簡易檢索 / 詳目顯示

研究生: 陳瑞霖
Jui-Ling Chen
論文名稱: 內藏式永磁同步電動機之轉軸角度估測器及預測型控制器的研製
Design and Implementation of Rotor Angle Estimator and Predictive Controller for Interior Permanent Magnet Synchronous Motors
指導教授: 劉添華
Tian-Hua Liu
口試委員: 許源浴
none
陽毅平
none
廖聰明
none
林法正
none
徐國鎧
none
楊勝明
none
羅有綱
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 154
中文關鍵詞: 內藏式永磁同步電動機轉軸角度估測高頻信號注入法預測型控制器數位信號處理器
外文關鍵詞: IPMSM, rotor position estimator, high frequency injection method, predictive controller, digital signal processor
相關次數: 點閱:446下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出內藏式永磁同步電動機驅動系統的轉軸角度估測方法及預測型控制器的設計與製作。文中,提出兩種轉軸角度估測方法,方法一利用適當持續激勵的d軸電流命令,以量測電流斜率,達成轉軸角度估測。適用於靜止狀態及低速,再搭配磁通估測,可擴展至高速。配合所提線上參數估測器,可降低參數變動所引起的角度估測誤差。方法二利用高頻電壓信號注入電動機的d軸後,藉由高頻d軸及q軸電流信號進行同步取樣,再補償互感及自感的影響,可有效地提高轉軸角度估測的精度。
此外,本文所提預測型控制器設計方法,具有甚佳的暫態響應、良好的加載響應及追蹤響應,適合用於無轉軸角度偵測元件的驅動系統。配合適應性補償法則後,可降低參數變動及外來干擾對控制性能的影響。與比例-積分控制器相較,本文所提方法具有系統化設計的特色。
本文使用數位信號處理器TMS320F2812作為控制核心,以實現轉軸角度估測及控制法則。實驗結果與理論分析相當吻合,說明本文所提相關方法的正確性及可行性。


This dissertation proposes rotor position estimators and predictive controllers for interior permanent magnet synchronous motor (IPMSM) drive systems. Two rotor position estimating methods are investigated. Method 1 uses a persistently exciting d-axis current command to detect the current slope and then to obtain the estimated rotor position. This method can be applied for standstill condition and low speed operating range. In addition, by using the rotor flux estimating method, method 1 can be extended to a middle- and high-speed operating range. By using the proposed parameter estimator, the sensitivity problem can be obviously improved. Method 2 uses the high-frequency d-axis voltage injection signal to detect the related high-frequency d-axis current and q-axis current. After that, by suitably compensating the influence of the mutual-inductance and self-inductance, the accuracy of the estimated rotor position can be effectively improved.
Moreover, this dissertation proposes predictive controllers to improve transient responses, external load disturbance responses, and tracking responses in sensorless drive system. In addition, by using the adaptive law, the external disturbance could be compensated. The proposed methods have systematic design process than the PI controller.
A digital signal processor, TMS320F2812, is used as a control kernel to execute the rotor position estimation and control algorithms. Experimental results can validate the theoretical analysis to show the correctness and feasibility of the proposed methods.

中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 X 符號索引 XI 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 4 1.3 目的與貢獻 7 1.4 大綱 11 第二章 內藏式永磁式同步電動機 12 2.1 簡介 12 2.2 結構與特性 12 2.3 數學模式 16 2.4 高頻時電動機簡化模式 22 2.5 參數鑑定 24 2.5.1 低頻時參數鑑定方法 24 2.5.2 高頻時參數鑑定方法 27 第三章 轉軸角/速度估測方法 29 3.1 簡介 29 3.2 凸極效應反電勢及磁通並用轉軸角度估測法 32 3.2.1 基本原理 32 3.2.2 估測器設計 38 3.2.3 參數估測 44 3.3 高頻信號注入的轉軸角度估測 49 3.3.1基本原理 49 3.3.2角度估測補償 53 3.3.3估測器設計 56 3.3.3.1高頻電壓注入 56 3.3.3.2高頻電流信號擷取 56 3.3.3.3高頻電流同步除法處理 58 3.4 轉軸速度估測 59 第四章 控制器設計 62 4.1 簡介 62 4.2 預測型控制器的設計 64 4.2.1基本原理 64 4.2.2預測型電流控制器設計 66 4.2.3預測型速度控制器設計 69 4.2.4預測型角度控制器設計 76 第五章 系統研製 79 5.1 簡介 79 5.2 硬體電路製作 84 5.2.1三相變頻器電路 84 5.2.2偵測電路 85 5.2.2.1電壓偵測電路 85 5.2.2.2電流偵測電路 86 5.2.2.3類比/數位轉換電路 87 5.2.2.4過電流保護電路 88 5.2.3數位信號處理器 89 5.3 軟體程式設計 92 5.3.1簡介 92 5.3.2中斷服務程式 93 第六章 實測 97 6.1 簡介 97 6.2 實測結果 100 第七章 結論與建議 137 參考文獻- 138 作者簡介 153

[1] S. S. Williamson, A. Emadi, and K. Rajashekara, “Comprehensive efficiency modeling of electric traction motor drives for hybrid electric vehicle propulsion applications,” IEEE Trans. Veh. Tech., vol. 56, no. 4, pp. 1561-1572, July 2007.
[2] I. Boldea, “Control issues in adjustable speed drives,” IEEE Ind. Electron. Mag., pp. 32-50, Nov./Dec. 2010.
[3] K. Lu, P. O. Rasmussen, S. J. Watkins, and F. Blaabjerg, “A new low-cost hybrid switched reluctance motor for adjustable-speed pump applications,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 314-321, Jan./Feb. 2011.
[4] J. Wang, D. Howe, and Z. Lin, “Design optimization of short-stroke single-phase tubular permanent-magnet motor for refrigeration applications,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 327-334, Jan. 2010.
[5] C. S. Jin, D. S. Jung, K. C. Kim, Y. D. Chun, H. W. Lee, and J. Lee, ”A study on improvement magnetic torque characteristics of IPMSM for direct drive washing machine,” IEEE Trans. Magn., vol. 45, no. 6, pp. 2811-2814, June 2009.
[6] R. Hall and W. J. Konstanty, “Commutation of DC motors,” IEEE Ind. Appl. Mag., pp. 56-62, Sep. 2008.
[7] T. Song, A. Ninomiya, and T. Ishigohka, “Experimental study on induction motor with superconducting secondary conductors,” IEEE Trans. AS, vol. 17, no. 2, pp. 1611-1614, June 2007.
[8] B. Karanayi, M. Fazlur, and C. Grantham, “Online stator and rotor resistance estimation scheme using artificial neural networks for vector controlled speed sensorless induction motor drive,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 167-176, Feb. 2007.
[9] J. Kolehmainen, “Synchronous reluctance motor with form blocked rotor,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 450-452, June 2010.
[10] A. Kumar and V. T. Ranganathan, “Hybrid LCI VSI power circuit—a universal high-power converter solution for wound field synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4057-4068, Sep. 2011.
[11] H. J. Kim, D. H. Kim, C. S. Koh, and P. S. Shin, “Application of polar anisotropic NdFeB ring-type permanent magnet to brushless DC motor,” IEEE Trans. Magn., vol. 43, no. 6, pp. 2522-2524, June 2007.
[12] D. G. Dorrell, M.F. Hsieh, M. Popescu, L. Evans, D. A. Staton, and V. Grout, “A review of the design issues and techniques for radial-flux brushless surface and internal rare-earth permanent-magnet motors,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 3741-3757, Sep. 2011.
[13] T. D. Nguyen, K. J. Tesng, S. Zhang, and H. T. Nguyen, “A novel axial flux permanent-magnet machine for flywheel energy storage system design and analysis,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 3784-3794, Sep. 2011.
[14] M. F. Hsieh, Y. C. Hsu, and D. G. Dorrell, “Design of large-power surface-mounted permanent-magnet motors using post assembly magnetization,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3376-3384, Oct. 2010.
[15] P. M. Lindh, H. K. Jussila, M. Niemela, A. Parviainen, and J. Pyrhonen, “Comparison of concentrated winding permanent magnet motors with embedded and surface-mounted rotor magnets,” IEEE Trans. Magn., vol. 45, no. 5, pp. 2085-2089, May 2009.
[16] X. Jannot, J. C. Vannier, C. Marchand, M. Gabsi, J. Saint-Michel, and D. Sadarnac, “Multiphysic modeling of a high-speed interior permanent-magnet synchronous machine for a multi objective optimal design,” IEEE Trans. Energy Convers., vol. 26, no. 2, pp. 457-467, June 2011.
[17] P. P. Acarnley and J. F. Watson, “Review of position-sensorless operation of brushless permanent-magnet machine,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp.352-362, Apr. 2006.
[18] A. V. Sant, K. R. Rajagopal, and N. K. Sheth, “Permanent magnet synchronous motor drive using hybrid PI speed controller with inherent and non inherent switching functions,” IEEE Trans. Magn., vol. 47, no. 10, pp. 4088-4091, Oct. 2011.
[19] E. B. Kosmatopoulos, “Adaptive control design based on adaptive optimization principles,” IEEE Trans. Autom. Control, vol. 53, no. 11, pp. 2680-2685, Dec. 2008.
[20] J. L. Shi, T. H. Liu, and S. H. Yang, “Nonlinear-controller design for an interior-permanent-magnet synchronous motor including field-weakening operation,” IET Electr. Power Appl., vol. 1, no. 1, pp. 119-126, Jan. 2007.
[21] P. Cortes, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J. R.odriguez, “Predictive control in power electronics and drives,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4312-4324, Dec. 2008.
[22] L. Parsa and L. Hao, “Interior permanent magnet motors with reduced torque pulsation,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 602-609, Feb. 2008.
[23] B. Stumberger, G. Stumber, M. Hadziselimovic, T. Marcic, P. Virtic, M. Trlep, and V. Gorican, “Design and finite-element analysis of interior permanent magnet synchronous motor with flux barriers,” IEEE Trans. Magn., vol. 44, no. 11, pp. 4389-4392, Nov. 2008.
[24] N. Bianchi, S. Bolognani, and P. Frare, “Design criteria for high-efficiency SPM synchronous motors,” IEEE Trans. Energy Convers., vol. 21, no. 2, pp. 396-404, June 2006.
[25] R. Islam, I. Husain, A. Fardoun, and K. Mclaughlin, “Permanent-magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 152-160, Jan./Feb. 2009.
[26] H. S. Chen, D. G. Dorrel, and M. C. Tsai, “Design and operation of interior permanent-magnet motors with two axial segments and high rotor saliency,” IEEE Trans. Magn., vol. 46, no. 9, pp. 3664-3675, Sep. 2010.
[27] K. Y. Hwang, J. H. Jo, and B. I. Kwon, “A study on optimal pole design of spoke-type IPMSM with concentrated winding for reducing the torque ripple by experiment design method,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4712-4715, Oct. 2009.
[28] K. C. Kim, D. H. Koo, J. P. Hong, and J. Lee, “A study on the characteristics due to pole-arc to pole-pict ration and saliency to improve torque performance of IPMSM,” IEEE Trans. Magn., vol. 43, no. 6, pp. 2516-2518, June 2007.
[29] P. Sergeant, F. D. Belie, and J. Melkebeek, “Effect of rotor geometry and magnetic saturation in sensorless control of PM synchronous machines,” IEEE Trans. Magn., vol. 45, no. 3, pp. 1756-1759, Mar. 2009.
[30] N. Bianchi and S. Bolognani, “Sensorless-oriented design of PM motor,” IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1249-1257, July/Aug. 2009.
[31] F. Zidani, D. Diallo, M. E. H. Benbouzid, and R. Nait-Said, “A fuzzy-based approach for the diagnosis of fault modes in a voltage-fed PWM inverter induction motor drive,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 586-593, Feb. 2008.
[32] J. H. Kim, S. K. Sul, and P.N. Enjeti, “A carrier-based PWM method with optimal switching sequence for a multilevel four-leg voltage-source inverter,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp. 1239-1248, July/Aug. 2008.
[33] J. Ewanchuk, J. Salmon, and A. M. Knight, “Performance of a high-speed motor drive system using a novel multilevel inverter topology,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1706-1714, Sep./Oct. 2009.
[34] Z. Pan and R. B. Bkayrat, “Modular Motor/Converter System Topology With Redundancy for High-Speed High-Power Motor Applications,” IEEE Trans. Ind. Electron., vol. 25, no. 2, pp. 408-416, Feb. 2010.
[35] J. Shukla and B.G. Fernandes, “Three-phase soft-switched PWM inverter for motor drive application,” IET Electr. Power Appl., vol. 1, no. 1, pp. 93-104, 2007.
[36] J. Hobraiche, J. P. Vilain, P. Macret, and N. Patin, “A new PWM strategy to reduce the inverter input current ripples,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 172-180, Jan. 2009.
[37] K. Sun, Q. Wei, L. Huang, and K. Matsuse, “An over modulation method for pwm-inverter-fed IPMSM drive with single current sensor,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3395-3404, Oct. 2010.
[38] S. A. Saleh and M.A. Rahman, “Development and testing of a new controlled wavelet-modulated inverter for IPM motor drives,” IEEE Trans. Ind. Appl., vol. 46, no. 4, pp. 1706-1714, July/Aug. 2010.
[39] S. Mekhilef and M. N. A. Kadir, “Novel vector control method for three-stage hybrid cascaded multilevel inverter,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1339-1349, Apr. 2011.
[40] Z. Shu, J. Tang, Y. Guo, and J. Lian, “An efficient SVPWM algorithm with low computational overhead for three-phase inverters,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1797-1805, Sep. 2007.
[41] M. Pacas, “Sensorless drives in industrial applications,” IEEE Ind. Electron. Mag., pp. 16-23, June 2011.
[42] H. Hasegawa and K. Matsui, “Position sensorless control for interior permanent magnet synchronous motor using adaptive flux observer with inductance identification,” IET Electr. Power Appl., vol. 3, no. 3. pp. 209-217, 2009.
[43] M. Hasegawa, S. Yoshioka, and K. Matsui, “Position sensorless control of interior permanent magnet synchronous motors using unknown input observer for high-speed drives,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 938-946, May/June 2009.
[44] Z. Xu and M. F. Rahman, “An adaptive sliding stator flux observer for a direct-toque-controlled IPM synchronous motor drive,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2398-2406, Oct. 2007.
[45] I. Boldea, M. C. Paicu, G. D. Andreescu, and F. Blaaberg, “Active flux DTFC-SVM sensorless control of IPMSM,” IEEE Trans. Energy Convers., vol. 24, no. 2, pp. 314-322, June 2009.
[46] M. Matsushita, H. Kameyama, Y. Ikeboh, and S. Morimoto, “Sine-wave drive for pm motor controlling phase difference between voltage and current by detecting inverter bus current,” IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1294-1300, July/Aug. 2009.
[47] Z. Chen, M. Tomita, S. Doki, and S. Okuma, “An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Electron., vol. 50, no. 2, pp. 288-294, Apr. 2003.
[48] C. Wang and L. Xu, “A novel approach for sensorless control of PM machine down to zero speed without signal injection or special PWM technique,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1601-1607, Nov. 2004.
[49] M. Boussak, “Implementation and experimental investigation of sensorless speed control with initial rotor position estimation for interior permanent magnet synchronous motor drive,” IEEE Trans. Power Electron., vol. 20, no. 6, pp. 1413-1422, Nov. 2005.
[50] J. L. Shi, T. H. Liu, and Y. C. Chang, “Position control of an interior permanent-magnet synchronous motor without using a shaft position sensor,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1989-1999, Aug. 2007.
[51] M. J. Corley and R. D. Lorenz, “Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp.784-789, July/Aug. 1998.
[52] M. Tursini, R. Petrella, and F. Parasiliti, “Initial rotor position estimation method for PM motors,” IEEE Trans. Ind. Appl., vol. 39, no. 6, pp. 1630-1640, Nov./Dec. 2003.
[53] Y. S. Jeong, R. D. Lorenz, T. M. Jahns, and S. K. Sul, “Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods,” IEEE Trans. Ind. Appl., vol. 41, no. 1, pp. 38-44, Jan./Feb. 2005.
[54] D. Raca, M. C. Harke, and R. D. Lorenz, “Robust magnet polarity estimation for initialization of PM synchronous machine with near-zero saliency,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp. 1199-1209, July/Aug. 2008.
[55] B. K. Bose, Modern Power Electronics and AC Drives, Prentice Hall PTR, New Jersey, 2002.
[56] S. Chi, Z. Zhang, and L. Xu, “Sliding-mode sensorless control of direct-drive PM synchronous motors for washing machine applications,” IEEE Trans. Ind. Appl., vol. 45, no. 2, pp. 582-590, Mar./Apr. 2009.
[57] M. N. Uddin and M. M. I. Chy, “A novel fuzzy-logic-controller-based torque and flux controls of IPM synchronous motor,” IEEE Trans. Ind. Appl., vol. 46, no. 3, pp. 1220-1229, May/June 2010.
[58] G. Foo and M. F. Rahman, “Direct torque and flux control of an IPM synchronous motor drive using a back stepping approach,” IET Electr. Power Appl., vol. 3, no. 5, pp. 413-421, 2009.
[59] S. Bolognani, S. Bolognani, L. Peretti, and M. Zigliotto, “Design and implementation of model predictive control for electric motor drives,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1925-1936, June 2009.
[60] J. L. Shi, T. H. Liu, and Y. C. Chang, “Adaptive controller design for a sensorless IPMSM drive system with a maximum torque control,” IET Electr. Power Appl., vol. 153, no. 6, pp. 823-833, 2006.
[61] J. P. John, S. S. Kumar, and B. Jaya, “Space vector modulation based field oriented control scheme for brushless dc motors,” IEEE ICETECT-2011, pp. 346-351, 2011.
[62] J. I. Ha, “Voltage injection method for three-phase current reconstruction in pwm inverters using a single sensor,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 767-775, Mar. 2009.
[63] Q. Gao, G. M. Asher, M. Summer, and P. Makys, “Position estimation of AC machines over a wide frequency range based on space vector PWM excitation,” IEEE Trans. Ind. Appl., vol. 43, no. 4, pp. 1001-1011, July/Aug. 2007.
[64] J. Holtz and J. Juliet, “Sensorless acquisition of the rotor position angle of induction motors with arbitrary stator windings,” IEEE Trans. Ind. Appl., vol. 41, no. 6, pp. 1675-1682, Nov./Dec. 2005.
[65] G. Foo, S. Sayeef, and M. F. Rahman, “Low-speed and standstill operation of a sensorless direct torque and flux controlled IPM synchronous motor drive,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 25-33, Mar. 2010.
[66] G. Foo and M. F. Rahman, “Sensorless direct torque and flux-controlled IPM synchronous motor drive at very low speed without signal injection,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 395-403, Jan. 2010.
[67] F. Briz and M. W. Degner, “Rotor position estimation,” IEEE Ind. Electron. Mag., pp. 24-36, June 2011.
[68] D. Raca, P. Garcia, D. D. Reigosa, F. Briz, and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machine at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46 no. 1, pp. 167-178, Jan./Feb. 2010.
[69] J. Hu, J. Liu, and L. Xu, “Eddy current effects on rotor position estimation and magnetic pole identification of PMSM at zero and low speeds,” IEEE Trans. Power Electron., vol. 23 , no. 5, pp. 2565-2575, Sep. 2008.
[70] Y. S. Jeong, R. D. Lorenz, T. M. Jahns, and S. K. Sul, “Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection method,” IEEE Trans. Ind. Appl., vol. 41, no. 1, pp.38-45, Jan./Feb. 2005.
[71] J. H. Jang, J. I. Ha, M. Ohta, K. Ide, and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, Nov./Dec. 2004.
[72] D. D. Reigosa, P. Garcia, F. Briz, D. Raca, and R. D. Lorenz, “Modeling and adaptive decoupling of high-frequency resistance and temperature effects in carrier-based sensorless control of PM synchronous machine,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 139-149, Jan./Feb. 2010.
[73] B. Stumberger, G. Stumberger, D. Dolinar, A. Hamler, and M. Trelp, “Evaluation of saturation and cross-magnetization effects in interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Appl., vol. 39, no. 5, pp. 1264-1271, Sep./Oct. 2003.
[74] H. W. D. Kock, M. J. Kamper, and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, Aug. 2009.
[75] Y. Li, Z. Q. Zhu, D. Howe, C. M. Bingham, and D. A. Stone, “Improved rotor-position estimation by signal injection in brushless AC motor, accounting for cross-coupling magnetic saturation,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1843-1850, Sep. 2009.
[76] A. Piippo, M. Hinkkanen, and J. Luomi, “Adaptation of motor parameter in sensorless PMSM drives,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 203-212, Sep. 2009.
[77] L. Liu and D. A. Cartes, “Synchronisation based adaptive parameter identification for permanent magnet synchronous motors,” IET Control Theory Appl., vol. 1, no. 4, pp. 1015-1022, 2007.
[78] T. Boileau, N. Leboeuf, B. Nahid-Mobarakeh, and F. Meibody-Tabar, “Online identification of PMSM parameters parameter identifiability and estimator comparative study,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1944-1957, July/Aug. 2011.
[79] Y. A. B. I. Mohamed and T. K. Lee, “Adaptive self-tuning MTPA vector controller for IPMSM drive system,” IEEE Trans. Energy Convers., vol. 21, no. 3, pp. 636-644, Sep. 2006.
[80] S. Bolognani, S. Bolognani, L. Peretti, and M. Zigliotto, “Design and implementation of model predictive control for electrical motor drives,” IEEE Ind. Electron., vol. 56, no. 6, pp. 1925-1936, June 2009.
[81] T. Geyer, G. Papafotiou, and M. Morari, “Model predictive direct torque control—part i: concept, algorithm, and analysis,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1894-1905, June 2009.
[82] G. Papafotiou, J. KLey, K. G. Papadopoulos, P. Bohren, and M. Morari, “Model predictive direct torque control—part ii: implementation and experimental evaluation,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1906-1915, June 2009.
[83] M. W. Naouar, A. A. Naassasni, E. Monmasson, and I. Slama-Belkhodja, “FPGA-based predictive current controller for synchronous machine speed drive,” IEEE Trans. Ind. Electron., vol. 23, no. 4, pp. 2115-2126, July 2008.
[84] Texas Instruments, TMS320F2812 Digital Signal Processor Data Manual, 2005.
[85] W. Li, A. Li, and H. Wang, “Anisotropic fracture behavior of sintered rare-earth permanent magnets,” IEEE Trans. Magn., vol. 41, no. 8, pp. 2339-2554, June 2007.
[86] M. Centner and U. Schafer, “Optimized design of high-speed induction motors in respect of the electrical steel grade,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 288-295, Jan. 2010.
[87] H. Akita, Y. Nakahara, N. Miyake, and T. Oikawa, “A new core,” IEEE Trans. Ind. Appl. Mag., pp. 38-43, Nov./Dec. 2005.
[88] M. J. Melfi, S. D. Rogers S. Evon, and B. Martin, “Permanent-magnet motor for energy saving in industrial application,” IEEE Trans. Ind. Appl., vol. 44, no. 5, pp. 1360-1366, Sep./Oct. 2008.
[89] M. S. Islam, R. Islam, and T. Sebastian, “Experimental verification of design techniques of permanent-magnet synchronous motors for low-torque-ripple applications,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 88-95, Nov./Dec. 2008.
[90] S. M. Hwang, H. J. Lee, T. S. Kim Y. H. Jung, and J. P. Hong, “The influence of electromagnetic force upon the noise of an IPM motor used in a compressor,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3494-3496, Oct. 2006.
[91] A. R. Tarip, C. E. Nino-Baron, and E. G. Strangas, “Overload considerations for design and operation of IPMSMs,” IEEE Trans. Energy Convers., vol. 25, no. 4, pp. 921-930, Dec. 2010.
[92] G. Pellegrino, A. A. Vagati, P. Gugliemi, and B. Boazzo, “Performance comparison between surface-mounted and interior PM motor drives for electric vehicle application,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 803-811, Jan. 2010.
[93] A. Consoli, G. Scarcella, G. Scelba, and A. Testa, “Steady-state and transient operation of IPMSMs under maximum-torque-per-ampere control,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 121-129, Jan./Feb. 2010.
[94] S. M. Sue and C. T. Pan, “Voltage-constraint-tracking-based field-weakening control of IPM synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 55, no. 1, pp. 340-347, Jan. 2008.
[95] P. C. Krause, Analysis of electric machinery, New York: McGraw-Hill, 1986.
[96] Y. Li, Z. Q. Zhu, D. Howe, and C. M. Bingham, “Modeling of cross-coupling magnetic saturation in signal-injection-based sensorless control of permanent-magnet brushless AC motor,” IEEE Trans. Magn., vol. 43, no. 6, pp. 2552-2554, June 2007.
[97] Y. S. Chen, Z. Q. Zhu, and D. Howe, “Calculation of d- and q-axis inductances of PM brushless ac machines accounting for skew,” IEEE Trans. Magn., vol. 41, no. 10, pp. 39040-3942, Oct. 2005.
[98] J. Nakatsugawa, Y. Notohara, D. Li, and Y. Iwaji, “Inductance Measurement Method for Permanent Magnet Synchronous Motor Using AC with DC Bias,” IEEE ICEM-2008, pp. 1-4, 2008.
[99] R. Dutta and M. F. Rahman, “A comparative analysis of two test methods of measuring d- and q-axes inductances of interior permanent-magnet machine,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3712-3718, Nov. 2006.
[100] K. Lu, M. Vetuschi, P. O. Rasmussen, and A. E. Ritchie, “Determination of high-frequency d- and q-axis inductances for surface-mounted permanent-magnet synchronous machines,” IEEE Trans. Instrum. Meas., vol. 59, no. 9, pp. 2376-2382, Sep. 2010.
[101] A. Boglietti, A. Cavagnino, and M. Lazzari, “Experimental high-frequency parameter identification of AC electrical motors,” IEEE Trans. Ind. Appl., vol. 43, no. 1, pp. 23-29, Jan./Feb. 2007.
[102] C. K. Lin, T. H. Liu, and C. H. Lo, “Sensorless interior permanent magnet synchronous motor drive system with a wide adjustable speed range,” IET Electr. Power Appl., vol. 3, no. 2, pp. 133-146, 2009.
[103] M. Hasegawa and K. Matsui, “Position sensorless control for interior permanent magnet synchronous motor using adaptive flux observer with inductance identification,” IET Electr. Power Appl., vol. 3, no. 3, pp. 209-217, 2009.
[104] G. Foo and M. F. Rahman, “Sensorless vector control of interior permanent magnet synchronous motor drives at very low speed without signal injection,” IET Electr. Power Appl., vol. 4, no. 3, pp. 131-139, 2010.
[105] S. Morimoto, M. Sanada, and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1241-1248, Sep./Oct. 2006.
[106] Y. Inoue, K. Yamada, S. Morimoto, and M. Sanada, “Effectiveness of voltage error compensation and parameter identification for model-based sensorless control of IPMSM,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 213-221, Jan./Feb. 2009.
[107] M. Hinkkanen, T. Tuovinen, L. Harnefors, and J. Luomi, “A combined position and stator-resistance observer for salient PMSM drives design and stability analysis,” IEEE Trans. Power Electron., vol. 27, no. 2, pp.601-609, Feb. 2012.
[108] H. Kim, J. Son, and J. Lee, “A high-speed sliding-mode observer for the sensorless speed control of a PMSM,” IEEE Trans. Ind. Electron., vol.58, no.9, pp. 4069-4077, Sep. 2011.
[109] D. Raca, P. Garcia, D. D. Reigosa, F. Briz, and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machine at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46 no. 1, pp. 167-178, Jan./Feb. 2010.
[110] J. Hu, J. Liu, and L. Xu, “Eddy current effects on rotor position estimation and magnetic pole identification of PMSM at zero and low speeds,” IEEE Trans. Power Electron., vol. 23 , no. 5, pp. 2565-2575, Sep. 2008.
[111] J. H. Jang, J. I. Ha, M. Ohta, K. Ide, and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, Nov./Dec. 2004.
[112] C. H. Choi and J. K. Sul, “Pulsating signal injection-based axis switching sensorless control of surface-mounted permanent-magnet motors for minimal zero-current clamping effect,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1741-1850, Nov./Dec. 2008.
[113] L. M. Gong and Z. Q. Zhu, “A novel method for compensating inverter nonlinearity effects in carrier signal injection-based sensorless control from positive-sequence carrier current distortion,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1283-1292, May/June 2011.
[114] D. D. Reigosa, F. Briz, P. Garcia, J. M. Guerrero, and M. W. Degner, “Modeling and adaptive decoupling of high-frequency resistance and temperature effects in carrier-based sensorless control of PM synchronous machine,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 139-149, Jan./Feb. 2010.
[115] Y. Li, Z. Q. Zhu, D. Howe, C. M. Bingham, and D. A. Stone, “Improveed rotor-position estimation by signal injection in brushless ac motor, accounting for cross-coupling magnetic saturation,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1843-1850, Sep. 2009.
[116] S. Shinnaka, “A new speed-varying ellipse voltage injection method for sensorless drive of permanent-magnet synchronous motor with pole saliency-new PLL method using high-frequency current component multiplied signal,” IEEE Trans. Ind. Appl., vol. 44, no. 3, pp. 777-788, May/June 2008.
[117] F. Cupertino, G. Pellegrino, P. Giangrande, and L. Salvatore, “Sensorless position control of permanent-magnet motors with pulsating current injection and compensation of motor end effects,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1371-1379, May/June 2011.
[118] S. Bolognani, S. Calligaro, R. Petrella, and M. Tursini, “Sensorless control of IPM motors in the low-speed range and at standstill by HF injection and DFT processing,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 96-104, Jan./Feb. 2011.
[119] Q. Wallmark and L. Harnefors, “Sensorless control of salient PMSM drives in the transition region,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1179-1187, Aug. 2006.
[120] J. Lee, J. Hong, K. Nam, R. Ortega, L, Praly, and A. Astolfi, “Sensorless control of surface-mount permanent-magnet synchronous motors based on a nonlinear observer,” IEEE Trans. Power Electron., vol. 25 , no. 2, pp. 290-297, Sep. 2008.
[121] H. A. Toliyat and S. Campbell, DSP-Based Electromechanical Motion Control, CRC PRESS, New York, 2004.
[122] J. Holtz and J. Quan, “Drift- and parameter-compensated flux estimator for persistent zero-stator-frequency operation of sensorless-controlled induction motors,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1052-1060, July/Aug. 2003.
[123] C. B. Rorabaugh, Digital Filter Designer’s Handbook, McGraw-Hill, New York, 1993.
[124] B. Karanayil, M. F. Rahman, and C. Granthem, “An implementation of a programmable cascaded low-pass filter for a rotor flux synthesizer for an induction motor drive,” IEEE Trans. Power Electron., vol. 19 , no. 2, pp. 257-263, Mar. 2004.
[125] A. Ghaderi and T. Hanamoto, “Wide-speed-range sensorless vector control of synchronous reluctance motors based on extended programmable cascaded low-pass filters,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2322-2333, June 2011.
[126] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, Apr. 2006.
[127] Y. Inoue, Y. Kawaguchi, S. Morimoto, and M. Sanada, “Performance Improvement of sensorless IPMSM drives in a low-speed region using online parameter identification,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 798-804, May/June 2011.
[128] Y. S. Kwon, J. H. Lee, S. H. Moon, B. K. Kwon, C. H. Choi, and J. K. Seok, “Standstill parameter identification of vector-controlled induction motors using the frequency characteristics of rotor bars,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1610-1618, Sep./Oct. 2009.
[129] M. N. Uddin and M. M. I. Chy, “Online parameter-estimation-based speed control of pm ac motor drive in flux-weakening region,” IEEE Trans. Ind. Appl., vol. 44, no. 5, pp. 1486-1494, Sep./Oct. 2008.
[130] K. Wang, H. Chiasson, and L. M. Tolbert, “A nonlinear least-squares approach for identification of the induction motor parameters,” IEEE Trans. Autom. Control, vol. 50, no. 10, pp. 1622-1628, Oct. 2005.
[131] Y. D. Yoon, S. K. Sul, S. Morimoto, and K. Ide, “High-bandwidth sensorless algorithm for ac machines based on square-wave-type voltage injection,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1361-1370, Sep./Oct. 2008.
[132] M. Mohseni and S. M. Islam, “A new vector-based hysteresis current control scheme for three-phase PWM voltage-source inverters,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2299-2309, Aug. 2010.
[133] B. C. Kuo and F. Golnaraghi, Automatic Control Systems, Wiley, 2009.
[134] R. Errouissi, M. Ouhrouche, and A. Benzaioua, “Robust nonlinear predictive controller for multivariable nonlinear systems with different relative degree,” IEEE ASME-2010, pp. 1231-1237, 2010.
[135] R. Errouissi, M. Ouhroche, and W. H. Chen “Robust nonlinear generalized predictive controller of a permanent magnet synchronous motor with an anti-windup compensator,” IEEE ISIE-2009, pp. 1-8, 2009.
[136] P. Cortes, M. P. Kazmierkowski, R. M. Knnel, D. E. Quevedo, and J. Rodriguez, “Predictive control in power electronics and drives,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4312-4324, Dec. 2008.
[137] P. Wipasuramonton, Z. Q. Zhu, and D. Howe, “Predictive current control with current-error correction for PM brushless AC drives,” IEEE Trans. Ind. Appl., vol. 42, no. 4, pp. 1071-1079, July/Aug. 2006.
[138] A. Merabet, H. Arioui, and M. Ouhrouche, “Cascaded predictive controller design for speed control and load torque rejection of induction motor,” IEEE ACC-2008, pp. 1139-1144, 2008.
[139] K. H. Kim, “Model reference adaptive control-based adaptive current control scheme of a PM synchronous motor with an improved servo performance,” IET Electr. Power Appl., vol. 3, no. 1, pp. 8-18, 2009.
[140] M. Preindl and E. Schaltz, “Load torque compensator for model predictive direct current control in high power PMSM drive systems,” IEEE ISIE-2010, pp. 1347-1352, 2010.
[141] S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez, “Model predictive control—a simple and powerful method to control power converters,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1826-1838, June 2009.
[142] P. Cortes, S. Kouro, B. L. Rocca, R. Vargas, J. Rodriguez, J. I. Leon, S. Vazquez, and L. G. Franquelo, “Guidelines for weighting factors design in model predictive control of power converters and drives,” IEEE ICIT-2009, pp. 1-7, 2009.
[143] R. Soeterboek, Predictive control a unified approach, Prentice Hall, New York, 1992.
[144] J. M. Maciejowski, Predictive Control with Constraints, Prentice Hall, New York, 2002.
[145] Texas Instruments, TMS320x281x Event Manager, 2004.
[146] Texas Instruments, TMS320x281x Analog to Digital Converter, 2005.
[147] Texas Instruments, TMS320C28x DSP CPU and Instruction Set Reference Guide, 2004.
[148] P. A. Egiguren, O. B. Caramazana, and J. A. C. Etxeberria, “Linear generalized predictive position control of induction motor drivers,” IEEE IECON-2011, pp. 1922-1927, 2011.

無法下載圖示 全文公開日期 2017/07/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE