簡易檢索 / 詳目顯示

研究生: 吳俊諭
Jyun-Yu Wu
論文名稱: 矽晶/鍺晶異質接合及晶片黏合技術之研究
Silicon/Germanium Heterojunction and Wafer Bonding Technology
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 陳良益
Liang-Yih Chen
周賢鎧
Shyan-Kay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 123
中文關鍵詞: 異質接合鈀奈米粒子
外文關鍵詞: Silicon, Germanium, heterojunction, Palladium nanoparticle
相關次數: 點閱:237下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文乃以發展高效率矽鍺複合晶片太陽能電池製作技術為主題,考量矽晶材料所無法吸收的紅外光波波段,在矽晶之背面串聯鍺晶來吸收此波段能量,最終模式希望製作成的矽晶/鍺晶之異質接合太陽電池,以求達成高效率化。
針對矽鍺複合晶片製作可能的異質接合程序,分別探討矽晶及鍺晶個別使用氫化非晶矽製作成雙面異質接合的品質。實驗結果顯示,以最適化本質非晶矽及摻雜p型n型非晶矽層(暗電導率分別為5.32 × 10-3 S/m及4.91 × 10-6 S/cm) 製作成pn異質接合的矽晶片及鍺晶片其有效載子生命週期分別為1030μs及232.1μs。
針對矽鍺晶片之間的黏合,使用鈀奈米粒子接合層再施以壓合。利用團聯式共聚物均勻塗佈於晶片表面並令其吸附含鈀溶液再經氬氣電漿處理後獲得粒徑約40~60奈米且均勻分散的鈀粒子層,經計算其粒子密度在1 × 1010 cm2(表面覆蓋率為17%)。在此條件下用以作為與另一片矽晶片壓合黏合後,測得黏合層單邊接觸電組約在10 Ω-cm2,此一較高的電阻可能與壓合過程中矽晶表面與鈀粒子之間另有氧化層的生成有關。


The aim of this study is to develop high efficiency silicon/germanium heterojunction solar cells. Considering silicon cells do not produce any current beyond 1100 nm, we serialized with germanium wafer to compensate the absorption of near-IR solar spectra.
First of all, double-sided heterojunction quality of silicon and germanium crystals were analyzed individually using hydrogenated amorphous silicon thin layers. By applying optimized amorphous silicon intrinsic and doped layers (with dark conductivity of 5.32 × 10-3 S/m for n-type and 4.91 × 10-6 S/cm for p-type), the effective carrier lifetimes for crystalline silicon and germanium were 1030 μs and 232.1 μs, respectively.
Secondly, palladium nanoparticle layer, prepared by a wet process together with an argon gas plasma treatment, was used as an adhesive layer to bond Si and Ge wafers. A typical palladium nanoparticle layer, with an average particle size of 40~60 nm and a surface coverage of about 17%, can successfully bond two wafers together but resulted in a contact resistance of 10 Ω-cm2, mostly plausibly due to the formation of surface an surface oxide layer between Si wafer and Pd particles.

目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖索引 VII 表索引 XII 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池之光電轉換原理 6 1.3 非晶矽薄膜的性質與成長機制 8 1.4 矽晶異質接合太陽能電池 11 1.5 鍺晶異質接合太陽能電池 16 1.6 多重接面太陽能電池 20 1.7 研究動機與目的 24 第二章 實驗方法與步驟 26 2.1 實驗藥品與氣體 26 2.2 實驗裝置 29 2.2-1 使用RF-PECVD系統成長本質層、p型及n型非晶矽薄膜 29 2.2-2 使用磁控濺鍍系統成長透明導電玻璃薄膜 32 2.2-3 高溫爐系統進行熱壓合製程 33 2.3 實驗程序 34 2.3-1 矽晶基材之清洗 34 2.3-2 鍺晶基材之清洗 36 2.3-3 玻璃基材的清洗 38 2.3-4 異質接合太陽電池之製作程序 39 2.3-5 矽鍺接面層之製作程序 42 2.4 分析儀器 44 2.4-1 橢圓偏光儀 (Ellipsometer) 44 2.4-2 載子生命量測儀(lifetime tester) 45 2.4-3 微波光電導衰減法少數載子生命週期測試儀 (μ-PCD) 49 2.4-4 霍爾量測儀 (Hall measurement) 51 2.4-5 傅立葉紅外線光譜儀(Fourier-Transform Infrared Spectrometer) 53 2.4-6 反射式高能電子繞射(reflection high energy electron diffraction) 57 2.4-7 原子力顯微鏡(Atomic Force Microscope) 59 2.4-8 X射線光電子能譜化學分析儀(X-ray photoelectron spectroscopy) 62 2.4-9 紫外光/可見光光譜儀 (UV/VIS) 63 2.4-10 太陽光模擬器(solar silulator) 66 第三章 結果與討論 69 3.1 氫化非晶矽(a-Si:H)薄膜製備 69 3.1.1 不同氫氣稀釋比成長沉積本質氫化非晶矽薄膜對異質接合的影響 70 3.1.2 不同基材溫度下沉積本質氫化非晶矽薄膜 77 3.1.3 n型非晶矽薄膜的成長 83 3.1.4 p型氫化非晶薄膜的成長 86 3.2矽鍺接合層之探討 88 3.2.1 改變旋轉塗佈轉速對鈀奈米粒子的影響 89 3.2.2 改變PS-b-P2VP濃度對鈀奈米粒子的影響 91 3.2.3 氬氣電漿表面處理對鈀奈米粒子的影響 95 3.3 異質接合太陽能電池製作 101 3.3.1 矽晶異質太陽能電池 103 3.3.2 鍺晶異質太陽能電池 106 第四章 結論 112 第五章 參考文獻 114

1. Annual Energy Outlook 2016 Early Release: Annotated Summary of Two Cases, May 17, 2016, U.S. Energy Information Administration.
2. PHOTOVOLT AICS REPORT, , 6 June 2016Fraunhofer Institute for Solar Energy Systems, ISE 、PSE AG Freiburg.
3. Chapin, D. M., Fuller, C. S., & Pearson, G. L. (1954). A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 25(5), 676-677.
4. Storr, W. (2013). Basic Electronics tutorial site. Website (http://www. electronics-tutorials. ws).
5. Kasap, S. O. (2006). Principles of electronic materials and devices (Vol. 2). New York: McGraw-Hill.
6. Stutzmann, M., Biegelsen, D. K., & Street, R. A. (1987). Detailed investigation of doping in hydrogenated amorphous silicon and germanium. Physical review B, 35(11), 5666.
7. Müllerová, J., Jurecka, J., & Šutta, P. (2005). Structural and optical studies of a-Si: H thin films: from amorphous to nanocrystalline silicon. Acta Phys. Slovaca, 55(3), 351-359.
8. Kim, J. C., & Schwartz, R. J. (1996). Parameter estimation and modeling of hydrogenated amorphous silicon. ECE Technical Reports, 89.
9. Shah, A. V., Schade, H., Vanecek, M., Meier, J., Vallat‐Sauvain, E., Wyrsch, N., ... & Bailat, J. (2004). Thin‐film silicon solar cell technology. Progress in photovoltaics: Research and applications, 12(2‐3), 113-142.
10. Matsuda, A. (1998). Plasma and surface reactions for obtaining low defect density amorphous silicon at high growth rates. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 16(1), 365-368.
11. Marra, D. C., Edelberg, E. A., Naone, R. L., & Aydil, E. S. (1998). Silicon hydride composition of plasma-deposited hydrogenated amorphous and nanocrystalline silicon films and surfaces. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 16(6), 3199-3210.
12. Fuhs, W., Niemann, K., & Stuke, J. (1974, May). Heterojunctions of amorphous silicon and silicon single crystals. In AIP Conference Proceedings (Vol. 20, No. 1, pp. 345-350). AIP.
13. Hamakawa, Y., Okamoto, H., & Okuda, K. (1985). U.S. Patent No. 4,496,788. Washington, DC: U.S. Patent and Trademark Office.
14. Dao, V. A., Kim, S., Lee, Y., Kim, S., Park, J., Ahn, S., & Yi, J. High-Efficiency Heterojunction with Intrinsic Thin-Layer Solar Cells: A Review. Current Photovoltaics Research, 1, 73-81.
15. Tanaka, M., Taguchi, M., Matsuyama, T., Sawada, T., Tsuda, S., Nakano, S., ... & Kuwano, Y. (1992). Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer). Japanese Journal of Applied Physics, 31(11R), 3518.
16. De Wolf, S., Descoeudres, A., Holman, Z. C., & Ballif, C. (2012). High-efficiency silicon heterojunction solar cells: A review. green, 2(1), 7-24.
17. Taguchi, M., Tsunomura, Y., Inoue, H., Taira, S., Nakashima, T., Baba, T., ... & Maruyama, E. (2009, September). High-efficiency HIT solar cell on thin (< 100 μm) silicon wafer. In Proceedings of the 24th European Photovoltaic Solar Energy Conference (pp. 1690-1693).
18. Research and Development of Silicon Solar Cells in SANYO, Sanyo Electric. Co., Ltd.2010
19. Mishima, T., Taguchi, M., Sakata, H., & Maruyama, E. (2011). Development status of high-efficiency HIT solar cells. Solar Energy Materials and Solar Cells, 95(1), 18-21.
20. Taguchi, M., Yano, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Nishiwaki, T., ... & Maruyama, E. (2014). 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE Journal of Photovoltaics, 4(1), 96-99.
21. Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., ... & Yamamoto, K. (2017). Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2, 17032.
22. Kaneko, T., & Kondo, M. (2013). Post-annealing Effects on Characteristics of Crystalline Germanium Solar Cells with the Double Heterostructure. Japanese Journal of Applied Physics, 52(4S), 04CR04.
23. Nakano, S., Takeuchi, Y., Kaneko, T., & Kondo, M. (2014). Evaluation of the junction interface of the crystalline germanium heterojunction solar cells. Japanese Journal of Applied Physics, 53(4S), 04ER12.
24. Hekmatshoar, B., Shahrjerdi, D., Hopstaken, M., Fogel, K., & Sadana, D. K. (2012). High-efficiency heterojunction solar cells on crystalline germanium substrates. Applied Physics Letters, 101(3), 032102.
25. Honsberg, C., & Bowden, S. (2013). Photovoltaic education network. Internet: http://pveducation. org.
26. Hecht, J. (2012). Photonic Frontiers: High-Efficiency Photovoltaics-Photovoltaics takes small steps on journey to greater efficiency. Laser Focus World, 48(12), 50.
27. Takamoto, T., Washio, H., & Juso, H. (2014, June). Application of InGaP/GaAs/InGaAs triple junction solar cells to space use and concentrator photovoltaic. In Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th(pp. 0001-0005). IEEE.
28. Tibbits, T. N., Beutel, P., Grave, M., Karcher, C., Oliva, E., Siefer, G., ... & Krause, R. (2014, September). New efficiency frontiers with wafer-bonded multi-junction solar cells. In Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (pp. 1-4).
29. Mathews, I., O'Mahony, D., Thomas, K., Pelucchi, E., Corbett, B., & Morrison, A. P. (2015). Adhesive bonding for mechanically stacked solar cells. Progress in Photovoltaics: Research and Applications, 23(9), 1080-1090.
30. Chiu, P. T., Law, D. C., Woo, R. L., Singer, S. B., Bhusari, D., Hong, W. D., ... & Karam, N. H. (2014). Direct semiconductor bonded 5J cell for space and terrestrial applications. IEEE Journal of Photovoltaics, 4(1), 493-497.
31. Yang, J., Peng, Z., Cheong, D., & Kleiman, R. (2014). Fabrication of high-efficiency III–V on silicon multijunction solar cells by direct metal interconnect. IEEE Journal of Photovoltaics, 4(4), 1149-1155.
32. Sheng, X., Bower, C. A., Bonafede, S., Wilson, J. W., Fisher, B., Meitl, M., ... & Corcoran, C. J. (2014). Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules. Nature materials, 13(6), 593.
33. http://www.solartr.org/SolarTR2_presentations%5CIvan%20Gordon.pdf
34. Mizuno, H., Makita, K., & Matsubara, K. (2012). Electrical and optical interconnection for mechanically stacked multi-junction solar cells mediated by metal nanoparticle arrays. Applied Physics Letters, 101(19), 191111.
35. Sinton, R., & Macdonald, D. (2006). WCT-120 Photoconductance Lifetime Tester. User Manual. Sinton Consulting Inc., Boulder USA.
36. Sinton, R. A., & Cuevas, A. (1996). Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data. Applied Physics Letters, 69(17), 2510-2512.
37. Macdonald, D., Sinton, R. A., & Cuevas, A. (2001). On the use of a bias-light correction for trapping effects in photoconductance-based lifetime measurements of silicon. Journal of Applied Physics, 89(5), 2772-2778.
38. Sze, S. M. (2008). Semiconductor devices: physics and technology. John Wiley & Sons.
39. van der Pauw, L. J. (1958). A method of measuring specific resistivity and Hall effect of discs of arbitrary shapes. Philips research reports, 13, 1-9.
40. Burrows, M. Z., Das, U. K., Opila, R. L., De Wolf, S., & Birkmire, R. W. (2008). Role of hydrogen bonding environment in a-Si: H films for c-Si surface passivation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 26(4), 683-687.
41. Matsuda, A., Takai, M., Nishimoto, T., & Kondo, M. (2003). Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate. Solar Energy Materials and Solar Cells, 78(1), 3-26.
42. Langford, A. A., Fleet, M. L., Nelson, B. P., Lanford, W. A., & Maley, N. (1992). Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon. Physical Review B, 45(23), 13367.
43. Taglauer, E., & Vickerman, J. C. (1997). Surface Analysis-The Principle Techniques.
44. Taguchi, M., Kawamoto, K., Tsuge, S., Baba, T., Sakata, H., Morizane, M., ... & Oota, O. (2000). HITTM cells—high-efficiency crystalline Si cells with novel structure. Progress in Photovoltaics, 8(5), 503-514.
45. Tsunomura, Y., Yoshimine, Y., Taguchi, M., Baba, T., Kinoshita, T., Kanno, H., ... & Tanaka, M. (2009). Twenty-two percent efficiency HIT solar cell. Solar Energy Materials and Solar Cells, 93(6), 670-673.
46. De Wolf, S., & Kondo, M. (2007). Abruptness of a-Si: H∕ c-Si interface revealed by carrier lifetime measurements. Applied Physics Letters, 90(4), 042111.
47. Platz, R., Wagner, S., Hof, C., Shah, A., Wieder, S., & Rech, B. (1998). Influence of excitation frequency, temperature, and hydrogen dilution on the stability of plasma enhanced chemical vapor deposited a-Si: H. Journal of Applied Physics, 84(7), 3949-3953.
48. Fujiwara, H., & Kondo, M. (2007). Impact of epitaxial growth at the heterointerface of a-Si: H∕ c-Si solar cells. Applied Physics Letters, 90(1), 013503.
49. Asano, Y., Baer, D. S., & Hanson, R. K. (1987). Substrate temperature dependence of SiH concentration in silane plasmas for amorphous silicon film deposition. Journal of non-crystalline solids, 94(1), 5-10.
50. Robertson, J., & Powell, M. J. (1999). Deposition, defect and weak bond formation processes in a-Si: H. Thin Solid Films, 337(1), 32-36.
51. Robertson, J. (2000). Growth mechanism of hydrogenated amorphous silicon. Journal of non-crystalline solids, 266, 79-83.
52. Matsuda, A. (1997). Recent understanding of the growth process of amorphous silicon from a silane glow-discharge plasma. Plasma Physics and Controlled Fusion, 39(5A), A431.
53. De Wolf, S., & Kondo, M. (2009). Nature of doped a-Si: H/c-Si interface recombination. Journal of Applied Physics, 105(10), 103707.
54. De Wolf, S., Olibet, S., & Ballif, C. (2008). Stretched-exponential a-Si: H∕ c-Si interface recombination decay. Applied Physics Letters, 93(3), 032101.
55. Fesquet, L., Olibet, S., Vallat-Sauvain, E., Shah, A., & Ballif, C. (2007). High quality surface passivation and heterojunction fabrication by VHF-PECVD deposition of amorphous silicon on crystalline Si: theory and experiments (No. PV-LAB-CONF-2007-008).
56. Cabarrocas, P. R., Bouizem, Y., & Theye, M. L. (1992). Defect density and hydrogen bonding in hydrogenated amorphous silicon as functions of substrate temperature and deposition rate. Philosophical Magazine B, 65(5), 1025-1040.
57. Gaughan, K., Nitta, S., Viner, J. M., Hautala, J., & Taylor, P. C. (1990). n‐type doping of amorphous silicon using tertiarybutylphosphine. Applied physics letters, 57(20), 2121-2123.
58. Caputo, D., De Cesare, G., Irrera, F., Nascetti, A., & Palma, F. (2000). On the relation between defect density and dopant concentration in amorphous silicon films. Journal of non-crystalline solids, 266, 565-568.
59. Lloret, A., Wu, Z. Y., Theye, M. L., El Zawawi, I., Siefert, J. M., & Equer, B. (1992). Hydrogenated amorphous silicon p-doping with diborane, trimethylboron and trimethylgallium. Applied Physics A, 55(6), 573-581.
60. Aizawa, M., & Buriak, J. M. (2007). Block copolymer templated chemistry for the formation of metallic nanoparticle arrays on semiconductor surfaces. Chemistry of Materials, 19(21), 5090-5101..
61. 野中翔一郎, 古川昭雄, & 牧田紀久夫. (2015). スマートスタック技術による多接合太陽電池の接合界面評価 (電子部品・材料). 電子情報通信学会技術研究報告= IEICE technical report: 信学技報, 115(330), 101-104.
62. Krishnamoorthy, S., Pugin, R., Brugger, J., Heinzelmann, H., & Hinderling, C. (2006). Tuning the Dimensions and Periodicities of Nanostructures Starting from the Same Polystyrene‐block‐poly (2‐vinylpyridine) Diblock Copolymer. Advanced Functional Materials, 16(11), 1469-1475.

QR CODE