簡易檢索 / 詳目顯示

研究生: 蘇宇瑍
Yu-Huan Su
論文名稱: 高活性與高穩定性三元核殼金屬(Pd@PtAu)觸媒於氧氣還原反應之研究
Highly Active and Stable Trimetallic Core Shell (Pd@PtAu) Catalysts for Oxygen Reduction Reaction
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
T. C. Chou
杜景順
J. S. ,Do
蘇威年
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 148
中文關鍵詞: 樹枝狀結構奈米觸媒氧氣還原反應
外文關鍵詞: Dendrite-shape nanostructure, Oxygen Reduction Reaction (ORR)
相關次數: 點閱:383下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究主要為合成Pd正方形奈米粒子當作核層,再利用抗壞血酸(Ascorbic acid)當還原劑Pt還原沉積在Pd核層上而形成核-殼(Core-shell)樹枝狀奈米結構(Pd@Ptdendrite),並討論此樹枝狀結構奈米觸媒在不同成長時間下的形狀;之後再以第三元金屬Au修飾Pt殼層,使其形成Pd@PtAudendrite。此外以感應耦合電漿原子發射光譜儀(ICP-AES)、能量分散光譜儀 (EDS)、X-光繞射(XRD)以及穿透式電子顯微鏡(TEM)等儀器分析觸媒之組成及結構,並探討其對電化學催化活性及穩定性之影響。由XRD和TEM結果顯示,本研究成功合成出Pd正方形奈米粒子,並成長為Pd@Ptdendrite和Pd@PtAudendrite等樹枝狀奈米結構觸媒,觸媒粒子大小平均為20-30 nm。在電化學特性部分,Pd@Ptdendrite之活性與穩定性皆優於商業化觸媒(Pt black、Pd/C以及Pt/C),然而Pd@PtAudendrite三元樹枝狀結構奈米觸媒之活性比Pd@Ptdendrite好,但穩定性卻較差,推測可能的原因為電化學測試過程中Pt與Au產生分相所致。本研究已證實Pd@Ptdendrite與Pd@PtAudendrite於氧氣還原反應表現上皆優於商業化觸媒。


    Abstract
    In this study, Pd cubic nanoparticles were synthesized, which is a core substrate for Pt shell reduced using ascorbic acid to form core-shell dendrite-shape nanostructure (Pd@Ptdendrite). The synthesis of Pd@Ptdendrite with the various times for growth was discussed. Afterward Pt shell was modified by Au atoms to form Pd@PtAudendrite. Besides, the characterizations of the catalysts were determined by Inductively Coupled argon Plasma Atomic Emission Spectrometry (ICP-AES), Energy Dispersive Spectrometer (EDS), Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD). Catalytic activity and stability were measured by electroanalysis. The XRD and TEM results show that Pdcube, Pd@Ptdendrite, Pd@PtAudendrite nanocatalysts were successfully synthesized, with the average catalytic size of 20-30 nm. In the electrochemical measurements, Pd@Ptdendrite results better activity and stability than that of commercial catalysts (Pt black, Pd/C and Pt/C). However, Pd@PtAudendrite shows better catalytic activity compare to Pd@Ptdendrite, but worse stability. The possible reason is speculated that phase segregation is occured between Pt and Au during the electrochemical test. This approach confirms that the performance for both of Pd@Ptdendrite and Pd@PtAudendrite are better than commercial catalysts in the oxygen reduction reaction.

    目錄 摘要 I ABSTRACT IV 誌謝 V 目錄 VI 圖目錄 X 表目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 直接甲醇燃料電池(DMFC) 6 1.2.1DMFC陽極觸媒 8 1.2.2DMFC電解質 12 1.2.3DMFC陰極材料 13 1.3 研究動機與目的 17 第二章 文獻回顧及理論基礎 19 2.1 奈米材料之分類與特性 19 2.1.1奈米材料之分類 19 2.1.2奈米材料之特性 20 2.2 金屬奈米粒子、核-殼型複合奈米粒子及雙合金奈米觸媒 22 2.2.1金屬奈米粒子 22 2.2.2核-殼型複合奈米粒子 26 2.2.3雙合金奈米觸媒 35 2.3 雙金屬奈米粒子之製備 37 2.4電化學原理 43 2.4.1循環伏安法 43 2.2.2極化曲線 47 2.2.3旋轉盤電極 (Rotating Disc Electrode, RDE) 48 2.2.4旋轉環盤電極(Rotating Ring-Disc Electrode, RRDE) 51 2.5 XRD分析原理 54 2.6 X光吸收光譜原理 55 2.6.1EXAFS 56 2.6.2XANES 60 2.6.3數據分析 61 第三章 實驗設備與方法 67 3.1 實驗藥品與儀器設備 67 3.1.1 實驗藥品 67 3.1.2 儀器設備 68 3.2 實驗方法 69 3.2.1陰極觸媒製備 69 3.2.2材料鑑定與分析 73 第四章 結果與討論 83 4.1 觸媒成份分析及結構鑑定 83 4.1.1觸媒成份分析 83 4.1.2觸媒結構鑑定 88 4.2 電化學特性量測結果 99 4.2.1觸媒在硫酸水溶液中循環伏安分析 (CV ) 99 4.2.2氧氣還原極化曲線 (ORR) 101 4.3 觸媒穩定性測試 103 4.3.1電化學加速衰退測試 (ADT) 103 第五章 綜合討論 114 5.1 陰極觸媒材料之晶向與型態比較 114 5.2 陰極觸媒材料之結構比較 114 5.3 陰極觸媒材料之電化學活性比較 116 5.4 陰極觸媒材料之穩定性比較 118 第六章 結論 122 第七章 未來展望 123 參考文獻

    參考文獻
    [1] L. Carrette, K.A. Friedrich, U. Stimming, Fuel Cells, 1 (2001) 5-39.
    [2] K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel, E.D. Gilles, Chemical Engineering Science, 56 (2001) 333-341.
    [3] T. Frelink, W. Visscher, J.A.R. van Veen, Surface Science, 335 (1995) 353-360.
    [4] H.A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns, The Journal of Physical Chemistry, 97 (1993) 12020-12029.
    [5] J.B.R. Rauhe, F.R. McLarnon, E.J. Cairns, Journal of The Electrochemical Society, 142 (1995) 1073-1084.
    [6] S.R. Brankovic, N.S. Marinkovic, J.X. Wang, R.R. Adžić, Journal of Electroanalytical Chemistry, 532 (2002) 57-66.
    [7] C. Lu, C. Rice, R.I. Masel, P.K. Babu, P. Waszczuk, H.S. Kim, E. Oldfield, A. Wieckowski, The Journal of Physical Chemistry B, 106 (2002) 9581-9589.
    [8] B. Beden, F. Kadirgan, C. Lamy, J.M. Leger, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 127 (1981) 75-85.
    [9] H. A, Catalysis Today, 38 (1997) 445-457.
    [10] W.F. Lin, M.S. Zei, M. Eiswirth, G. Ertl, T. Iwasita, W. Vielstich, The Journal of Physical Chemistry B, 103 (1999) 6968-6977.
    [11] R. Liu, H. Iddir, Q. Fan, G. Hou, A. Bo, K.L. Ley, E.S. Smotkin, Y.E. Sung, H. Kim, S. Thomas, A. Wieckowski, The Journal of Physical Chemistry B, 104 (2000) 3518-3531.
    [12] C.J. Zhong, M.M. Maye, Advanced Materials, 13 (2001) 1507-1511.
    [13] A.K. Shukla, R.K. Raman, N.A. Choudhury, K.R. Priolkar, P.R. Sarode, S. Emura, R. Kumashiro, Journal of Electroanalytical Chemistry, 563 (2004) 181-190.
    [14] M. Watanabe, Y. Furuuchi, S. Motoo, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 191 (1985) 367-375.
    [15] K. Ledjeff-Hey, A. Heinzel, Journal of Power Sources, 61 125-127.
    [16] L. Carrette, K.A. Friedrich, U. Stimming, ChemPhysChem, 1 (2000) 163-193.
    [17] M. Watanabe, M. Uchida, S. Motoo, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 229 (1987) 395-406.
    [18] D. Chu, S. Gilman, Journal of The Electrochemical Society, 143 (1996) 1685-1690.
    [19] K.L. Ley, R. Liu, C. Pu, Q. Fan, N. Leyarovska, C. Segre, E.S. Smotkin, Journal of The Electrochemical Society, 144 (1997) 1543-1548.
    [20] R. Venkataraman, H.R. Kunz, J.M. Fenton, Journal of The Electrochemical Society, 150 (2003) A278-A284.
    [21] E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E.S. Smotkin, T.E. Mallouk, Science, 280 (1998) 1735-1737.
    [22] A.S. Aricò, Z. Poltarzewski, H. Kim, A. Morana, N. Giordano, V. Antonucci, Journal of Power Sources, 55 (1995) 159-166.
    [23] W.C. Choi, J.D. Kim, S.I. Woo, Catalysis Today, 74 (2002) 235-240.
    [24] K.V. Ramesh, P.R. Sarode, S. Vasudevan, A.K. Shukla, Journal of Electroanalytical Chemistry, 223 (1987) 91-106.
    [25] G. Couturier, D.W. Kirk, P.J. Hyde, S. Srinivasan, Electrochimica Acta, 32 (1987) 995-1005.
    [26] 呂崇銘, in: 化學工程研究所, 東海大學, 台中市, 1992, pp. 133.
    [27] S. Mukerjee, S. Srinivasan, M.P. Soriaga, Journal of The Electrochemical Society, 142 (1995) 1409-1422.
    [28] C.H. Hamann, A. Hammnett, and W. Vielstich, Electrochemistry, Wiley-VCH (1998).
    [29] H.S. Wroblowa, P. Yen Chi, G. Razumney, Journal of Electroanalytical Chemistry, 69 (1976) 195-201.
    [30] M.R. Tarasevich, A. Sadkowski, and E. Yeager, J.O. Bockris, et al, New York, 301 (1983).
    [31] E. Yeager, Journal of Molecular Catalysis, 38 (1986) 5-25.
    [32] 林冠男, in: 化學工程系, 國立臺灣科技大學, 台北市, 2006, pp. 94.
    [33] A. Damjanovic, V. Brusic, Electrochimica Acta, 12 (1967) 615-628.
    [34] M.R. E. Yeager, D. Gervasio, A. Razaq, D. Scheerson, et al, The Electrochemical Society Inc., Pennington, NJ, 40, 92 ( 1992).
    [35] J.B. Jackson, N.J. Halas, Journal of Physical Chemistry B, 105 (2001) 2743-2746.
    [36] S.L. Westcott, S.J. Oldenburg, T.R. Lee, N.J. Halas, Chemical Physics Letters, 300 (1999) 651-655.
    [37] H. Hofmeister, P.T. Miclea, W. Mörke, Particle and Particle Systems Characterization, 19 (2002) 359-365.
    [38] R.J. Emrich, A.N. Mansour, D.E. Sayers, S.T. McMillan, J.R. Katzer, The Journal of Physical Chemistry, 89 (1985) 4261-4264.
    [39] R.W. Chorley, P.W. Lednor, Advanced Materials, 3 (1991) 474-485.
    [40] J. Prabhuram, T.S. Zhao, Z.X. Liang, H. Yang, C.W. Wong, Journal of The Electrochemical Society, 152 (2005) A1390-A1397.
    [41] K.H. Ng, R.M. Penner, Journal of Electroanalytical Chemistry, 522 (2002) 86-94.
    [42] Y. Wang, N. Toshima, Journal of Physical Chemistry B, 101 (1997) 5301-5306.
    [43] 工研院工業材料研究所, 材料奈米科技專刊, 台北:經濟部技術處 (2001).
    [44] 葉晨聖, 化工資訊與商情, 7 (2004) 64.
    [45] J. Chen, T. Herricks, Y. Xia, Angewandte Chemie - International Edition, 44 (2005) 2589-2592.
    [46] M. Miyake, K. Miyabayashi, Catalysis Surveys from Asia, (2011) 1-13.
    [47] J.W. Haus, H.S. Zhou, S. Takami, M. Hirasawa, I. Honma, H. Komiyama, Journal of Applied Physics, 73 (1993) 1043-1048.
    [48] K. Mallik, M. Mandal, N. Pradhan, T. Pal, Nano Letters, 1 (2001) 319-322.
    [49] N. Toshima, T. Yonezawa, New Journal of Chemistry, 22 (1998) 1179-1201.
    [50] J. Zhang, M.B. Vukmirovic, K. Sasaki, A.U. Nilekar, M. Mavrikakis, R.R. Adzic, Journal of the American Chemical Society, 127 (2005) 12480-12481.
    [51] T. Toda, H. Igarashi, H. Uchida, M. Watanabe, Journal of The Electrochemical Society, 146 (1999) 3750-3756.
    [52] M.H. Shao, T. Huang, P. Liu, J. Zhang, K. Sasaki, M.B. Vukmirovic, R.R. Adzic, Langmuir, 22 (2006) 10409-10415.
    [53] J. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Angewandte Chemie - International Edition, 44 (2005) 2132-2135.
    [54] B. Lim, M. Jiang, P.H.C. Camargo, E.C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia, Science, 324 (2009) 1302-1305.
    [55] E. Irissou, F. Laplante, S. Garbarino, M. Chaker, D. Guay, Journal of Physical Chemistry C, 114 (2010) 2192-2199.
    [56] 吳明立, in: 化學工程學系, 國立成功大學, 台南市, 2001, pp. 125.
    [57] T. Sugimoto, Advances in Colloid and Interface Science, 28 (1987) 65-108.
    [58] S. Ayyappan, R. Srinivasa Gopalan, G.N. Subbanna, C.N.R. Rao, Journal of Materials Research, 12 (1997) 398-401.
    [59] J.H. Fendler, Chemical Reviews, 87 (1987) 877-899.
    [60] K. Vijaya Sarathy, G.U. Kulkarni, C.N.R. Rao, Chemical Communications, (1997) 537-538.
    [61] T.J. Schmidt, M. Noeske, H.A. Gasteiger, R.J. Behm, P. Britz, W. Brijoux, H. Bönnemann, Langmuir, 13 (1997) X-2595.
    [62] L.S. Sarma, T.D. Lin, Y.W. Tsai, J.M. Chen, B.J. Hwang, Journal of Power Sources, 139 (2005) 44-54.
    [63] P.K. Shen, Z. Tian, Electrochimica Acta, 49 (2004) 3107-3111.
    [64] C. Bock, C. Paquet, M. Couillard, G.A. Botton, B.R. MacDougall, Journal of the American Chemical Society, 126 (2004) 8028-8037.
    [65] F. Bonet, V. Delmas, S. Grugeon, R. Herrera Urbina, P.Y. Silvert, K. Tekaia-Elhsissen, Nanostructured Materials, 11 (1999) 1277-1284.
    [66] M. Reetz, M. Dugal, Catalysis Letters, 58 (1999) 207-212.
    [67] N. Toshima, Journal of Macromolecular Science: Part A - Chemistry, 27 (1990) 1225-1238.
    [68] T.D. Tran, S.H. Langer, Analytical Chemistry, 65 (1993) 1805-1807.
    [69] P. Hernández-Fernández, S. Rojas, P. Ocón, J.L. Gómez de la Fuente, J. San Fabián, J. Sanza, M.A. Peña, F.J. García-García, P. Terreros, J.L.G. Fierro, The Journal of Physical Chemistry C, 111 (2007) 2913-2923.
    [70] S. Senthil Kumar, K.L.N. Phani, Journal of Power Sources, 187 (2009) 19-24.
    [71] Y. Hu, H. Zhang, P. Wu, H. Zhang, B. Zhou, C. Cai, Physical Chemistry Chemical Physics, 13 (2011) 4083-4094.
    [72] L.U.O. Jin, N.P. N, L.I.N. Yan, W. Lingyan, Z. Chuan Jian, Electrochemistry communications, 8 (2006) 581-587.
    [73] D. Zhao, B.Q. Xu, Angewandte Chemie - International Edition, 45 (2006) 4955-4959.
    [74] B. Brown, S.D. Wolter, B.R. Stoner, J.T. Glass, Journal of The Electrochemical Society, 155 (2008) B852-B859.
    [75] W. R, Electrochimica Acta, 16 (1971) 655-658.
    [76] W. R, Electrochimica Acta, 14 (1969) 533-540.
    [77] W.M.H. Sachtler, J. Vac. Sci. Technol, 9 (1971) 828.

    無法下載圖示 全文公開日期 2017/01/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE