簡易檢索 / 詳目顯示

研究生: 李語程
Yu-Cheng Lee
論文名稱: 大型交通建築聲學品質設計策略探討 -以高雄港埠旅運中心為例
Acoustic Optimization of Large-scale Transportation Architecture - A Case Study on Kaohsiung Port Cruise Terminal
指導教授: 江維華
Wei-Hwa Chiang
吳惠萍
Hui-Ping Wu
口試委員: 江維華
Wei-Hwa Chiang
吳惠萍
Hui-Ping Wu
楊馥妃
Fu-Fei Yang
學位類別: 碩士
Master
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 106
中文關鍵詞: 港埠旅運中心交通建築建築聲學品質Odeon電腦模擬
外文關鍵詞: Port Travel Center, Transportation Architecture, Architectural Acoustic Quality, Odeon Computer Simulation
相關次數: 點閱:129下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,交通建築有挑高、巨大化和複雜化的趨勢,影響建築聲學品質的因素也愈加繁雜。然而,建築聲學品質仍不是大眾運輸建築設計時主要的考慮項目之一,以致建築物完工後其建築聲學品質不甚理想。本研究針對已建設完成但仍需改善其建築聲學品質的大型交通建築提出優化方案,並以高雄港埠旅運中心為例,透過分析對人流動線、各空間旅客行為、建築物現況等內容之深入了解,並根據現場聲學性能測量和初步電腦模擬,提出降低建築物的背景噪音並提升語音清晰度的策略。根據現場餘響時間明顯偏長,各空間的餘響時間在500Hz~4000Hz平均介於3.3到6.3秒,除可歸因於室內表面之高反射性,有音回走障害,也由空間挑高、平行牆面、空間的串連等所導致,本研究假設以不調整空間尺度和形體為前提,並考量成本及施作難易度,探討各種吸音材配置方案之聲學品質改善效果及其優缺點。僅單純施作於天花板、牆面或地板等之全部或局部區域時餘響時間T30平均下降44%,複合二至三類室內表面時則平均可下降62%。各個方案中以成本為主要考量時,牆面、局部地板、低天花板等配置方案可為優先選擇,若以維護成本或後續使用方便度為考量時,施作於所有天花板則為優先選擇。根據優化後之聲壓級下降的幅度顯示,將餘響時間與早期衰減時間降低,可有效地減少背景噪音。而早期衰減時間較適合做為反應聲壓級變動且容易量度之參數。


    In recent years, there has been a trend in transportation architecture towards increased height, enlargement, and complexity, resulting in a growing array of factors that impact architectural acoustic quality. However, architectural acoustic quality still does not rank as a primary consideration in the design of public transportation buildings, leading to less than ideal acoustic performance once these buildings are completed. This study focuses on proposing optimization strategies for large-scale transportation buildings that have already been constructed but still require improvement in their architectural acoustic quality. Using the Kaohsiung Port and Harbor Terminal as a case study, a comprehensive understanding is gained by analyzing factors such as pedestrian flow patterns, passenger behavior in various spaces, and the current state of the building. Based on on-site acoustic performance measurements and preliminary computer simulations, strategies are suggested for reducing background noise within the building and enhancing speech clarity.

    With notably prolonged reverberation times observed on-site, the reverberation times in various spaces between 500Hz to 4000Hz average between 3.3 and 6.3 seconds. This can be attributed not only to the high reflectivity of interior surfaces but also to factors such as sound reflections hindrances resulting from elevated ceilings, parallel walls, and spatial interconnections. Assuming that adjustments to spatial dimensions and form are not considered, and taking into account cost and implementation difficulty, this study explores the effects, advantages, and disadvantages of various acoustic improvement strategies involving the arrangement of sound-absorbing materials. When applied solely to the entire or specific areas of ceilings, walls, or floors, the average reduction in reverberation time (T30) is 44%. In cases involving composite surface types, such as combining two to three types of interior surfaces, the average reduction can reach 62%.

    Among the various proposed schemes, prioritizing options based on cost, such as wall treatments, localized floor treatments, and lowered ceilings, is recommended. However, if maintenance cost or ease of future use is taken into account, treating all ceilings should be given priority. According to the simulated results of the decrease in sound pressure level, it is evident that reducing both reverberation time and early decay time can effectively minimize background noise. Early decay time is particularly suitable as a parameter for measuring variations in sound pressure level and is easily quantifiable.

    目錄 摘要 i Abstract ii 誌謝 iv 目錄 vi 圖目錄 x 表目錄 xiii 第一章、緒論 1 1-1 研究目的與背景動機 1 1-2 研究對象 2 1-3 研究流程與架構 2 1-3-1 研究流程說明 2 1-3-2 研究流程圖 3 第二章、港埠旅運中心聲學品質設計原則 4 2-1 建築聲學品質概述 4 2-2 建築聲學品質指標 5 2-2-1 餘響時間(Reverberation Time, RT) 5 2-2-2 早期衰減時間 (Early Decay Time , EDT) 6 2-2-3 背景噪音 (Background Noise, BGN) 6 2-2-4 語言清晰度( Speech Transmission Index ,STI) 7 2-2-5 聲壓級 (Sound Pressure Level ,SPL) 8 2-2-6 語言干擾位準(Speech Interference Level ,SIL) 8 2-3 港埠旅運中心概述 9 2-3-1 港埠旅運中心營運類型 9 2-3-2 港埠旅運中心建築類型 10 2-3-3 港口的季節性 11 2-3-4 港埠旅運中心服務空間 11 2-4 台灣港埠旅運中心概述 13 2-4-1 基隆港埠旅運中心 13 2-4-2 高雄港埠旅運中心 17 2-4-3 小結 21 第三章、台灣港務中心的使用分析 22 3-1 郵輪停靠方式與差別 22 3-1-1 高雄港國際郵輪掛靠-入境動線 22 3-1-2 高雄港國際郵輪掛靠-出境動線 23 3-1-3 高雄港國際郵輪母港-入境動線 24 3-1-4 高雄港國際郵輪母港-出境動線 25 3-2 港埠旅運中心之旅客行為 26 3-2-1 基隆港埠旅運中心實際調查 26 3-2-2 高雄港埠旅運中心服務人員電話訪談 28 3-3 小結 30 第四章、高雄港埠旅運中心建築聲學品質現況 32 4-1 高雄港埠旅運中心聲學品質現場測量 32 4-1-1 測量項目 32 4-1-2 測量儀器系統 32 4-1-3 測點位置 34 4-2 實際測量結果 37 4-2-1 餘響時間(T30) 與早期衰減時間(EDT) 測量結果 37 4-2-2 背景噪音 39 第五章、建築聲場優化策略研擬與結果分析 41 5-1 建築聲場優化策略 41 5-2 建模與建築聲學品質電腦模擬 42 5-2-1 高雄港埠旅運中心裝飾材料分析與參數設定 42 5-2-2 Odeon 參數設定 46 5-2-3 初始模型聲學品質模擬結果分析 46 5-2-4 音響障害 48 5-2-5 小結 51 5-3 建築聲學品質優化方案 51 5-3-1 單一部位應用方案說明 52 5-3-2 單一部位應用方案模擬結果 57 5-3-3 混和部位應用方案說明 63 5-3-4 混和部位應用方案模擬結果 66 5-3-5 各方案聲學優化效果比較 70 5-3-6 優化方案之各空間聲壓級降低值 71 第六章、結論與建議 74 6-1 結論 74 6-2 後續研究建議 75 參考文獻 77 中文文獻 77 外文文獻 77 其他文獻 78 附錄 80 附錄A – 文獻整理補充 80 附錄B - 高雄港埠旅運中心聲學品質現場測量結果 84 附錄C - 各方案聲學優化效果比較 86 附錄D - 優化方案之聲壓級降低數值 91

    1. Royal Caribbean International-Allure of the Seas。2023/03 取自 https://www.royalcaribbeanpresscenter.com/fact-sheet/20/allure-of-the-seas/
    2. Sound Metrics: Speech Interference Level。2023/03 取自
    https://community.sw.siemens.com/s/article/sound-metrics-speech-interference-level
    3. Keelung Harbor Service Building / Neil M. Denari Architects。2023/05取自 https://www.archdaily.com/274687/keelung-harbor-service-building-neil-m-denari-architects?ad_source=search&ad_medium=projects_tab&ad_source=search&ad_medium=search_result_all
    4. 基隆港新亮點-旅運大樓購物用餐還可逛空中花園。2023/06取自 https://www.cna.com.tw/news/ahel/202207010214.aspx
    5. 港埠營運設施總表,臺灣港務股份有限公司-基隆港務分公司。2023/05取自https://kl.twport.com.tw/chinese/cp.aspx
    6. 港埠營運設施總表,臺灣港務股份有限公司-高雄港務分公司。2023/05取自 https://kh.twport.com.tw/chinese/Form.aspx

    QR CODE