簡易檢索 / 詳目顯示

研究生: 李政龍
Zheng-Long Li
論文名稱: 以高功率脈衝磁控濺鍍製備含氫碳化鉻薄膜之研究
Fabrication of CrCx/a-C:H thin films through the high power impulse magnetron sputtering
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 李志偉
Jyh-Wei Lee
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 129
中文關鍵詞: 碳化鉻HiPIMSPEM乙炔
外文關鍵詞: chromium carbide, C2H2, dispersion strengthening
相關次數: 點閱:750下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

藉由高功率脈衝磁控濺鍍系統(High power impulse magnetron sputtering;HiPIMS),搭載電漿放射監控儀(PEM)監控靶材在反應式鍍膜過程的毒化狀態。利用電漿Cr原子的訊號(520.8 nm)控制乙炔(C2H2)流量,精準控制反應性氣體,穩定電漿光激發強度。透過改變不同PEM設定值進行成分的調整,並搭配不同偏壓,比較薄膜彼此間的性質差異。此外也以不同電源進行含氫碳化鉻薄膜鍍製,包括直流電源與最新型的疊加型Superimposed HiPIMS。由改變不同PEM設定值與偏壓的實驗結果顯示,以HiPIMS 電源在偏壓-600V,PEM設定百分比50%所鍍製的含氫碳化鉻薄膜,具有較高硬度26 GPa,且具有優異的附著性,臨界荷重為42 N。當偏壓-900V時薄膜硬度值可達28 GPa,但由於過高偏壓及HiPIMS離子轟擊的效果,使得內應力過高,附著性略為下降,臨界荷重為35 N。以不同電源鍍製碳化鉻薄膜的結果,可發現使用疊加型HiPIMS能解決HiPIMS低佔空比(較少工作時間)所造成的低鍍率問題,並且具有優異的機械性質,硬度有27.5 GPa,臨界荷重在30.7 N,具有良好的附著性,同時也具有較低之磨擦係數0.35。常見的應用包括:切消刀具、錶帶的鍍層,另外還有其他需要低摩擦係數的應用,抱括硬碟以及引擎的零組件上,其中對於引擎零組件的應用上,可降低熱能的損失,提升燃料的使用率,本研究的含氫碳化鉻薄膜在耐磨領域有極大的應用潛力。


The potential use of chromium carbide films has been a great interest to academia and industry owing to their outstanding properties such as chemical stability, low coefficient of friction, and high wear resistance. For instance, they can be applied on high-speed cutting tools, and integrated circuit packaging. A number of deposition techniques have been proposed along with their advantages and drawbacks. Strictly speaking, a physical vapor deposition such as magnetron sputtering system might be considered as one of the best approaches. However, utilizing a conventional magnetron sputtering system would be tackled by its low ionization degree that leads to poorer film properties. Looking for a better deposition technique with high ionization degree is thus necessary.
A newly developed high power impulse magnetron sputtering (HiPIMS) is characterized for its high peak current, high peak power density, and high plasma density. These characteristics are essential to achieve unique film properties such as high hardness, excellent adhesion quality, and high wear resistance. Accordingly, it is expected that HiPIMS apparatus can be used to fabricate chromium carbide films with improved film properties.
In this study, we have fabricated hydrogen contained chromium film through HiPIMS deposition system. In addition to the ionization issue, a proper control of the deposition parameters including acetylene (C2H2) gas flow rate and substrate bias were addressed. Meanwhile, different power supply systems including direct-current (DC), high power impulse magnetron sputtering (HiPIMS), and superimposed middle-frequency (MF)-HiPIMS were used. The Cr target poisoning status was controlled by a plasma emission monitoring (PEM) system by adjusting the gas flow ratio of Ar and acetylene. The results showed that the thin film sample prepared the by superimposed HiPIMS-MF process can reach the maximum hardness of ~27.5 GPa at PEM setpoint 30%. The hardening mechanism may be due to the appearance of CrC crystallites incorporated into amorphous CrCx matrix in the thin film, which resulted in the dispersion strengthening.

摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 第二章 文獻回顧 3 2.1 薄膜製程技術 3 2.1.1 濺鍍理論 3 2.1.2 磁控濺鍍 4 2.2 高功率脈衝磁控濺鍍 5 2.2.1 高功率脈衝磁控濺射之特性與系統架構 7 2.2.2 疊加型高功率脈衝濺鍍系統介紹 14 2.2.3 反應性氣體濺鍍之遲滯效應 16 2.3 電漿診斷與回饋控制技術 19 2.4 HIPIMS與一般鍍膜技術之比較 20 2.5 類鑽碳薄膜 25 2.5.1 類鑽碳之結構與特性 25 2.5.2 類鑽碳膜分類 26 2.5.3 類鑽碳膜成長機制 28 2.5.4 提升類鑽碳膜性質之方法 31 2.5.5 添加鉻之類鑽碳膜相關文獻 34 第三章 實驗方法與步驟 35 3.1實驗規劃與流程介紹 35 3.1.1 不同PEM設定值與偏壓製備碳化鉻薄膜 36 3.1.2 不同電源製備碳化鉻薄膜 40 3.2 實驗步驟與方法 42 3.2.1 基材前置處理 42 3.2.2實驗步驟 43 3.3 實驗儀器 44 3.3.1 鍍膜設備 44 3.3.2 靶材脈衝尖峰電流與電壓分析 45 3.3.3 光激發光譜儀系統 45 3.3.4 化學成分 46 3.3.5 微結構 46 3.3.6 機械性質 48 第四章 結果與討論 51 4.1不同偏壓與PEM百分比對碳化鉻薄膜性質探討 51 4.1.1電漿光譜分析 51 4.1.2靶材電性分析 53 4.1.3 化學成分分析 56 4.1.4 薄膜微結構分析 61 4.1.5 薄膜機械性質分析 73 4.2不同電源系統製備碳化鉻薄膜 81 4.2.1電漿光譜分析 81 4.2.2靶材電性分析 84 4.2.3 化學成分分析 86 4.2.4 薄膜微結構分析 90 4.2.5 薄膜機械性質 100 第五章 結論 108 參考文獻 109

[1] H. Dimigen, C.-P. Klages, Microstructure and wear behavior of metal-containing diamond-like coatings, Surface and Coatings Technology 49(1) (1991) 543-547.
[2] 柯贤文, 表面與薄膜處理技術, 全華科技圖書股份有限公司2005.
[3] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56(3) (2000) 159-172.
[4] K. Sarakinos, J. Alami, S. Konstantinidis, High power pulsed magnetron sputtering: A review on scientific and engineering state of the art, Surface and Coatings Technology 204(11) (2010) 1661-1684.
[5] S. Bugaev, N. Koval, N. Sochugov, A. Zakharov, Investigation of a high-current pulsed magnetron discharge initiated in the low-pressure diffuse arc plasma, Discharges and Electrical Insulation in Vacuum, 1996. Proceedings. ISDEIV., XVIIth International Symposium on, IEEE, 1996, pp. 1074-1076.
[6] V. Kouznetsov, K. Macák, J.M. Schneider, U. Helmersson, I. Petrov, A novel pulsed magnetron sputter technique utilizing very high target power densities, Surface and Coatings Technology 122(2) (1999) 290-293.
[7] G. Eichenhofer, I. Fernandez, A. Wennberg, Industrial use of HiPIMS and the hiP‐V hiPlus technology, Vakuum in Forschung und Praxis 29(2) (2017) 40-44.
[8] A. Zalar, S. Hofmann, F. Pimentel, D. Kohl, P. Panjan, Early-stage diffusion processes at Si/Me and Me/Me interfaces, Vacuum 46(8) (1995) 1077-1081.
[9] A. Vetushka, A.P. Ehiasarian, Plasma dynamic in chromium and titanium HIPIMS discharges, Journal of Physics D: Applied Physics 41(1) (2007) 015204.
[10] A. Anders, High power impulse magnetron sputtering and related discharges: Scalable plasma sources for plasma-based ion implantation and deposition, Surface and Coatings Technology 204(18) (2010) 2864-2868.
[11] P. Kudláček, J. Vlček, K. Burcalová, J. Lukáš, Highly ionized fluxes of sputtered titanium atoms in high-power pulsed magnetron discharges, Plasma Sources Science and Technology 17(2) (2008) 025010.
[12] U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, J.T. Gudmundsson, Ionized physical vapor deposition (IPVD): A review of technology and applications, Thin Solid Films 513(1) (2006) 1-24.
[13] A. Anders, A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS), Surface and Coatings Technology 257 (2014) 308-325.
[14] J. Gudmundsson, N. Brenning, D. Lundin, U. Helmersson, High power impulse magnetron sputtering discharge, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 30(3) (2012) 030801.
[15] 吳錦裕, 梁文龍, 艾啟峰, 新鍍膜技術-高功率脈衝磁控濺射之介紹及研發, 真空科技 22(4) (2009) 24-33.
[16] G. West, P. Kelly, P. Barker, A. Mishra, J. Bradley, Measurements of deposition rate and substrate heating in a HiPIMS discharge, Plasma Processes and Polymers 6(S1) (2009).
[17] A.P. Ehiasarian, R. New, W.D. Münz, L. Hultman, U. Helmersson, V. Kouznetsov, Influence of high power densities on the composition of pulsed magnetron plasmas, Vacuum 65(2) (2002) 147-154.
[18] J.A. Thornton, Magnetron sputtering: basic physics and application to cylindrical magnetrons, Journal of Vacuum Science and Technology 15(2) (1978) 171-177.
[19] 李志偉, 高功率脈衝磁控濺鍍技術介紹, 真空科技 30(1) (2017) 33-48.
[20] W. Diyatmika, F.-K. Liang, B.-S. Lou, J.-H. Lu, D.-E. Sun, J.-W. Lee, Superimposed high power impulse and middle frequency magnetron sputtering: Role of pulse duration and average power of middle frequency, Surface and Coatings Technology (2017).
[21] C.-Y. Lu, W. Diyatmika, B.-S. Lou, Y.-C. Lu, J.-G. Duh, J.-W. Lee, Influences of target poisoning on the mechanical properties of TiCrBN thin films grown by a superimposed high power impulse and medium-frequency magnetron sputtering, Surface and Coatings Technology 332 (2017) 86-95.
[22] V. Sittinger, O. Lenck, M. Vergöhl, B. Szyszka, G. Bräuer, Applications of HIPIMS metal oxides, Thin Solid Films 548 (2013) 18-26.
[23] J. Vetter, R. Knaup, H. Dweletzki, E. Schneider, S. Vogler, Hard coatings for lubrication reduction in metal forming, Surface and Coatings Technology 86-87 (1996) 739-747.
[24] A.G. Spencer, R.P. Howson, R.W. Lewin, Pressure stability in reactive magnetron sputtering, Thin Solid Films 158(1) (1988) 141-149.
[25] C. Nouvellon, M. Michiels, J.P. Dauchot, C. Archambeau, F. Laffineur, E. Silberberg, S. Delvaux, R. Cloots, S. Konstantinidis, R. Snyders, Deposition of titanium oxide films by reactive High Power Impulse Magnetron Sputtering (HiPIMS): Influence of the peak current value on the transition from metallic to poisoned regimes, Surface and Coatings Technology 206(16) (2012) 3542-3549.
[26] D. Hoffman, A sputtering wind, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 3(3) (1985) 561-566.
[27] U. Fantz, Basics of plasma spectroscopy, Plasma sources science and technology 15(4) (2006) S137.
[28] K. Sarakinos, J. Alami, C. Klever, M. Wuttig, Films by high power pulsed magnetron sputtering from a compound TiO, Rev. Adv. Mater. Sci 15 (2007) 44-48.
[29] V. Stranak, M. Cada, Z. Hubicka, M. Tichy, R. Hippler, Time-resolved investigation of dual high power impulse magnetron sputtering with closed magnetic field during deposition of Ti–Cu thin films, Journal of Applied Physics 108(4) (2010) 043305.
[30] M. Hála, J. Čapek, O. Zabeida, J.E. Klemberg-Sapieha, L. Martinu, Pulse management in high power pulsed magnetron sputtering of niobium, Surface and Coatings Technology 206(19) (2012) 4186-4193.
[31] A.P. Ehiasarian, P.E. Hovsepian, L. Hultman, U. Helmersson, Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique, Thin Solid Films 457(2) (2004) 270-277.
[32] M. Samuelsson, D. Lundin, J. Jensen, M.A. Raadu, J.T. Gudmundsson, U. Helmersson, On the film density using high power impulse magnetron sputtering, Surface and Coatings Technology 205(2) (2010) 591-596.
[33] J. Alami, P.Å. Persson, D. Music, J. Gudmundsson, J. Bohlmark, U. Helmersson, Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 23(2) (2005) 278-280.
[34] 余樹貞, 晶體之結構與性質, 台北台灣: 渤海堂文化公司 (1993).
[35] W. Jacob, W. Möller, On the structure of thin hydrocarbon films, Applied Physics Letters 63(13) (1993) 1771-1773.
[36] B. Spitsyn, Growth of diamond films from the vapour phase, Handbook of crystal growth 3 (1994) 403-456.
[37] K. Bewilogua, D. Hofmann, History of diamond-like carbon films — From first experiments to worldwide applications, Surface and Coatings Technology 242 (2014) 214-225.
[38] J.J. Cuomo, D.L. Pappas, J. Bruley, J.P. Doyle, K.L. Saenger, Vapor deposition processes for amorphous carbon films with sp 3 fractions approaching diamond, Journal of applied physics 70(3) (1991) 1706-1711.
[39] C. Weissmantel, Ion-based growth of special films: Techniques and mechanisms, Thin Solid Films 92(1) (1982) 55-63.
[40] C. Massobrio, V. Pontikis, G. Martin, Molecular-dynamics study of amorphization by introduction of chemical disorder in crystalline NiZr 2, Physical Review B 41(15) (1990) 10486.
[41] Y. Lifshitz, Pitfalls in amorphous carbon studies, Diamond and Related Materials 12(2) (2003) 130-140.
[42] W.G. Van Sark, Methods of deposition of hydrogenated amorphous silicon for device applications, Handbook of Thin Films, Elsevier2002, pp. 1-102.
[43] G. Gassner, P.H. Mayrhofer, C. Mitterer, J. Kiefer, Structure–property relations in Cr–C/a-C:H coatings deposited by reactive magnetron sputtering, Surface and Coatings Technology 200(1) (2005) 1147-1150.
[44] K. Bewilogua, H. Dimigen, Preparation of W-C:H coatings by reactive magnetron sputtering, Surface and Coatings Technology 61(1) (1993) 144-150.
[45] H. Dimigen, C.-P. Klages, Microstructure and wear behavior of metal-containing diamond-like coatings, Metallurgical Coatings and Thin Films 1991, Elsevier, Oxford, 1991, pp. 543-547.
[46] S. Gayathri, N. Kumar, R. Krishnan, T.R. Ravindran, S. Dash, A.K. Tyagi, M. Sridharan, Influence of Cr content on the micro-structural and tribological properties of PLD grown nanocomposite DLC-Cr thin films, Materials Chemistry and Physics 167 (2015) 194-200.
[47] K. Nygren, M. Samuelsson, A. Flink, H. Ljungcrantz, Å. Kassman Rudolphi, U. Jansson, Growth and characterization of chromium carbide films deposited by high rate reactive magnetron sputtering for electrical contact applications, Surface and Coatings Technology 260 (2014) 326-334.
[48] C.-C. Lin, J.-W. Lee, K.-L. Chang, W.-J. Hsieh, C.-Y. Wang, Y.-S. Chang, H.C. Shih, The effect of the substrate bias voltage on the mechanical and corrosion properties of chromium carbide thin films by filtered cathodic vacuum arc deposition, Surface and Coatings Technology 200(8) (2006) 2679-2685.
[49] L. Yate, L. Martínez-de-Olcoz, J. Esteve, A. Lousa, Effect of the bias voltage on the structure of nc-CrC/a-C:H coatings with high carbon content, Surface and Coatings Technology 206(11) (2012) 2877-2883.
[50] M. Nöthe, U. Breuer, F. Koch, H.J. Penkalla, W.P. Rehbach, H. Bolt, Investigation of the structure and properties of a-C:H coatings with metal and silicon containing interlayers, Applied Surface Science 179(1) (2001) 122-128.
[51] V.V. Lyubimov, A.A. Voevodin, S.E. Spassky, A.L. Yerokhin, Stress analysis and failure possibility assessment of multilayer physically vapour deposited coatings, Thin Solid Films 207(1) (1992) 117-125.
[52] A.A. Voevodin, J.M. Schneider, C. Rebholz, A. Matthews, Multilayer composite ceramicmetal-DLC coatings for sliding wear applications, Tribology International 29(7) (1996) 559-570.
[53] M. Stüber, S. Ulrich, H. Leiste, A. Kratzsch, H. Holleck, Graded layer design for stress-reduced and strongly adherent superhard amorphous carbon films, Surface and Coatings Technology 116-119 (1999) 591-598.
[54] B. Oral, K.H. Ernst, C.J. Schmutz, Adhesion and structural changes of multi-layered and multi-doped a-C:H films during annealing, Diamond and Related Materials 5(9) (1996) 932-937.
[55] W. Tillmann, N.F.L. Dias, D. Stangier, Tribo-mechanical properties of CrC/aC thin films sequentially deposited by HiPIMS and mfMS, Surface and Coatings Technology 335 (2018) 173-180.
[56] G. Gassner, P. Mayrhofer, C. Mitterer, J. Kiefer, Structure–property relations in Cr–C/aC: H coatings deposited by reactive magnetron sputtering, Surface and Coatings Technology 200(1-4) (2005) 1147-1150.
[57] W. Dai, G. Wu, A. Wang, Structure and elastic recovery of Cr–C: H films deposited by a reactive magnetron sputtering technique, Applied Surface Science 257(1) (2010) 244-248.
[58] J. Esteve, J. Romero, M. Gómez, A. Lousa, Cathodic chromium carbide coatings for molding die applications, Surface and Coatings Technology 188 (2004) 506-510.
[59] K. Gilkes, H. Sands, D. Batchelder, W. Milne, J. Robertson, Direct observation of sp3 bonding in tetrahedral amorphous carbon UV Raman spectroscopy, Journal of non-crystalline solids 227 (1998) 612-616.
[60] B. Schultrich, Tetrahedrally Bonded Amorphous Carbon Films I: Basics, Structure and Preparation, Springer2018.
[61] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of materials research 19(1) (2004) 3-20.
[62] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of materials research 7(6) (1992) 1564-1583.
[63] M. Antonov, I. Hussainova, Thermophysical properties and thermal shock resistance of chromium carbide based cermets, Proc. Estonian Acad. Sci. Eng 12(4) (2006) 358-367.
[64] G. Janssen, M. Abdalla, F. Van Keulen, B. Pujada, B. Van Venrooy, Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers, Thin Solid Films 517(6) (2009) 1858-1867.
[65] C. ASTM, 1624: Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing, ASTM International (2005).
[66] M. Odén, C. Ericsson, G. Håkansson, H. Ljungcrantz, Microstructure and mechanical behavior of arc-evaporated Cr–N coatings, Surface and Coatings Technology 114(1) (1999) 39-51.
[67] M. Jelinek, T. Kocourek, J. Zemek, J. Mikšovský, Š. Kubinová, J. Remsa, J. Kopeček, K. Jurek, Chromium-doped DLC for implants prepared by laser-magnetron deposition, Materials Science and Engineering: C 46 (2015) 381-386.
[68] E. Bouzy, G. Le Caër, E. Bauer-Grosse, New metastable carbides produced by crystallization of amorphous Cr–C alloys, Rapidly Quenched Materials, Elsevier1991, pp. 640-643.
[69] 汪建民, 材料分析, 中國材料科學學會發行1998.
[70] K. Al Mahmud, M.A. Kalam, H.H. Masjuki, H. Mobarak, N. Zulkifli, An updated overview of diamond-like carbon coating in tribology, Critical reviews in solid state and materials sciences 40(2) (2015) 90-118.
[71] G. Guisbiers, E. Herth, L. Buchaillot, T. Pardoen, Fracture toughness, hardness, and Young’s modulus of tantalum nanocrystalline films, Applied Physics Letters 97(14) (2010) 143115.

QR CODE