簡易檢索 / 詳目顯示

研究生: 黃耀賢
Yao-sheng Huanng
論文名稱: 碳奈米纖維吸附材研製及其孔洞特性的研究
Preparation and Pore Characterization of Carbon nanofiber Adsorbent
指導教授: 蘇清淵
Ching-Iuan Su
口試委員: 王英靖
none
楊銘乾
none
許應舉
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 98
中文關鍵詞: 靜電紡絲喂布速率活化工程比表面積
外文關鍵詞: production rate, activation engineering, BET specific surface area, Electro-spinning
相關次數: 點閱:231下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以聚丙烯腈為原料,利用靜電紡絲法(Electro-spinning)製作奈米纖維不織布,探討其碳化、活化後的孔洞性質,本實驗利用箱型式高溫爐製成氧化纖維布為前驅體,再利用直立連續半開放式高溫爐,通以水蒸氣為活化源,經碳化、活化加工,製作出碳奈米纖維吸附材;實驗中藉由不同的加工條件,包括三種喂布速率(10 cm/min、20 cm/min、30 cm/min)及四種活化源供給量(80 ml/min、120 ml/min、160 ml/min),以製備出各種條件的碳奈米纖維吸附材。由氮氣等溫吸附測試得知,當喂布速率越慢時,氮氣等溫吸附曲線愈高,遲滯圈現象愈明顯。
    實驗樣品的孔洞大多以微孔和中孔為主,平均孔洞在20Å以下,在BJH分析法中,測得中孔孔徑分佈在20Å到50Å之間居多,隨著喂布速率放慢,碳奈米纖維吸附材的孔洞體積也隨著增大;由有機氣體吸附試驗得知,碳奈米纖維吸附材隨著比表面積和孔洞體積的增加,樣品對四氯化碳的吸附能力越好。
    實驗結果顯示,碳奈米纖維吸附材的產率隨著喂布速率放慢而減少,當喂布速率為10 cm/min、活化源120 ml/min時其比表面積可達1114(m2/g)。


    This study examines the pore characteristics of carbon nanofiber adsorbents prepared from polyacrylonitrile (PAN) by electro-spinning. Oxidized PAN fiber is used as the precursor to produce carbon nanofiber adsorbents in a continuous semi-open high-temperature furnace through carbonization and activation with steam. Different production rate (10, 20 and 30 cm/min) and different flow rate of steam activator (80, 120 and 160 ml/min) are used to produce carbon nanofiber adsorbents with different adsorption properties. Experimental results show that the slower the production rate, the higher the adsorption isotherms of nitrogen at 77k and the more prominent the hysterisis loop. Moreover, slower production rate results in less carbon nanofiber absorbents produced. At production rate of 10 cm/min and steam activator flow rate of 120 ml/min, the BET specific surface area can reach 1114 m2/g.

    Examining the microstructure of carbon nanofiber absorbents reveals that they contain mainly micropores and mesopores with mean radius below 20Å. BJH analysis also shows that the mean radius of mesopores range between 20Å and 50Å. It is also found that the total pore volume in carbon nanofiber absorbents increases with decreasing production rate. In addition, carbon nanofiber absorbent with higher total pore volume and BET specific surface area has better adsorption of CCL4.

    摘要..........................................................................I 致謝.........................................................................Ⅱ 目錄.........................................................................Ⅳ 圖表索引......................................................................V 表格索引.....................................................................Ⅶ 第一章 前言...................................................................1 1.1 活性碳及活性碳的應用與發展................................................1 1.2 活性碳的分類及活性碳纖維性能之比較........................................4 1.3 奈米纖維材料的定義及形態..................................................7 1.4 奈米纖維的製備方法.......................................................10 1.5 研究的目的與主題.........................................................13 第二章 文獻回顧與理論........................................................14 2.1 靜電紡絲工程與原理 ......................................................14 2.2 熱穩定化工程.............................................................17 2.2.1 PAN 纖維受熱環化.......................................................17 2.2.2 氧對氧化工程的影響.....................................................19 2.3 碳化工程.................................................................21 2.3.1 碳化反應...............................................................22 2.4 活化工程.................................................................24 2.4.1 物理活化...............................................................24 2.4.2 化學活化...............................................................27 2.5 吸附理論論...............................................................27 2.5.1 物理吸附...............................................................28 2.5.2 化學吸附...............................................................28 2.6 吸附機構.................................................................30 2.7 等溫吸附曲線.............................................................32 2.7.1 遲滯圈現象.............................................................36 2.8 藍牟爾吸附理論...........................................................38 2.9 BET 等溫吸附理論.........................................................41 2.10 孔洞體積和平均孔徑測試理論..............................................43 2.11 孔洞大小分佈測BJH法.....................................................45 2.12 t-plot 分析原理.........................................................48 2.13 孔洞結構的形成..........................................................50 第三章 實驗..................................................................54 3.1 實驗材料.................................................................54 3.2 實驗氣體.................................................................54 3.3 實驗藥劑.................................................................55 3.4 實驗設備.................................................................55 3.5 測試儀器.................................................................55 3.6 實驗流程.................................................................58 3.7 實驗方法.................................................................59 3.7.1 電紡纖維布的準備工程...................................................59 3.7.2 電紡氧化纖維布的製備工程...............................................60 3.7.3 碳奈米纖維吸附材的製備工程.............................................61 3.7.4 碳奈米纖維吸附材的物性測試.............................................61 第四章 結果與討論............................................................63 4.1 等溫吸附曲線的探討.......................................................63 4.1.1 喂布速率的影響.........................................................63 4.1.2 活化源供給量的影響.....................................................66 4.2 比表面積及孔洞體積的探討.................................................69 4.2.1 喂布速率的影響.........................................................69 4.2.2 活化源供給量的影響.....................................................70 4.3 孔徑大小的影響...........................................................73 4.3.1 喂布速率的影響.........................................................73 4.3.2 活化源供給量的影響.....................................................76 4.4 氣相吸附---四氯化碳之吸附................................................86 4.5 產率.....................................................................89 4.6 SEM表面觀察..............................................................91 第五章 結論.................................................................93 第六章 參考文獻..............................................................94

    【1】Jankowska, H., Swiatkowski, A., and Choma, J., Active Carbon, Ellis Horwood Limited, England(1991).
    【2】Sheele C.W., Chemical Observation on Air and Fire,182(1780).
    【3】Fontana F. Memorie Mat. Fis. Soc. Ital. Sci, 1,679(1777).
    【4】Lowitz J.T., Cerll’s, chem., Ann., 1,293(1786).
    【5】Deitz, V. R., Bibliography of Solid Adsorbents, United States Cane Sugar Refiners, Bone Char Manufactures & the National Bureau of Standards.
    【6】Freeman, J. J.,Gimblett, F.G..R., Roberts, R.A., Sing, K.S.W.,”Studies of activated charcoal cloth. I. Modification of adsorptive properties by impregnation with boron-containing compounds ” Carbon Vol.25,pp559(1987)
    【7】Eromolenko I.N. ,Chemically modified carbon fibers and their applications., VCH, New York, PP.176(1990).
    【8】森田健一 炭素纖維產業 PP.189(1984)
    【9】賀福、王茂章著,碳纖維及其複合材料,科學出版社(1995)
    【10】吳文演博士著,高科技新功機能性纖維材料與應用,增光國際股份有限公司,P.P.277- 279(2004).
    【11】Frank K Ko, Nanofiber Technology:Bridging the Gap between Nano and Marco World, Fibrous Materials Research Laboratory , Department of Materials Science and Engineering, Drexel University, Philadelphia, Pa.19104, U.S.A(2004)
    【12】M.C.Rocco, R.S.William, P.Alivisiatos and editors, Nanotechnology Research Directions:IWGN Workshop Report, National Science and technology Council, September(1999)
    【13】經濟部工業局,產業用纖維,紡織綜合研究所發行,p124-p178(2004)。
    【14】黃楠儒,氣相成長碳纖維/炭管之研究,國立成功大學-材料及工程學系,碩士論文,(1998)
    【15】張淇芝,基材備製對氣相成長碳纖維/管的影響,國立成功大學-材料及工程學系,碩士論文,(2000)
    【16】Zheng-Ming Huang, Zhang,Y.Z., Kotaki,M., Ramakrishna, S.”A review on polymer nanofiber by electrospinning and their applications in nanocomposites,”Comosites science and technology, vol.63 April p2223~p2253(2003).
    【17】Bose G M 1745 Recherches sur la cause et sur la veritable theorie del`s electricite (Wittenberg).
    【18】Lord Rayleigh, 1882, On the equilibrium of liquid conducting masses charged with electricity London,Edinburgh, and Dublin Phil. Mag. J. 44 184
    【19】Zeleny,J “Instability of electrified liquid surfaces.” The physical review Vol.10, no.1 (1917).
    【20】D. Michelson, Electrostatic Atomization (Hardcover), Adam Hilger(1990)
    【21】Formhals A 1934 Process and apparatus for Preparing artificial threads US Patent 1,975,504
    【22】Formhals, U.S Patent, 2,160,962.(1939).
    【23】Formhals, U.S Patent, 2,187,306.(1940).
    【24】Simons, U.S Patent, 3,280,229. (1966).
    【25】L.LARRONDO and R.ST.JOHN MANLEY, “Electrostatic Fiber spinning form polymer melts. I. Experimental observations on fiber formation and properties,”J .Polym Sci Polym Phys Ed 19:909-20(1981).
    【26】Reneker, D.H. and Chun I, “Nanometre diameter fibres of polymer produced by electrospinning,” Nanotechnology 7, p.216-23(1996).
    【27】Corinne Greyling, “Electrospinning of polyacrylonitrile nanofiber,” University of Stellenbosch, Polymer Science Division, Chemistry Department, Private Bag X1, Matieland 7602(2001).
    【28】Audrey Frenot and Ioannis S.Chronakis, “Polymer nanofiber assembled by electrospinning,” Current Opinion in Colloid and Interface Science, Vol.8, p64-p75(2003).
    【29】吳大誠、杜仲良、高緒珊編著(張勁燕編譯),奈米纖維,五南出版社,(2004)。
    【30】Jason Lyons*, Christopher Li, Frank Ko, ”Melt-electrospinning part Ⅰ:processing parameters and geometric properties,” polymer, vol.45, pp.7597-7603(2004).
    【31】Larrondo L, and John Manley. ST. “Electro-static Fiber Spinning From Polymer Melts. Ⅱ.Examination of the Flow Fiber in an Electrically Driven Jet.”Journal of Polymer Science, Vol.19, pp.921-932(1981).
    【32】Shin, Y.M., Hohman, M.M., Brenner, M.P., Rutledge, G.C. ” Experimental Characterization of electrospinning:the electrically forced jet and instabilities,” Polymer, Vol.42, PP.9955-9967(2001)
    【33】Jayesh Doshi and Darrell H. Reneker, ”Electrospinning Process and Applications of Electrospun Fibers.”Journal of Electrostatics, Vol.35 PP.151-160(1995).
    【34】Bahl and L.M. Manocha, ”characterization of oxidized pan fibers”Carbon,vol.12 pp.417-423(1974).
    【35】Ko,T.H., P.C. hiranairadual, and C. H.Lin, “ The Influence of Continuous Stabilization on the properties of stabilized Fibers and the Final Activated Carbon Fibers. PartΙ,” polymer.Engineering Sci., Vol.31(19),pp1618-1626(1991).
    【36】Ko,T.H., P.Chiranairadual, and C. H.Lin,”The Study of Polyacrylonitrile-based Actived Carbon Fibers for Water Purification : PartΙ,”J.Mater.Sci.Lett.,Vol.11,pp.6-8(1992).
    【37】Ko,T.H., P.Chiranairadual, and C. H.Lin, and C.K.Lu, ”The effect of Activation by carbon Dioxide on the Mechanical Properties and Structure of Pan-based Actived Carbon Fibers,”Carbon,vol.30(4),PP.647-655(1992).
    【38】Ko,T.H.,H.Y. Ting,and C.H.LIN,” Thermal Stabilization of Polyacrylonitrile Fibers,”J.Apply.Polymer.Sci.,35,631-640(1989).
    【39】R.Houtz,Textile Research J.,20,P.786(1950).
    【40】N. Grassie and J. Hay,J,” Thermal coloration and insolubilization in polyacrylonitrile,”Polymer Sci.,Vol.56,PP.189-202(1962).
    【41】N. Grassie and R. McGuchan,”Pyrolysis of Polyacrylonitrile and Related Polymers Ⅰ,” European Polymer Journal, Vol.6, PP.1277-1291 (1970).
    【42】B. Danner and J.Meybeck,Int. cof. Carbon Fiber, Landon, No. 6, P.36 (1971).
    【43】Grassie, M., and McGuchan, R.” pyrolysis of polyacrylonitrile and related polymers,” European Polymer Journal, vol 8, PP. 257-269(1972).
    【44】N. Grassie and R. McGuchan,” Pyrolysis of polyacrylonitrile and related polymers—III. Thermal analysis of preheated polymers ,” European Polymer Journal,Vol.7, PP1357-1371(1971).
    【45】w.watt and w.johnson, ”Mechanism of oxidization of polyacrylonitrile fibers,”Nature,Vol.257, pp.210-212(1975).
    【46】H.Yu and I.Noh, ”Kinetics and Statistics of Structural Changes in Polyacrylonitrtile” polymer letters, vol.4, pp. 721-726(1966).
    【47】K.,Y. Marita,A.,K.Murayama,,T.Ono,A.Nakayama,Pure Apply.Chem., 58, PP.455-468(1986).
    【48】Mayer,R.O.,Ecker,D. R.,and Spry, W.J. U.S. Patent 3,333,926(1967).
    【49】Goodhew, P. J., Clarke, A. J. and Bailey, “A Review of the Fabrication and Properties of Carbon Fibers.”Materials Science and Engineering,Vol.17, PP.3-30(1975).
    【50】KASATOCHKIN, V. I.,. KARGIN, V. A. (Moscow. Mineral Fuels Inst., Moscow, USSR):. Thermal transformation of oriented poly-. acrylonitrile. Dokl. Akad. Nauk SSSR 191. (1970).
    【51】J. Alcañiz-Monge,et al.” Effect of the activating gas on tensile strength and pore structure of pitch-based carbon fibres,” Carbon, Vol.32, Issue 7, PP. 1173 (1994).
    【52】炭素材料學會編,”活性炭-基礎與應用”,講談社,P84-86,(1989).
    【53】炭素材料學會編,”活性炭-基礎與應用”,講談社,P80,(1989).
    【54】S.B.warner, D. R. uhlmann.,”Oxidative stabilization of acrylic fibers,Part 3 Morphology of polyacrylonitrile.”J.Material Sci.,Vol.14,PP.1893-1900, (1979)
    【55】Reynaldo Nacco and Eugenio Aquarone,“Preparation of active carbon from yeast.”Carbon, Vol.16, Issue 1, PP.31-34,(1978).
    【56】Jean-Baptiste Donnet, Roop Chand Bansal, Carbon Fibers, Marcel Dekker, New and Basel,pp.40(1990).
    【57】Jolley, L. J.,Poll, A., J. Inst. Fuel, 26,33(1953).
    【58】J. de D. Lopez-Gonzalez, et al,“Preparation and characterization of active carbons from olive stones ,”Carbon, Vol.18, pp413-418(1980).
    【59】K. Gergova, N. Petrov and S. Eser, ”Adsorption properties and microstructure of activated carbons produced from agricultural by-products by steam pyrolysis .” Carbon,Vol. 32,Issue 4,PP. 693-702(1994).
    【60】F. Rodriguez, Wilm. D. Z. Elektrochem. 42, 504(1995).
    【61】R. Torregrosa, J. M. Martin-Martinez,” Activation of lignocellulosic materials: a comparison between chemical, physical and combined activation in terms of porous texture,” Fuel, Vol.70,PP.1173-1180(1991).
    【62】Kenneth Wark. Cecil F. Warner, Air Pollution Its Origin and Control (1976).
    【63】Juntgen H,”New applications for carbonaceous adsorbents.” Carbon, Vol.15, Issue 5,PP.273-283(1977).
    【64】Greeg, S. J. and Sing K. S. W, Adsorpaion Surface Areas and Porosity, Academic Press, London and New York 2nd (1982).
    【65】Leonard A. Jonas, “Reaction steps in gas sorption by impregnated carbon.”Carbon, Vol.16, PP.115-119(1978).
    【66】D. Benefield Larry, J. Joseph, J. Judkins and I. Barren Weand, Process Chemistry for Waterand Watewater Treatment, 202,99(1982).
    【67】Irving Langmuir,”Chemical Reactions at Low Pressure.”PP.1139-1167(1915).
    【68】Lowell, S.,Shields, Joan E., Powder Surface Area and Porosity, 2nd Edition, Chapman and Hall Ltd. (1984).
    【69】Stephen Brunauer, P.H.Emmett and Edward Teller,”Adsorption of Gases in Multimolecular Layers.”Vol.60, PP.309-319(1938).
    【70】Elliott P. Barrett, Lesle G. Joyner and Paul P. Halenda,”The Determination of Pore Volume and Area Distributions in Poius Substances. I. Computations from Nitrogen Isotherms.” Journal of the American Chemical Society Vol.73, PP373-380(1951).
    【71】J.H.de Boer, B.C. Lippens, B.GLinsen, J.C.P. Broekhoff, A.van denHeuvel, and Th.J.Osinga., ”The t-curve of Multimolecular N2-Adsorption”journal of colloid and interface science,vol,21,pp405-414(1966).
    【72】Jorge LaineSimon and Simon Yunes,”Effect of the preparation method on the pore size distribution of activated carbon from coconut shell .”carbon, Vol.30(4), PP.601-604(1992).
    【73】B.C. Lippens and J.H. DE Boer,”Studies on Pore Systems in Catalysts Ⅴ. The t method.”Journal of catalysis Vol.4 PP.319-323(1965).
    【74】William D. Harkins and George Jura,”A Vapor adsorption Method for the Determination of the Area of a Solid without the Assumption of a Molecular Area, and the Areas Occupied by Nitrogen and Other Molecules on the Surface of a Solid.”J of ACS,Vol.66,PP.1366-1373(1944).
    【75】Cheremisinoff, P. N., Carbon adsorption Handbook(1978).
    【76】Leonard H. Cohan,” Hysteresis and the Capillary Theory of Adsorption of Vapors,” J. Am. Chem. Soc, Vol.66(1),PP. 98-105(1944).
    【77】James W. McBain,”An Explanation of Hysteresis in the Hydration and Dehydration of Gels.” J. Am. Chem. Soc, Vol.57(4),PP.699-700(1935).
    【78】盛岡良雄, 表面, 28, 8, 598(1990)。
    【79】Munoz-Guillena, M.J. Illan-Gomez, J.M.Martin-Martinez, A.Linares-Solano, and C.Salinas-Martinez de Lecea,”Activated Carbon from Spanish Coal.” 1.Two-Stage CO2 Activation. Energy Fuels Vol.6(1), PP.9-15(1992).
    【80】S.C. Bennett and D.J. Johnson,”Electron-microscope studies of structural heterogeneity in pan-based carbon fibres .” Carbon, Vol.17, 25-39(1979).
    【81】M. Balasubramanian, M.K. Jain, S. K.Bhattacharya, A.S. Abhiraman., ” Conversion of acrylonitrile-based precursors to carbon fibres Part 3 Thermooxidative stabilization and continuous, low temperature carbonization.”Journal of Materials Science, Vol.22,PP.3864-3872(1987).
    【82】胡忠華,不同活化處理對PAN系活性碳纖維布微細構造之研究,逢甲大學,材料科學研究所,民國85年
    【83】王聖智,氫氧化鉀活化酚醛樹脂以製備高孔隙碳材料,國立成功大學,化學工程所,民國88年
    【84】吳丁祥,活化因素對PAN系活性碳纖維氮氣等溫吸著脫著特性影響之研究,國立台灣工業技術學院,纖維及高分子工程所,民國80年
    【85】黃汝銘,黏液嫘縈系活性碳纖維布連續生產之研究,國立台灣技術學院,纖維及高分子工程所,民國81年
    【86】莊金城,活性碳纖維織物連續連續製程中活化生產速率對其性質影響之研究,國立台灣技術學院,纖維及高分子工程所,民國81年
    【87】簡宏宮,纖維素系活性碳纖維織物在連續製程中活化生產速率對其性質影響之研究,國立台灣技術學院,纖維及高分子工程所,民國81年
    【88】葉如翔,嫘縈系碳纖維吸附材特性及其電漿改善之研究,國立台灣科技大學,纖維及高分子工程所,民國81年
    【89】李俊穎,酚醛系活性碳纖維之吸附暨物理特性,國立台灣科技大學,纖維及高分子工程所,民國92年
    【90】江宗穎,聚丙烯系電紡不織布高溫氧化處理物性與微細構造之研究,國立台灣科技大學,纖維及高分子工程所,民國94年

    無法下載圖示 全文公開日期 2011/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE