簡易檢索 / 詳目顯示

研究生: 吴楠
Nan Wu
論文名稱: “儀表盤”:蒙地卡羅樹搜索在建築設計初期中的應用
Dashboard: Monte Carlo Tree Search in the Early Stage of Architectural Design
指導教授: 施宣光
Shen-Guan Shih
口試委員: 謝尚賢
Shang-Hsien Hsieh
彭雲宏
Yeng-Horng Perng
阮怡凱
Yi-Kai Juan
蔡欣君
Lucky Tsaih
學位類別: 博士
Doctor
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 176
中文關鍵詞: 衍生式建模蒙地卡羅樹搜索建築設計初期設計決策儀表盤
外文關鍵詞: Generative modeling, Monte Carlo Tree Search, Early stage of architectural design, Design decision, Dashboard
相關次數: 點閱:371下載:57
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 建築師在設計流程中對決策節點所建構起來的決策樹進行搜索時,需要在衆多決策選項的搜索空間中找到能夠滿足評估函數的較佳方案。矛盾的是,建築師和專業顧問需要在設計決策確定、有足夠資訊的前提下才能進行有效的評估,但是由於建築設計初期的資訊匱乏導致了建築設計流程中無法進行有效評估。評估資訊無法及時回饋,通常只淪為資料呈現以至於無法實質性地幫助建築師在設計過程中做出決策並造成設計決策無法帶入到下一設計階段的尷尬局面。近年來,在建築資訊建模(Building Information Modeling)深入研究的背景下,資訊技術的提升為解決這種窘境帶來了契機。
    本研究提出一個基於衍生式建模(Generative Modeling)與蒙地卡羅樹搜索(Monte Carlo Tree Search)整合而成的架構平臺作爲進行設計決策搜索的“儀表盤”(Dashboard)。在這個架構下,蒙地卡羅樹搜索可以在決策搜索空間較大的決策樹中,在建築設計初期資訊匱乏情況下,通過對未作出決策的決策點進行隨機取樣並評估,並將評估資訊回饋給建築師作爲參考以幫助其瞭解設計趨勢,最終找到滿足評估函數的較佳設計方案。文章通過兩個案例:設計初期對建築量體的配置和建築立面單元幕墻設計來模擬這一過程並進行探討,以證明儀表盤可以幫助建築師做出設計決策,提高溝通與設計效率。


    Architects need to find a better solution that can meet the evaluation function in the search space of many design decision options while they are searching the decision tree which constructed by decision nodes in the architectural design process. Paradoxically, architects and professional consultants can only carry out effective evaluations when the design decisions are confirmed and there is sufficient information. However, due to the lack of information in the early stages of architectural design, effective evaluation cannot be carried out in the architectural design process. The evaluation information cannot be feedback in time and is usually used for presentation of data. In this case, the evaluation information cannot substantially help the architect to make design decisions. In recent years, under the background of research on Building Information Modeling, the improvement of information technology has brought an opportunity to solve this problem.
    This study proposed a framework platform based on generative modeling and Monte Carlo Tree Search as a dashboard for design decisions searching. Under this framework, Monte Carlo tree search can randomly sample and evaluated on the decision node which have not made decisions in the decision tree with a large searching space, in the case of lack of information in early design stage. It will feedback the information to architects as reference to help them control the design trend, and finally find a better design that meet the evaluation function. This article takes two cases as example, an early design of building massing configuration and building facade unit curtain wall design, to simulate this process and makes discussions to prove that the Dashboard should help architects make design decisions and improve the efficiency of communication and design.

    第一章 緒論 1.1. 研究背景與動機 1.2. 研究目的 1.3. 研究範圍與限制 1.4. 研究方法 1.5. 論文架構 第二章 文獻回顧 2.1. 建築設計初期 2.1.1. 以IPD為基礎的建築設計業務流程 2.1.2. 建築設計初期的溝通迴圈 2.1.3. 建築設計初期的特點 2.1.3.1. 不確定性 2.1.3.2. 資訊匱乏 2.1.3.3. 跨專業資訊的整合 2.2. 決策樹搜索 2.3. 建築設計中的資訊技術 2.3.1. 傳統建築設計流程中的資訊技術 2.3.2. 建築設計評估的資訊技術 2.3.2.1. 三種設計評估的資訊技術 2.3.2.2. 物理模擬分析與統計模擬分析 2.3.2.3. 現有資訊技術的局限性 2.4. 小結 第三章 基於蒙地卡羅樹搜索與衍生式建模的儀表盤 3.1. 工作循環、資訊整合策略與Dashboard 3.1.1. 儀表盤(Dashboard) 3.1.2. Dashboard的應用 3.2. 衍生式建模 3.3. 蒙地卡羅樹搜索 3.3.1. 蒙地卡羅模擬(Monte Carlo Simulation) 3.3.2. 蒙地卡羅樹搜索( Monte Carlo Tree Search) 3.4. 小結 第四章 以蒙地卡羅樹搜索和衍生式建模構建的儀表盤在建築設計初期中的應用 4.1. 蒙地卡羅模擬在建築量體配置中的應用 4.1.1. 案例概況 4.1.2. 建築量體與採光分析 4.1.2.1. 量體調整與採光對進行後續的內部功能配置的影響 4.1.2.2. 建築西側採光與節能的矛盾對決策的影響 4.1.3. 建築量體與景觀視線分析 4.2. 基於蒙地卡羅樹搜索的單元幕墻設計決策模型 4.2.1. 單元幕墻設計情境的建立 4.2.1.1. 傳統造價估算與基於造價目標函數 4.2.1.1.1. 傳統造價估算 4.2.1.1.2. 造價目標函數與風壓、節能函數評估 4.2.1.2. 幕墻單元的屬性 4.2.2. 基於蒙地卡羅樹搜索的建築設計決策模型流程 4.2.3. 基於蒙地卡羅樹搜索的設計平臺 4.3. 小結 第五章 結論 参考文献 附錄 建築量體長寬比研究調查 附錄 出版論文一 附錄 出版論文二 附錄 出版論文三 附錄 出版論文四

    A Working Definition: Integrated Project Delivery. (2007). Retrieved from http://www.ipd-ca.net/images/ IntegratedProjectDeliveryDefinition.pdf 2007.
    American Institute of Architects. (2010a). Level of Development. Retrieved from www.aia.org/index.htm.
    American Institute of Architects. (2010b). LOD100. Retrieved from www.aia.org/index.htm.
    Attia, S., Beltrán, L., Herde1, A., & Hensen, J. (2009). “Architect Friendly”: a comparison of ten different building performance simulation tools. 11th IBPSA Building Simulation Conference, 204–211. Glasgow.
    Balcomb, J. D., & Curtner, A. (2002). Multi-criteria decision-making process for buildings. (June), 528–535. https://doi.org/10.1109/iecec.2000.870762
    BPMN. (2020). Business Process Modeling Notation. Retrieved from www.bpmn.org
    Browne, C., Powley, E. J., Whitehouse, D., Lucas, S., Cowling, P. I., Rohlfshagen, P., … Colton, S. (2012). A survey of Monte Carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1), 1–43. https://doi.org/10.1109/TCIAIG.2012.2186810
    Chang, Y., Wu, N., & ShenGuan, S. (2015). Exploring the integrated project delivery approach for architectural design heuristic. Qingdao: The 11th China Urban Housing Conference.
    Cheung, F. K. T., Rihan, J., Tah, J., Duce, D., & Kurul, E. (2012). Early stage multi-level cost estimation for schematic BIM models. Automation in Construction, 27, 67–77. https://doi.org/10.1016/j.autcon.2012.05.008
    Chong, Y. T., Chen, C.-H., & Leong, K. F. (2009). A heuristic-based approach to conceptual design. Research in Engineering Design, 20(2), 97–116. https://doi.org/10.1007/s00163-008-0059-9
    CURT. (2007). The Construction User`s Roundtable. Retrieved from www.curt.org/
    David Silver, Huang, A., Maddison, C. J., Guez, A., Sifre, L., Driessche, G. van den, … Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529, 484–489. https://doi.org/https://doi.org/10.1038/nature16961
    David Silver, Julian, S., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., … Hassabis, D. (2017). Mastering the game of Go without human knowledge. Nature, 550, 354–359. https://doi.org/https://doi.org/10.1038/nature24270
    de Wit, S., & Augenbroe, G. (2002). Analysis of uncertainty in building design evaluations and its implications. Energy and Buildings, 34(9), 951–958. https://doi.org/10.1016/S0378-7788(02)00070-1
    Dieb, T. M., Ju, S., Yoshizoe, K., Hou, Z., Shiomi, J., & Tsuda, K. (2017). MDTS: automatic complex materials design using Monte Carlo tree search. Science and Technology of Advanced Materials, 18(1), 498–503. https://doi.org/10.1080/14686996.2017.1344083
    Domínguez-Muñoz, F., Cejudo-López, J. M., Carrillo-Andrés, A., & Ruivo, C. R. (2012). Design of solar thermal systems under uncertainty. Energy and Buildings, 47, 474–484. https://doi.org/10.1016/j.enbuild.2011.12.031
    Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011). BIM_Handbook_A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors (Second). Hoboken, New Jersey: John Wiley & Sons, Inc.
    Flourentzou, F., & Roulet, C.-A. (2002). Elaboration of retrofit scenarios. Energy and Buildings, 34(2), 185–192. https://doi.org/10.1016/S0378-7788(01)00106-2
    Generative Modelling Language. (2020). Retrieved from Computer Graphics & Knowledge Visualization, TU Graz website: http://www.generative-modeling.org/GenerativeModeling/Gml.html
    Hopfe, C. J., Augenbroe, G. L. M., & Hensen, J. L. M. (2013). Multi-criteria decision making under uncertainty in building performance assessment. Building and Environment, 69, 81–90. https://doi.org/10.1016/j.buildenv.2013.07.019
    Huang, Y.-S., Chang, W.-S., & Shih, S.-G. (2014). Building massing optimization in the conceptual design phase. CAD Conference and Exhibition, 78–80. https://doi.org/10.14733/cadconfP.2014.78-80
    Hygh, J. S., DeCarolis, J. F., Hill, D. B., & Ranji Ranjithan, S. (2012). Multivariate regression as an energy assessment tool in early building design. Building and Environment, 57, 165–175. https://doi.org/10.1016/j.buildenv.2012.04.021
    Isikdag, U. (2012). Design patterns for BIM-based service-oriented architectures. Automation in Construction, 25, 59–71. https://doi.org/10.1016/j.autcon.2012.04.013
    Krish, S. (2011). A practical generative design method. Computer-Aided Design, 43(1), 88–100. https://doi.org/10.1016/j.cad.2010.09.009
    Kusiak, A., Li, M., & Zhang, Z. (2010). A data-driven approach for steam load prediction in buildings. Applied Energy, 87(3), 925–933. https://doi.org/10.1016/j.apenergy.2009.09.004
    Lin, S.-H., & Gerber, D. J. (2014). Evolutionary energy performance feedback for design: Multidisciplinary design optimization and performance boundaries for design decision support. Energy and Buildings, 84, 426–441. https://doi.org/10.1016/j.enbuild.2014.08.034
    Mechri, H. E., Capozzoli, A., & Corrado, V. (2010). USE of the ANOVA approach for sensitive building energy design. Applied Energy, 87(10), 3073–3083. https://doi.org/10.1016/j.apenergy.2010.04.001
    Meniru, K., Rivard, H., & Bédard, C. (2003). Specifications for computer-aided conceptual building design. Design Studies, 24(1), 51–71. https://doi.org/10.1016/S0142-694X(02)00009-1
    Monte Carlo Tree Search. (2020). Retrieved from https://int8.io/monte-carlo-tree-search-beginners-guide/
    Negrinho, R., & Gordon, G. (2017). DeepArchitect: Automatically Designing and Training Deep Architectures.
    Okudan, G. E., & Tauhid, S. (2008). Concept selection methods- a literature review from 1980 to 2008. International Journal of Design Engineering, 1(3), 243. https://doi.org/10.1504/IJDE.2008.023764
    Pietrzyk, K., & Hagentoft, C. (2008). Reliability analysis in building physics design. Building and Environment, 43(4), 558–568. https://doi.org/10.1016/j.buildenv.2007.01.009
    Prada, A., Cappelletti, F., Baggio, P., & Gasparella, A. (2014). On the effect of material uncertainties in envelope heat transfer simulations. Energy and Buildings, 71, 53–60. https://doi.org/10.1016/j.enbuild.2013.11.083
    Schlueter, A., & Thesseling, F. (2009). Building information model based energy/exergy performance assessment in early design stages. Automation in Construction, 18(2), 153–163. https://doi.org/10.1016/j.autcon.2008.07.003
    Shi, X., & Yang, W. (2013). Performance-driven architectural design and optimization technique from a perspective of architects. Automation in Construction, 32, 125–135. https://doi.org/10.1016/j.autcon.2013.01.015
    Sun, H., & Ye, X. (2005). Analysis of Risk Factors of Project Cost Base on the MonteCarlo Simulation. Journal of Chongqing Jianzhu University, 121–126.
    Turrin, M., von Buelow, P., & Stouffs, R. (2011). Design explorations of performance driven geometry in architectural design using parametric modeling and genetic algorithms. Advanced Engineering Informatics, 25(4), 656–675. https://doi.org/10.1016/j.aei.2011.07.009
    Wikipedia. (2015a). Monte Carlo Simulation. Retrieved from https://zh.wikipedia.org/wiki/蒙地卡羅方法
    Wikipedia. (2015b). 內容分析法. Retrieved from Wikipedia website: https://zh.wikipedia.org/wiki/內容分析法
    Wikipedia. (2020). Monte Carlo tree search. Retrieved from Wikipedia website: https://en.wikipedia.org/wiki/Monte_Carlo_tree_search
    Wright, J., & Loosemore, H. (2001). The multi-criterion optimization of building thermal design and control. 7-Th IBPSA Conference, (Dm), 873–880. Retrieved from http://www.inive.org/members_area/medias/pdf/Inive/IBPSA/UFSC505.pdf
    Wu, N., & Shih, S.-G. (2015). A BIM Inspired Supporting Platform for Architectural Design. Computer-Aided Design and Applications, 12(3), 327–337. https://doi.org/10.1080/16864360.2014.981463
    Zhang, Y. (2017). CityMatrix-An Urban Decision Support System Augmented by Artificial Intelligence. MASSACHUSETTS INSTITUTE OF TECHNOLOGY.
    Zook, A., Harrison, B., & Riedl, M. O. (2015). Monte-Carlo Tree Search for Simulation-based Strategy Analysis. Proceedings of the 10th Conference on the Foundations of Digital Games., (Fdg).
    謝尚賢. (2012). BIM之應用技術中LOD意謂詳細度或完整度. 營建知識, (352), 60–61.

    QR CODE