簡易檢索 / 詳目顯示

研究生: 陳雅涵
Ya-Han Chen
論文名稱: 鉍硫化物之單晶成長與特性研究
Single crystal growth and characterization of Bi2S3 & (Bi(Bi2S3)9I3)0.667
指導教授: 何清華
Ching-Hwa Ho
口試委員: 郭永綱
Yung-Kang Kuo
李奎毅
Kuei-Yi Lee
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 108
中文關鍵詞: X光繞射儀拉曼光譜儀低溫暗電導載子傳輸光穿透光譜熱調製光譜能隙硫化鉍硫化鉍碘
外文關鍵詞: XRD, Raman, Temperature-dependent IV, Carrier transport, Tansmittance, Thermoreflectance, Energy gap, Bi2S3, (Bi(Bi2S3)9I3)0.667
相關次數: 點閱:584下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文利用化學氣相傳導法(Chemical Vapor Transport method,CVT)成長硫化鉍系列晶體,藉由使用不同傳導劑三氯化碘或碘成功成長出Bi2S3和(Bi(Bi2S3)9I3)0.667半導體單晶,並對此系列晶體進行結構分析,也藉由光學及電學量測對其特性加以研究討論。
利用能量散佈光譜分析儀(Energy dispersive X-ray spectroscopy,EDS)驗證化合物組成比例,以X-ray晶格繞射(X-ray diffraction,XRD)及穿透式電子顯微鏡(Transmission electron microscopy,TEM)分析結果得到Bi2S3為正交晶系結構,而(Bi(Bi2S3)9I3)0.667則為六方晶系,且兩者晶體品質皆良好,並藉由拉曼光譜量測,得知材料中結構訊息與聲子之振動模式。
經由光穿透實驗及溫度變化之暗電導量測,可以得知Bi2S3為退化型半導體,其具有能隙並呈現近金屬性的載子傳導行為。六方(Bi(Bi2S3)9I3)0.667在電導率溫度相依呈現半導體的傳導行為,此結果可以推論在硫化鉍化合物中摻入碘可以降低硫空缺進而減少載子濃度。此外,由熱探針法可分辨半導體型別,結果顯示Bi2S3為n型半導體,而(Bi(Bi2S3)9I3)0.667為p型半導體。在10 K至300 K之 Seebeck係數、電阻率及熱導率溫度相依實驗,可以發現Bi2S3微具熱電效應,在300 K時Seebeck係數可達最強約-55.520 µV/K。
此外,藉由擬合(Bi(Bi2S3)9I3)0.667吸收係數隨溫度變化之譜線,可以確定此材料為間接能隙半導體,其間接能隙於300 K時約在0.73±0.03 eV,於30 K時約在0.93±0.03 eV。在(Bi(Bi2S3)9I3)0.667熱調製實驗結果,可以發現在300 K時有一帶間躍遷訊號E1在1.08 eV,在40 K時帶間躍遷訊號E1位移至1.18 eV,且在0.98 eV有缺陷訊號。由照射不同燈源光譜之I-V量測結果顯示其在近紅外光響應較佳,可推測其具有太陽能源材料方面的應用潛力。


Bi2S3 and (Bi(Bi2S3)9I3)0.667 single crystal were successfully grown by chemical vapor transport method using ICl3 or I2 as the transport agent. We use X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy to analyze structure and crystal quality of the materials. Energy dispersive X-ray spectrometer (EDS) measurement result shows the composition ratio of the crystal. According to the experimental results, the Bi2S3 crystal crystallizes in orthorombic structure, and (Bi(Bi2S3)9I3)0.667 crystal is hexagonal structure.
In combination of transmittance and temperature-dependent conductivity measurements confirmed that the Bi2S3 is a degenerate semiconductor. It shows not only energy gap but also metallic transport behavior. The origin of such metallic conduction may stem from a substoichiometry of sulfur whereby the sulfur vacancies serve as the source of conduction carriers. The (Bi(Bi2S3)9I3)0.667 exhibits semiconducting transport behavior which is evident from in temperature-dependent conductivity measurements. The hot-probe test confirms the Bi2S3 is an n-type semiconductor while (Bi(Bi2S3)9I3)0.667 is a p-type semiconductor.
Temperature dependence of Seebeck coefficient S, electrical resistivity ρ, heat conductivity k and thermoelectric figure of merit ZT of Bi2S3 crystal were carried out in the temperature range between 10 K and 300 K. The Seebeck coefficient and heat conductivity measurement indicate Bi2S3 sample has thermoelectric properties, and its Seebeck coefficient is -55.520 µV/K at 300 K.
Optical properties of (Bi(Bi2S3)9I3)0.667 are characterized using transmittance and thermoreflectance measurements, which show the (Bi(Bi2S3)9I3)0.667 is an indirect semiconductor. The indirect band gap is 0.73±0.03 eV at 300 K and 0.93±0.03 eV at 30 K. The direct transition signal E1 is 1.08 eV at 300 K and 1.18 eV at 40 K by TR. Moreover, there is also a defect signal at ~0.98 eV observed at 40 K . The I-V measurements with different light sources show that the (Bi(Bi2S3)9I3)0.667 has better response in near infrared, which shows potential applications in solar energy.

中文摘要 I Abstract III 誌謝 V 目錄 VI 圖索引 X 表索引 XIV 第一章 緒論 1 1.1 Bi2S3及(Bi(Bi2S3)9I3)0.667材料背景介紹 1 1.2 Bi2S3及(Bi(Bi2S3)9I3)0.667材料特性介紹 3 1.2.1 Bi2S3材料特性介紹 3 1.2.2 (Bi(Bi2S3)9I3)0.667材料特性介紹 3 第二章 晶體成長 4 2.1 Bi2S3及(Bi(Bi2S3)9I3)0.667晶體成長方法 4 2.2 Bi2S3及(Bi(Bi2S3)9I3)0.667材料單晶成長的系統配置 6 2.2.1 高真空系統 6 2.2.2 長晶反應系統 9 2.3 長晶程序 11 2.3.1 元素比例及石英管清洗作業 11 2.3.2 Bi2S3及(Bi(Bi2S3)9I3)0.667的化合及單晶成長 13 第三章 實驗原理與量測系統 17 3.1 X射線能量散佈分析儀(EDS) 17 3.2 X-ray晶格繞射分析儀(XRD) 19 3.3 拉曼散射光譜(Raman) 22 3.4 溫度變化之暗電導量測 25 3.5 熱探針法 27 3.6 熱傳輸性質量測簡介及系統概論 28 3.6.1 熱傳導率量測 29 3.6.2 Seebeck係數量測 30 3.6.3 電阻率量測 31 3.7 光吸收光譜 32 3.8 調制光譜簡介及系統概論 35 3.8.1 調製光譜簡介 35 3.8.2 理論依據:介電函數與反射率關係 36 3.8.3 量測原理 38 3.8.4 熱調制反射光譜技術 39 第四章 Bi2S3之結構與光電特性分析 45 4.1 X-ray能量散佈分析儀結果分析 45 4.2 X-ray繞射實驗結果分析 47 4.3 場發射穿透式電子顯微鏡影像結果分析 50 4.4 拉曼散射光譜結果分析 52 4.5 溫度變化之暗電導量測結果分析 55 4.6 熱探針量測結果分析 57 4.7 熱傳輸性質量測結果分析 59 4.7.1 電阻率量測結果 59 4.7.2 Seebeck係數量測結果 59 4.7.3 熱傳導率量測結果 60 4.7.4 ZT值計算結果 61 4.8 光吸收光譜結果分析 63 第五章 (Bi(Bi2S3)9I3)0.667之結構與光電特性分析 64 5.1 X-ray能量散佈分析儀結果分析 64 5.2 X光繞射實驗結果分析 66 5.3 場發射穿透式電子顯微鏡影像結果分析 68 5.4 拉曼散射光譜結果分析 71 5.5 溫度變化之暗電導量測結果分析 73 5.6 照射不同光源之電流-電壓量測結果分析 75 5.7 熱探針量測結果分析 76 5.8 熱傳導率量測結果分析 78 5.9 光吸收光譜結果分析 80 5.10 熱調製反射光譜結果分析 83 第六章 總結 87 參考文獻 89

[1] B. Chen, C. Uher, L. Iordanidis, M.G. Kanatzidis, Transport Properties of Bi2S3 and the Ternary Bismuth Sulfides KBi6.33S10 and K2Bi8S13, American Chemical Society, 9 (1997) 1655-1658.
[2] G. Shen, D. Chen, K. Tang, L. Huang, Y. Qian, Large-scale synthesis of (Bi(Bi2S3)9I3)0.667 submicrometer needle-like crystals via a novel polyol route, Crystal Growth, 249 (2003) 331-334.
[3] G. Miehe, V. Kupčík, Die Kristallstruktur des Bi(Bi2S3)9J3, Kurze Originalmitteilungen Physik, 58 (1971) 219.
[4] H. Scha ̈fer, Chemical Transport Reactions, Academic Press, (1964).
[5] 何清華, 二硫化鐵之單晶成長與特性研究, 碩士論文, 國立台灣工業技術學院, (1991).
[6] 柯宗佑, 二硒化鉬鎢層狀半導體之晶體成長與光學特性研究, 碩士論文, 國立台灣科技大學, (2014).
[7] 許樹恩, 吳泰伯, X光繞射原理與材料結構分析, 中國材料科學學會, (1996).
[8] A. Beiser, Concepts Of Modern Physics, McGraw-Hill Education (India) Pvt Limited, (2003).
[9] B.O. Seraphin, R.B. Hess, N. Bottka, Field Effect of the Reflectivity in Germanium, J. Appl. Phys., 79 (1996) 2376-2385.
[10] A. Schleiermacher, On the thermal conduction of gas, Wiedeman Ann Phys, 34 (1888) 623-646.
[11] A. Axelevitch, G. Golan, Hot-probe method for evaluation of majority charries concentration in semiconductor thin films thin, Electronics and Energetics, 26 (2013) 187-195.
[12] D.M.Rowe, CRC Handbook of Thermoelectrics, (1994).
[13] 余韋毅, 熱電材料PbxCo4Sb12的製備與傳輸性質研究, 碩士論文, 國立東華大學, (2007).
[14] 陳欣宏, 硫化鎵之晶體成長及光學特性研究, 碩士論文, 國立台灣科技大學, (2013).
[15] J.I. Pankove, Optical Procecal Processes in Semiconductors, Dover, (1975).
[16] B. Seraphin, R. Hess, Franz-Keldysh effect above the fundamental edge in germanium, Phys. Rev. Lett., 14 (1965) 138-140.
[17] D.E. Aspnes, Handbook on Semiconductors : Modulation Spectroscopy Electric Field Effects on the Dielectric Function of Semiconductors, 2 (1980) 109-154.
[18] M. Cardona, Solid State Physics: Modulation Spectroscopy (1969).
[19] A.K. Berry, D.K. Gaskill, G.T. Stauf, N. Bottka, Photoreflectance of semi-insulating InP: resistivity effects on the exciton phase, Appl. Phys. Lett., 58 (1991) 2824-2826.
[20] S.E. Acosta-Ortiz, A. Lastras-Martínez, Electro-optic effects in the optical anisotropies of (001) GaAs, Phys. Rev. B, 40 (1989) 1426-1429.
[21] J. Grigas, E. Talik, V. Lazauskas, X-ray photoelectron spectra and electronic structure of Bi2S3 crystals, Phys Status Solidi B, 232 (2002) 220-230.
[22] K. Lukaszewicz, J. Stepien-Damm, A. Pietraszko, A. Kajokas, J. Grigas, Crystal structure, thermal expansion, dielectric permittivity and phase transitions of Bi2S3, Pol J Chem, 73 (1999) 541-546.
[23] Y.Y. Zhao, K.T.E. Chua, C.K. Gan, J. Zhang, B. Peng, Z.P. Peng, Q.H. Xiong, Phonons in Bi2S3 nanostructures: Raman scattering and first-principles studies, Physical Review B, 84 (2011).
[24] 朱韻儒, 硒化銦系列半導體之晶體成長與特性研究, 碩士論文, 國立台灣科技大學, (2014).
[25] D. Errandonea, D. Martinez-Garcia, A. Segura, J. Haines, E. Machado-Charry, E. Canadell, J.C. Chervin, A. Chevy, High-pressure electronic structure and phase transitions in monoclinic InSe: X-ray diffraction, Raman spectroscopy, and density functional theory, Physical Review B, 77 (2008).
[26] L. Gildart, J.M. Kline, D.M.J. Mattox, Phys. Chem. Solids, 18 (1961) 286.
[27] B.J. Garner, D. Lukose, Expert Adviser Utilizing Goal Interpretation Methods, Proceedings of the World Congress on Expert Systems, Vols 1-4, 78 (1991) 1527-1540.
[28] P.A. Chate, S.D. Lakde, Electrical, optical and structural properties of rod shaped Bi2S3 thin films deposited by dip technique, J Mater Sci-Mater El, 26 (2015) 5847-5851.
[29] F.J. Strieter, Growth of single crystal bismuth telluride, Advanced Energy Conversion, 1 (1961) 125-127.
[30] S. Gupta, N. Vijayan, A. Krishna, K. Thukral, K.K. Maurya, S. Muthiah, A. Dhar, B. Singh, G. Bhagavannarayana, Enhancement of thermoelectric figure of merit in Bi2Se3 crystals through a necking process, J Appl Crystallogr, 48 (2015) 533-541.
[31] 黃政光, 釕的硫屬化合物之單晶成長及特性量測, 博士論文, 國立台灣工業技術學院, (1995).

QR CODE