簡易檢索 / 詳目顯示

研究生: 黃子浩
Tzu-Hao Huang
論文名稱: 以擺線工法切削Ti-10V-2Fe-3Al之分析研究
Study on Trochoidal Milling of Ti-10V-2Fe-3Al Alloy
指導教授: 鍾俊輝
Chun-Hui Chung
口試委員: 修芳仲
Fang-Jung Shiou
郭俊良
Chun-Liang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 93
中文關鍵詞: 鈦合金擺線工法材料移除率刀具磨耗表面粗糙度
外文關鍵詞: Titanium alloy, Trochoidal milling, Material removal rate, Tool wear, Surface roughness
相關次數: 點閱:414下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著時代的進步,航空產業發達,航太製造的重要性也隨之提升,鈦合金因具有高的強度、高的耐熱性及良好的耐蝕性等特點,被廣泛運用在航太產業,但也因其特性導致加工不易,進而使加工成本高昂,因此如何透過提升加工技術,降低加工成本,更是現今航太製造產業所追逐的目標。本實驗主要探討使用擺線工法切削Ti-10V-2Fe-3Al之切削性質分析,並使用田口實驗方法設計實驗參數,探討各切削特性影響因子並分析其影響原因,實驗因子分別為切削速度20、40、60m/min,每齒進給量0.045、0.060、0.075mm/tooth,擺線步距0.9、1.2、1.5mm,擺線寬度4、8、12mm。實驗結果顯示,切削速度越快,擺線寬度越小,每齒進給量及擺線步距越大,能夠獲得越佳的材料移除率。刀具磨耗的部分將使用刀復磨耗量與切削體積比值做為結果分析,其結果顯示,切削速度越慢,擺線寬度越大以及適當的每齒進給和擺線步距,能夠獲得較佳之刀具磨耗,並發現切削速度越快,越容易造成缺口磨耗,切削速度越慢,越容易發生黏著磨耗;而從切削模擬發現,擺線寬度越大能有越小的刀具與工件接觸角度。表面粗糙度結果顯示,擺線寬度與擺線步距越大,每齒進給越小及適當的切削速度,能夠獲得較佳之表面粗糙度。最後,比較擺線工法與直線側銑法之切削性能,發現擺線工法比起直線側銑法能擁有更低的刀具磨耗表現。


With the progress of the times, aerospace industry is developed, and the importance of aerospace manufacturing has increased. Titanium alloys are widely used in the aerospace industry due to their high strength, high heat resistance, and good corrosion resistance. It is also difficult to process because of its characteristics, which in turn leads to high processing costs. Therefore, how to improve processing technology and reduce processing costs is the goal pursued by the current aerospace manufacturing industry.This experiment mainly discusses the machinability of the Ti-10V-2Fe-3Al by using trochoidal milling, and uses Taguchi experimental method to design the experimental parameters, and discusses the influence factors of the cutting characteristics and analyzes the influence factors. The experimental factors are cutting speed 20, 40, 60m/min, feed per tooth 0.045, 0.060, 0.075mm/tooth, trochoidal steps 0.9, 1.2, 1.5mm, trochoidal width 4, 8, 12mm. The experimental results show that the higher cutting speed, the smaller trochoidal width, the larger of feed per tooth and trochoidal steps can get the better the material remove rate. Tool wear part will use tool wear and cutting volume ratio as the result of the analysis. The results show that the slower cutting speed, the larger trochoidal width, and the proper per-tooth feed and trochoidal steps can get better result. As Tool wear result picture found that the faster cutting speed more likely to cause notch wear, the slower cutting speed more prone to cause adhesive wear. From the cutting simulation found that the larger trochoidal width can get the smaller contact angle between tool and workpiece.The surface roughness results show that the larger trochoidal width and trochoidal steps, the smaller feed per tooth and proper cutting speed can get the better surface roughness. At last, comparing the cutting performance of trochoidal and side milling methods, it was found that trochoidal method can have lower tool wear than side milling method.

摘要 I Abstract II 致謝 III 目錄 IV 圖索引 VI 表索引 VIII 第1章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 2 1.3 論文架構 2 第2章 文獻回顧 3 2.1 航太材料簡介 3 2.2 鈦合金 3 2.2.1 鈦合金基本性質 3 2.2.2 鈦合金分類 4 2.3 擺線工法 5 2.4 刀具磨耗 8 2.5 表面粗糙度 12 第3章 實驗規劃與設備介紹 14 3.1 實驗目的與規劃 14 3.1.1 切削參數及刀路規劃 17 3.2 實驗設備介紹 20 3.2.1 切削設備 20 3.2.2 切削刀具 21 3.2.3 實驗材料 22 3.3 量測方法 24 3.3.1 刀具磨耗(Tool Wear) 24 3.3.2 材料移除率(MRR) 25 3.3.3 表面粗糙度(Surface Roughness) 25 第4章 實驗結果與討論 27 4.1 材料移除率(MRR) 27 4.1.1 材料移除率結果討論 30 4.2 刀具磨耗(Tool Wear) 32 4.2.1 刀具磨耗結果討論 43 4.3 表面粗糙度(Surface Roughness) 49 4.3.1 表面粗糙度結果與討論 53 第5章 擺線工法與側銑法之討論比較 55 第6章 結論 59 6.1 結論 59 6.2 未來展望 59 參考文獻 60 附錄 A 刀具磨耗值數據 63 附錄 B 表面粗糙度數據 72

[1] 洪胤庭,純鈦及鈦合金特性及製程介紹,中工高雄會刊,台灣,2013。
[2] Mouritz, A. P., 2012, “Introduction to aerospace materials,” Elsevier, Germany.
[3] Davim, J.P., 2014, “Machining of titanium alloys,” Springer, Berlin, Heidelberg.
[4] 廖鈴吉、任景剛、楊金鋒,擺線銑加工技術及其在航空發動機加工中的應用,航空製造技術,47-50頁,西安,中國,2015。
[5] Polishetty, A., Goldberg, M., Littlefair, G., Puttaraju, M., Patil, P. and Kalra, A., 2014, “A Preliminary Assessment of Machinability of Titanium Alloy Ti 6AL 4 V During thin Wall Machining Using Trochoidal Milling,” Procedia Engineering, 97, pp. 357-364.
[6] 陳晉昇,以田口法運用於SCM415材料擺線銑削加工參數優化探討,碩士論文,龍華科技大學工程技術研究所,台灣,2014。
[7] Yan, R., Li, H., Peng, F., Tang, X., Xu, J. and Zeng, H., 2017, “Stability Prediction and Step Optimization of Trochoidal Milling,” Journal of Manufacturing Science and Engineering, 139(9), pp.091006.
[8] Uhlmann, E., Fürstmann, P., Rosenau, B., Gebhard, S., Gerstenberger, R. and Müller, G., 2013, “The potential of reducing the energy consumption for machining TiAl6V4 by using innovative metal cutting processes,” in 11th Global Conference on Sustainable Manufacturing, G. Seliger, ed., Universitätsverlag, Berlin, pp.646-651.
[9] Shixiong, W., Wei, M., Bin, L., Chengyong, W., 2016, “Trochoidal machining for the high-speed milling of pockets,” Journal of Materials Processing Technology, 233, pp. 29-43.
[10] ISO 8688-2:1989, Tool life testing in milling. Part 2-End milling, International Standard.
[11] Standard, I.S.O., 1986, “Tool Life Testing with Single-Point Turning Tools.” ISO/DIS, 8688.
[12] Debnath, S., Reddy, M. M. and Yi, Q. S., 2016, “Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method.” Measurement, vol.78, pp. 111-119.
[13] Dhar, N. R., Kamruzzaman, M. and Ahmed, M., 2006, “Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel,” Journal of materials processing technology, 172(2), pp.299-304.
[14] Koseki, S., Inoue, K., Sekiya, K., Morito, S., Ohba, T., and Usuki, H., 2017, “Wear mechanisms of PVD-coated cutting tools during continuous turning of Ti-6Al-4V alloy,” Precision Engineering, 47, pp.434-444.
[15] Liang, X., and Liu, Z., 2018, “Tool wear behaviors and corresponding machined surface topography during high-speed machining of Ti-6Al-4V with fine grain tools,” Tribology International, 121, pp.321-332.
[16] Machai, C. and Biermann, D., 2011, “Machining of β-titanium-alloy Ti–10V–2Fe–3Al under cryogenic conditions: Cooling with carbon dioxide snow,” Journal of Materials Processing Technology, vol. 211, pp. 1175-1183.
[17] Sun, J. and Guo, Y. B., 2009, “A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V,” Journal of Materials Processing Technology, vol. 209, pp. 4036-4042.
[18] Andriya, N., Rao, P. V. and Ghosh, S., 2012, “Dry machining of Ti-6Al-4V using PVD coated TiAlN tools.” In Proceedings of the World Congress on Engineering, WCE.
[19] Houchuan, Y., Zhitong, C. and ZiTong, Z., 2015, “Influence of cutting speed and tool wear on the surface integrity of the titanium alloy Ti-1023 during milling,” International Journal of Advanced Manufacturing Technology, vol. 78, pp. 1113-1126.
[20] Yao, C. F., Tan, L., Ren, J. X., Lin, Q. and Liang, Y. S., 2014, “Surface integrity and fatigue behavior for high-speed milling Ti–10V–2Fe–3Al titanium alloy,” Journal of Failure Analysis and Prevention, vol. 14, pp. 102-112.
[21] 許家和,使用鍍層碳化鎢刀具切削Ti-6Al-4V和Ti-10V-2Fe-3Al鈦合金之切削性質研究,碩士論文,國立臺灣科技大學機械工程系,台北,台灣,,2017。

QR CODE