervision, Application to a Distillation, Eng. Appl. Artif. Intel., 2000, 13, 179-197.
    Kirkpatrick, S.; Gelatt, C. D.; Jr.; Vecchi, M. P. Optimization by Simulated Annealing, Science, 1983, 220, 671-680.
    Kruse, C.; Fieg, G.; Wozny, G. A New Time-Optimal Strategy for Column Startup and Product Changeover, J. Process Contr., 1996, 6, 187-193.
    Li, P.; Lowe, K.; Arellana-Garcia, H.; Wozny, G. Integration of Simulated Annealing to a Simulation Tool for Dynamic Optimization of Chemical Processes, Chem. Eng. Process., 2000, 39, 357-363.
    Lo’pez-Negrete de la Fuente, R.; Tlacuahuac, A. F. Optimal Start-up and Product Transition Policies of a Reactive Distillation Column, Ind. Eng. Chem. Res., 2007, 46, 2092-2111.
    Lowe, K.; Wozny, G. A New Strategy for Product Switchover and Startup for a Heat- and Mass-Integrated Distillation System, Chem. Eng. Process, 2001, 40, 295-302.
    Lowe, K.; Li, P.; Wozny, G. Development and Experimental Verification of a Time-optimal Startup Strategy for a High Purity Distillation Column, Chem. Eng. Technol., 2000, 23, 841-845.
    Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. Equation of State Calculations by Fast Computing Machines, J. Chem. Phys., 1953, 21, 1087-1092.
    Niggemann, G.; Hiller, C.; Fieg, G. Modeling and In-Depth Analysis of the Start-up of Dividing-Wall Columns, Chem. Eng. Sci., 2011, 66, 5268-5283.
    Reepmeyer, F.; Repke, J.-U.; Wozny, G. Analysis of the Start-up Process for Reactive Distillation, Chem. Eng. Technol., 2003, 26, 81-86.
    Reepmeyer, F.; Repke, J.-U.; Wozny, G. Time Optimal Start-up Strategies for Reactive Distillation Columns, Chem. Eng. Sci., 2004, 59, 4339-4347.
    Ruiz, C. A.; Cameron, I. T.; Gani, R. A Generalized Dynamic Model For Distillation Columns-III. Study of Startup Operations, Comput. Chem. Eng., 1988, 12, 1-14.
    Scenna, N. J.; Benz, S. J. Start-up Operation of Reactive Columns with Multiple Steady States the Ethylene Glycol Case, Ind. Eng. Chem. Res., 2003, 42, 873-882.
    Scenna, N. J.; Benz, S. J.; Francesconi, J. A.; Rodrı’guez, N. s. H. Start-up of Homogeneous Azeotropic Distillation Columns with Multiple Steady States, Ind. Eng. Chem. Res., 2004, 43, 553-565.
    Scenna, N. J.; Benz, S. J.; Rodrı’guez, N. s. H.; Klaric, J. I. Startup of Homogeneous Azeotropic Distillation Sequences with Multiple Steady States, Ind. Eng. Chem. Res., 2005, 44, 9208-9220.
    Van Lith, P. F.; Betlem, B. H. L.; Roffel, B. Combining Prior Knowledge with Data Driven Modeling of a Batch Distillation Column Including Start-up, Comput. Chem. Eng., 2003, 27, 1021-1030.
    Varbanov, P.; Klein, A.; Repke, J. U.; Wozny, G. Minimising the Startup Duration for Mass- and Heat-Integrated Two-Column Distillation Systems: A Conceptual Approach, Chem. Eng. Process, 2008, 47, 1456-1469.
    Wang, L.; Li, P.; Wozny, G.; Wang, S. A Startup Model for Simulation of Batch Distillation Starting from a Cold State, Comput. Chem. Eng., 2003, 27, 1485-1497.
    Wendt, M.; Konigseder, R.; Li, P.; Wozny, G. Theoretical and Experimental Studies on Startup Strategies for a Heat-Integrated Distillation Column System, Chem. Eng. Res. Des., 2003, 81, 153-161.
    Werle, L. O.; Marangoni, C.; Steinmacher, F. R.; de Araujo, P. H. H.; Machado, R. A. F.; Sayer, C. Application of a New Startup Procedure Using Distributed Heating Along Distillation Column, Chem. Eng. Process, 2009, 48, 1487-1494.
    Woinaroschy, A. Time-Optimal Control of Startup Distillation Columns by Iterative Dynamic Programming, Ind. Eng. Chem. Res., 2008, 47, 4158-4169.
    Woinaroschy, A. Time-Optimal Control of Startup Distillation of Nonideal Mixtures, Ind. Eng. Chem. Res., 2009, 48, 3873-3879.
    Wozny, G.; Li, P. Optimisation and Experimental Verification of Startup Policies for Distillation Columns, Comput. Chem. Eng., 2004, 28, 253-265.
    Wu, H. X.; Tang, Z. G.; Gao, H. B.; Hu, H.; Lu, X. C.; Li, S. Y. Effects of Liquid Holdup in Condensers on the Start-Up of Reactive Distillation Columns, Chem. Eng. Technol., 2006, 29, 1316-1322.
    Yasuoka, H.; Nakanishi, E.; Kunigita, E. Design of an On-line Startup System for a Distillation Column Based on a Simple Algorithm, Inter. Chem. Eng., 1987, 27, 466-472.
    Yazdl, H.; Bahar, M.; Koggersbol, A.; Jorgensen, S. B. Knowledge-Based Control Structuring of a Distillation Plant Start-up, Control Eng. Pract., 1995, 3, 423-430.

    QR CODE