簡易檢索 / 詳目顯示

研究生: 林育鈞
Yu-Chun Lin
論文名稱: 利用常壓電漿製備含矽氧基以及胺基薄膜並應用於生醫材料
Preparation of SiOx and amine functionalities containing thin films by atmospheric pressure plasma jet for biomedical applications
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 林析右
Shi-Yow Lin
王勝仕
Steven S.-S. Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 106
中文關鍵詞: 常壓電漿矽烷薄膜離子釋放生物相容性
外文關鍵詞: atmospheric pressure plasma, SiOx film, ion release, biocompatibility
相關次數: 點閱:417下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文之研究目的,為利用常壓電漿沉積兩種不同的前驅物:六甲基二矽氧烷 (hexamethyldisiloxane, HMDSO) 以及三乙氧基矽烷 (3-aminopropyltriethoxylsilane, APTES) ,製備電漿聚合薄膜,並應用於離子釋放及表面生物相容性之探討。在材料表面分析方面,利用不同的分析方法,如場發射式掃描式電子顯微鏡 (field emission scanning electron microscope, FE-SEM)、全反射式傅立葉轉換紅外線光譜儀 (attenuated total reflectance Fourier transform infrared spectroscopy, ATR-FTIR)、橢圓偏光儀 (ellipsometry)、原子力顯微鏡 (atomic force microscope, AFM)、水接觸角量測 (water contact angle, WCA measurement)、及化學分析電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 等方法鑑定以電漿聚合沉積薄膜之物理化學性質,並發展不同的應用。
本論文的第一部份為利用常壓電漿沉積HMDSO,結果顯示所沉積薄膜厚度隨沉積瓦數以及沉積時間增加而增加,其中膜厚與電漿沉積時間具有線性關係。另外,接觸角量測結果顯示,利用常壓電漿於不同沉積瓦數下沉積HMDSO薄膜,於低沉積瓦數50瓦下可製備超疏水薄膜,其水接觸角為143 °;當沉積瓦數增加為140瓦時,表面變為超親水,原因可能為表面碳含量由13% 減少為6%,同時氧含量由49% 上升為54%,其中碳含量下降原因為隨沉積瓦數上升氧氣受激發程度上升,因此氧化單體結構之甲基基團,使得沉積薄膜由有機矽轉變為無機矽,使得表面由疏水性質變為親水性。實驗結果同時顯示,表面親疏水性質主要與沉積時所使用的瓦數有關,薄膜厚度對表面親疏水性質無直接影響。
控制做為阻障層材料之性質,可應用於離子釋放、氣體穿透及藥物釋放等系統,本研究將利用製備的HMDSO薄膜應用於銀離子釋放系統,並且探討表面性質對離子釋放的影響。研究中為了達到修飾銀離子的目的,利用實驗室真空電漿聚合正庚胺 (plasma polymerized heptylamine, HApp) 之技術,於基材表面修飾胺基,並將樣品浸泡於0.1 M硝酸銀溶液中,以2小時以螯合銀離子,接著在樣本上沉積不同親疏水性之HMDSO薄膜,以控制銀離子釋放。銀離子的釋放則用於探討抗菌效果,利用抑菌圈直徑表示抑菌效果,結果顯示表面為親水性之HMDSO薄膜層,相較於疏水薄膜層而言,有較佳之抑菌效果。
於第二部份常壓電漿沉積APTES研究中,主要目的為沉積同時具有SiOx以及胺基兩種官能基的薄膜,並探討其生物相容性。由橢偏儀分析結果可發現,APTES之膜厚與沉積時間呈現線性關係,沉積速率約為2 nm/min,並於ATR-FTIR中可發現胺基之吸收訊號,表示於低瓦數下可成功沉積含胺基的矽氧薄膜於基材表面。藉由XPS分析,得到表面碳元素含量隨沉積時間增加而減少,同時氧與氮含量增加,顯示成功引入胺基,且可與ATR-FTIR結果相應證。在應用方面,藉由LDH (Lactate dehydrogenase assay) 計算貼附於APTES薄膜之L929老鼠纖維母細胞的數目,發現當沉積APTES時間增加,貼附於表面之細胞數目增加,其中,於60分鐘沉積APTES薄膜上之細胞貼附量為12 × 103 cell/cm2為最多。為探討影響細胞貼附的結果,利用AFM分析薄膜表面粗糙度,發現表面粗糙度隨薄膜厚度增加而增加,但薄膜之粗糙度皆低於未經沉積之不銹鋼基材,因此推論粗糙度對於細胞貼附影響程度不高。比較上述研究影響細胞貼附之因素,由實驗結果推論影響程度由高到低排列為、表面官能基、表面親水性、及粗糙度。


The thin films containing SiOx functionalities showed versatilities for the applications in protecting layer, gas penetration barrier, and corrosion resistance layer when coated on metal and plastic materials. Due to the inorganic structure of Si-O-Si bindings, the surface mechanical property of the SiOx coatings was generally considered advantageous. In this study, SiOx containing thin films was deposited by atmospheric pressure plasma jet using two different types of precursors: hexamethyldisiloxane, (HMDSO) and 3-aminopropyltriethoxylsilane (APTES). HMDSO and APTES allowed to functionalize the surfaces of materials with SiOx and the combination of SiOx and amines, respectively. The APPJ deposition was optimized under different plasma parameters including applied power and deposition time. The resultant SiOx containing thin films were characterized by analytical methods such as attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Field emission scanning electron microscope (FE-SEM), water contact angle measurement and X-ray photoelectron spectroscopy (XPS).
The results showed that the HMDSO films were successfully deposited on the substrates with good adhesion. The thickness of deposited thin films was modulated by the deposition time and applied power of the APPJ. The surface wettability revealed dramatic variations when the HMDSO films were prepared under different applied power that both superhydrophobic and superhydrophilic HMDSO films were able to be acquired in this study, which was mainly due to the different levels of oxidation. The as-prepared HMDSO films with different wettability were further applied for modulating the release of silver ions by incorporating silver ions prior to the HMDSO coatings. In addition, the effects of silver ion release were evaluated by antibacterial tests. The zone of inhibition results performed on agar plates showed that the maximum antibacterial HMDSO films were found by applying 140 W APPJ deposition, indicating that the hydrophilic SiOx coating might facilitate the ion releases.
The deposition of the thin films containing combined functionalities of SiOx and amines was achieved by depositing APTES. The film thickness was modulated by deposition time and was evaluated by ellipsometry. The results showed that the film thickness of the APPJ deposited APTES grew linearly with the deposition time. ATR-FTIR spectrum revealed the absorbance of amine functional groups at wave number 1563 cm-1, which indicates the surface was successfully functionalized. Moreover, Lactate dehydrogenase assay (LDH) results showed that the cell density on the APTES deposited thin films increased as function of the deposition time, which is most probably due to the inducing of amine functionality for the promotion of the affinity with biomolecules.
In summary, two different SiOx containing thin films were successfully acquired by APPJ deposition using the precursors of HMDSO and APTES. The resultant SiOx containing thin films possess a wide range of wettability which may have great potentials for ion release or delivery system. On the other hand, the amine-rich SiOx films allow to be applied in biomedical related materials.

摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究目標 3 1.3 論文總覽 4 第二章 文獻回顧 5 2.1 電漿介紹 5 2.2 常壓電漿之特性及應用 7 2.3 表面改質方法與矽烷類之應用 16 2.3.1 濕式表面修飾法 17 2.3.2 乾式表面修飾法 19 2.3.3 矽烷類單體之應用 22 第三章 實驗方法與儀器原理 36 3.1實驗藥品 36 3.1.1電漿聚合前驅物 36 3.1.2大腸桿菌培養液所需藥品 37 3.1.3細胞培養液所需藥品 37 3.1.4製備LDH溶液所需藥品 38 3.2實驗方法 38 3.2.1氣旋式常壓電漿系統及其操作方式 38 3.2.2電漿沉積無機薄膜 40 3.2.2.1基材準備 41 3.2.2.2電漿沉積 41 3.2.2.3電漿腔體清潔 42 3.3物理性質與化學性質分析 42 3.3.1離子釋放測試 43 3.3.1.1大腸桿菌培養液及洋菜盤製備 43 3.3.1.2洋菜盤測試 44 3.3.2細胞貼附測試 44 3.3.2.1細胞培養 45 3.3.2.2繼代培養 46 3.3.2.3培養細胞於樣本之上 46 3.3.2.4細胞染色法 47 3.4儀器原理及方法 48 3.4.1橢圓偏光儀 48 3.4.2接觸角量測儀 48 3.4.3原子力顯微鏡 49 3.4.4場發掃描式電子顯微鏡 50 3.4.5全反射式傅立葉紅外線光譜儀 51 3.4.6化學分析電子能譜儀 52 3.4.7統計學分析 (statistical analysis) 53 第四章 結果與討論 54 4.1電漿聚合沉積HMDSO 54 4.1.1沉積瓦數及沉積時間對膜厚之影響 54 4.1.2於不同沉積參數之HMDSO薄膜表面水濕性及表面型態鑑定 56 4.1.3 HMDSO薄膜表面化學組成鑑定 58 4.1.4不同水濕性表面於離子釋放之應用 60 4.2電漿聚合沉積APTES 63 4.2.1薄膜之厚度 63 4.2.2 SEM薄膜表面結構分析 64 4.2.3 APTES薄膜表面化學組成鑑定 65 4.2.4薄膜表面親疏水性質之變化 66 4.2.5 XPS分析薄膜之表面化學組成 67 4.2.6電漿沉積APTES薄膜表面粗糙度量測 68 4.2.7 APTES薄膜的生物相容性測試 69 4.2.8 LDH方法分析電漿沉積APTES無機薄膜細胞貼附量 70 4.2.9以光學顯微鏡觀察細胞於電漿沉積APTES無機薄膜的生長情形 71 第五章 結論 73 第六章 參考文獻 85

[1] Muguruma H, Hiratsuka A, Karube I. Thin-Film Glucose Biosensor Based on Plasma-Polymerized Film: Simple Design for Mass Production. Analytical Chemistry. 2000;72:2671-5.
[2] Vasudev MC, Anderson KD, Bunning TJ, Tsukruk VV, Naik RR. Exploration of Plasma-Enhanced Chemical Vapor Deposition as a Method for Thin-Film Fabrication with Biological Applications. Appl Mater Interfaces. 2013;5:3983-94.
[3] Radeva E. Thin plasma-polymerized layers of hexamethyldisiloxane for acoustoelectronic humidity sensors. Sensors and Actuators. 1997;44:275–8.
[4] Vassallo E, Cremona A, Laguardia L, Mesto E. Preparation of plasma-polymerized SiOx-like thin films from a mixture of hexamethyldisiloxane and oxygen to improve the corrosion behaviour. Surface & Coatings Technology. 2006;200:3035– 40.
[5] Vautrin-Ul C, Roux Fo, Boisse-Laporte C, Pastol JL, Chausse A. Hexamethyldisiloxane (HMDSO)-plasma-polymerised coatings as primer for iron corrosion protection: influence of RF bias. J Mater Chem. 2002;12:2318–24.
[6] Lord MS, Foss M, Besenbacher F. Influence of nanoscale surface topography on protein
adsorption and cellular response. Nano Today 2010;5: 66—78.
[7] Williams DF. A model for biocompatibility and its evaluation. J Biomed Eng. 1989;11: 185–91.
[8] Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941-53.
[9] 劉士榮, 高宜娟. 生醫材料. 台中市: 滄海書局; 2010.
[10] Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. The biosynthesis of adenosylcobalamin (vitamin B12 ). Nat Prod Rep. 2002;19:390–412.
[11] Zhou F, Huck WTS. Surface grafted polymer brushes as ideal building blocks for smart surfaces. Phys Chem Chem Phys. 2006;8:3815–23.
[12] Das M, Mardyani S, Chan WCW, Kumacheva E. Biofunctionalized pH-Responsive Microgels for Cancer Cell Targeting: Rational Design. WILEY-VCH Verlag GmbH & Co KGaA, Weinheim. 2006;18:80-3.
[13] Zhang Y, Guan Y, Zhou S. Synthesis and Volume Phase Transitions of Glucose-Sensitive Microgels. Biomacromolecules. 2006;7:3196-201.
[14] Wu W, Zhou T, Aiello M, Zhou S. Optically pH and H2O2 Dual Responsive Composite Colloids through the Directed Assembly of Organic Dyes on Responsive Microgels. Chem Mater. 2009;20:4905–13.
[15] Agostino Rd, Favia P, Oehr C, Wertheimer MR. Low-Temperature Plasma Processing of Materials: Past, Present, and Future. Plasma Process Polym. 2005;2:7–15.
[16] Desxhenaux C, Affolter A, Magni D, Hollenstein C, Fayet P. Investigations of CH4, C2H2 and C2H4 dusty RF plasmas by means of FTIR absorption spectroscopy and mass spectrometry. J Phys D: APPL Phys. 1999;32:1876-86.
[17] Mangindaan D, Kuo W-H, Wang Y-L, Wang M-J. Experimental and Numerical Modeling of the Controllable Wettability Gradient on Poly(propylene) Created by SF6 Plasma. Plasma Process Polym. 2010;7:754–65.
[18] McCord MG, Hwang YJ, Qiu Y, Hughes LK, Bourham MA. Surface Analysis of Cotton Fabrics Fluorinated in Radio-Frequency Plasma. Applied Polymer Science,. 2003;88:2038-47.
[19] Yasuda H, Toshihiro H. Critical evaluation of conditions of plasma polymerization. Journal of Polymer Science. 1978;16:743-59.
[20] Nakajima A, Fujishima A, Hashimoto K, Watanabe T. Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate. Adv Mater. 1999;11:1365-8.
[21] Yasuda HK. Plasma polymerization. 1 ed: Academic Press; 1985.
[22] Schutze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF. The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources. IEEE TRANSACTIONS ON PLASMA SCIENCE. 1998;26:1685-94.
[23] Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P. Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B. 2006;61:2-30.
[24] Shang HM, Wang Y, Limmer SJ, Chou TP, Takahashi K, Cao GZ. Optically transparent superhydrophobic silica-based films. Thin Solid Films 2005;472:37-43.
[25] Takeuchi N, Hamasaki T, Yasuoka K, Sakurai T. Surface charge measurement in surface dielectric barrier discharge by laser polarimetry. Journal of Electrostatics. 2011;69 87-91.
[26] Alexandrov SE, Hitchman ML. Chemical vapor deposition enhanced by atmosheric pressure non-thermal non-equilibrium plasmas. Chem Vap Deposition. 2005;11:457-68.
[27] Cui N-Y, Brown NMD. Modification of the surface properties of a polypropylene (PP) film using air dielectric barrier discharge plasma. Applied Surface Science. 2002;189:31-8.
[28] Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, et al. Floating Electrode Dielectric Barrier Discharge Plasma in Air Promoting Apoptosis Behavior in Melanoma Skin Cancer Cell Lines. Plasma Chem Plasma Process. 2007;27:163-76.
[29] Pankaj SK, Bueno-Ferrer C, Misra NN, O'Neill L, Jiménez A, Bourke P, et al. Characterization of polylactic acid films for food packaging as affected by
dielectric barrier discharge atmospheric plasma. Innovative Food Science and Emerging Technologies. 2014;21:107-13.
[30] Santos AL, Botelho EC, Kostov KG, Nascente PAP, Silva LLGd. Atmospheric Plasma Treatment of Carbon Fibers for Enhancement of Their Adhesion Properties. IEEE TRANSACTIONS ON PLASMA SCIENCE. 2013;41:319-24.
[31] Magureanu M, Bradu C, Piroi D, Mandache NB, Parvulescu V. Pulsed Corona Discharge for Degradation of Methylene Blue in Water. Plasma Chem Plasma Process. 2013;33:51–64.
[32] Qu G, Liang D, Qu D, Huang Y, Liu T, Mao H, et al. Remove cadmium ion and phenol in waste water by O2 pulsed corona discharge with activated carbon. Chemical Engineering Journal. 2013;228:28–35.
[33] Zhu L-P, Zhu B-K, Xu L, Feng Y-X, Liu F, Xu Y-Y. Corona-induced graft polymerization for surface modification of porous polyethersulfone membranes. Applied Surface Science. 2007;253:6052–9.
[34] Ward LJ, Schofield WCE, Badyal JPS. Atmospheric Pressure Plasma Deposition of Structurally Well-Defined Polyacrylic Acid Films. Chem Mater. 2003;15:1466-9.
[35] Lee B-j, Kusano Y, Kato N, Naito K, Horiuchi T, Koinuma H. Oxygen Plasma Treatment of Rubber Surface by the Atmospheric Pressure Cold Plasma Torch. Jpn J Appl Phys. 1997;36:2888-91.
[36] Cheng C, Liye Z, Zhan R-J. Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet. Surface & Coatings Technology. 2006;200:6659–65.
[37] Massines F, Sarra-Bournet C, Fanelli F, Naude N, Gherardi N. Atmospheric Pressure Low Temperature Direct Plasma Technology: Status and Challenges for Thin Film Deposition. Plasma Process Polym. 2012;9: 1041–73.
[38] Zhua Y, Hua J, Wang J. Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. Journal of Hazardous Materials 2012:155– 61

[39] Mahdavi M, Ahmad MB, Haron MJ, Gharayebi Y, Shameli K, Nadi B. Fabrication and Characterization of SiO2/(3-Aminopropyl)triethoxysilane-Coated Magnetite Nanoparticles for Lead(II) Removal from Aqueous Solution. J Inorg Organomet Polym. 2013;23:599-607.
[40] Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007;28:3074-82.
[41] Postma A, Yan Y, Wang Y, Zelikin AN, Tjipto E, Caruso F. Self-Polymerization of Dopamine as a Versatile and Robust Technique to Prepare Polymer Capsules. Chem Mater. 2009;21:3042-4.
[42] Hopkins J, Badyal JPS. CF4 Plasma Treatment of Asymmetric Polysulfone Membranes. Langmuir 1996;12:3666–70.
[43] Mitchell SA, Davidson MR, Emmison N, Bradley RH. Isopropyl alcohol plasma modification of polystyrene surfaces to influence cell attachment behaviour. Surface Science. 2004;561:110-20.
[44] Zanini S, Grimoldi E, Riccardi C. Development of controlled releasing surfaces by plasma deposited multilayers. Materials Chemistry and Physics. 2013;138:850-5.
[45] Song H, Jung SC, Kim BH. Focal Adhesion of Osteoblastic Cells on Titanium Surface with Amine Functionalities Formed by Plasma Polymerization. Japanese Journal of Applied Physics. 2012;51.
[46] Lommatzsch U, Ihde Jr. Plasma Polymerization of HMDSO with an Atmospheric Pressure Plasma Jet for Corrosion Protection of Aluminum and Low-Adhesion Surfaces. Plasma Process Polym. 2009:642-8.
[47] Alissawi N, Peter T, Strunskus T, Ebbert C, Grundmeier G, Faupel F. Plasma-polymerized HMDSO coatings to adjust the silver ion release properties of Ag/polymer nanocomposites. J Nanopart Res. 2013.
[48] Beier O, Pfuch A, Horn K, Weisser Jr, Schnabelrauch M, Schimanski A. Low Temperature Deposition of Antibacterially Active Silicon Oxide Layers Containing Silver Nanoparticles, Prepared by Atmospheric Pressure Plasma Chemical Vapor Deposition. Plasma Process Polym. 2013;10:77-87.
[49] Schäfer J, Horn S, Foest R, Brandenburg R, Vašina P, Weltmann K-D. Complex analysis of SiOxCyHz films deposited by an atmospheric pressure dielectric barrier discharge. Surface & Coatings Technology. 2011;205:S330–S4.
[50] Marchand DJ, Dilworth ZR, Stauffer RJ, Hsiao E, Kim J-H, Kang J-G, et al. Atmospheric rf plasma deposition of superhydrophobic coatings using tetramethylsilane precursor. Surface & Coatings Technology. 2013;234:14-20.
[51] Zhao J, Milanova M, Warmoeskerken MMCG, Dutschk V. Surface modification of TiO2 nanoparticles with silane coupling agents. Colloids and Surfaces A: Physicochem Eng Aspects 2012;413:273-9.
[52] Yamaura M, Camilo RL, Sampaio LC, Macedo MA, Nakamur M, Toma HE. Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. Magnetism and Magnetic Materials. 2004;279:210-7.
[53] Patel NG, Cavicchia JP, Zhang G, Newby B-mZ. Rapid cell sheet detachment using spin-coated pNIPAAm films retained on surfaces by an aminopropyltriethoxysilane network. Acta Biomaterialia. 2012;8:2559-67.
[54] Hassan N, Barbosa LRS, Itri R, Ruso JM. Fibrinogen stability under surfactant interaction. Journal of Colloid and Interface Science. 2011;362:118-26.
[55] Sen T, Haldar KK, Patra A. Au Nanoparticle-Based Surface Energy Transfer Probe for Conformational Changes of BSA Protein. J Phys Chem. 2008;112:17945–51.
[56] Osserman EF, Canfield RE, Betchok S. Lysozyme: A Subsidiary of Harcourt Brace Jovanovich; 2012.
[57] Ng A, Heynen M, Luensmann D, Subbaraman LN, Jones L. Optimization of a Fluorescence-based Lysozyme Activity Assay for Contact Lens Studies. Current Eye Research. 2013;2:252-9.
[58] 陳振東. 生物化學圖解. 藝軒圖書出版社2003.
[59] Rabe M, Verdes D, Seeger S. Understanding protein adsorption phenomena at solid surfaces. Advances in Colloid and Interface Science. 2011;162:87-106.
[60] Shen S-C, Ng WK, Chia L, Dong Y-C, Tan RBH. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization. Materials Research Bulletin. 2011;46:1665-9.
[61] Magdziarz P, Bober P, Trchová M, Morávková Z, Bláha M, Prokeš J, et al. Conducting composites prepared by the reduction of silver ions with poly(p-phenylenediamine). Polymer International. 2015;64:496–504.
[62] Leobandung W, Ichikawa H, Fukumori Y, Peppas NA. Preparation of stable insulin-loaded nanospheres of poly(ethylene glycol) macromers and N-isopropyl acrylamide. f Controlled Release 2002;80:357-63.
[63] Meder F, Daberkow T, Treccani L, Wilhelm M, Schowalter M, Rosenauer A, et al. Protein adsorption on colloidal alumina particles functionalized with amino, carboxyl, sulfonate and phosphate groups. Acta Biomaterialia 2012;8: 1221–9

[64] Múgica-Vidal R, Alba-Elías F, Sainz-García E, Ordieres-Meré J. Atmospheric plasma-polymerization of hydrophobic and wear-resistant coatings on glass substrates. Surface & Coatings Technology. 2014;259:374–85.
[65] Aissaoui N, Bergaoui L, Landoulsi J, Lambert J-F-o, Boujday S. Silane Layers on Silicon Surfaces: Mechanism of Interaction, Stability, and Influence on Protein Adsorption. Langmuir. 2012:656-65.
[66] Wang J, Wang H, Wang Y, Li J, Su Z, Wei G. Alternate layer-by-layer assembly of graphene oxide nanosheets and fibrinogen nanofibers on a silicon substrate for a biomimetic threedimensional hydroxyapatite scaffold†. J Mater Chem B. 2014;2:7360-8.
[67] Liang Y, Huang J, Zang P, Kim J, Hua W. Molecular layer deposition of APTES on silicon nanowire biosensors:Surface characterization, stability and pH response. Applied Surface Science. 2014;322:202-8.
[68] Sun C, Miao J, Yan J, Yang K, Ju CM, Shen J. Applications of antibiofouling PEG-coating in electrochemical biosensors for determination of glucose in whole blood. Electrochimica Acta 2013;89:549-54.
[69] Han X, Gelein R, Corson N, Wade-Mercer P, Jiang J, Biswas P, et al. Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology. 2011; 287:99–104.
[70] Kim H, Horwitz JS, Kushto G, Piqué A, Kafafi ZH, Gilmore CM, et al. Effect of film thickness on the properties of indium tin oxide thin films. Appl Phys. 2000;88:6021-5.
[71] Rombaldoni F, Mossotti R, Montarsolo A, Demichelis R, Innocenti R, Mazzuchetti G. The effects of HMDSO plasma polymerization on physical, low-stress mechenical and surface properties of wool facrics. AUTEX Research. 2008;8:77-83.
[72] Cui L, Ranade AN, Matos MA, Pingree LS, Frot TJ, Dubois G, et al. Atmospheric Plasma Deposited Dense Silica Coatings on Plastics. ACS Appl Mater Interfaces. 2012;4:6587-98.
[73] Premkumar PA, Starostin SA, Vries Hd, Paffen RMJ, Creatore M, Eijkemans TJ, et al. High Quality SiO2-like Layers by Large Area Atmospheric Pressure Plasma Enhanced CVD: Deposition Process Studies by Surface Analysis. Plasma Process Polym. 2009;6:693–702.
[74] Morent R, Geyter ND, Jacobs T, Vlierberghe SV, Dubruel P, Leys C, et al. Plasma-Polymerization of HMDSO Using an Atmospheric Pressure Dielectric Barrier Discharge. Plasma Process Polym. 2009;6:S537–S42.
[75] Palaskar S, Kale KH, Nadiger GS, Desai AN. Dielectric Barrier Discharge Plasma Induced Surface Modification of Polyester/Cotton Blended Fabrics to Impart Water Repellency Using HMDSO. Applied Polymer Science,. 2011;22:1092–100.
[76] Bour Jrm, Bardon J, Aubriet H, Frari DD, Verheyde B, Dams R, et al. Different Ways to Plasma-Polymerize HMDSO in DBD Configuration at Atmospheric Pressure for Corrosion Protection. Plasma Process Polym. 2008;5:788–96.
[77] Kim MT, Lee J. Characterization of amorphous SiC:H films deposited from hexamethyldisilazane Thin Solid Films 1997;303:173-9
[78] Wavhal DS, Zhang J, Steen ML, Fisher ER. Investigation of Gas Phase Species and Deposition of SiO2 Films from HMDSO/O2 Plasmas. Plasma Process Polym 2006;3: 276–87.
[79] Mortazavi SH, Ghoranneviss M, Sari AH. Argon/Hexamethyldisiloxane Plasma Effects on Poly Propylene Film Surface Properties. J Fusion Energ. 2010;29:499–502.
[80] Katarina RK, Takayanagi T, Oshima M, Motomizu S. Synthesis of a chitosan-based chelating resin and its application to the selective concentration and ultratrace determination of silver in environmental water samples. Analytica Chimica Acta. 2006;558:246-53.
[81] Shin DH, Ko YG, Choi US, Kim WN. Synthesis and characteristics of novel chelate fiber containing amine and amidine groups. Polym Adv Technol. 2004;15:459–66.
[82] Levasseur O, Stafford L, Gherardi N, Naude N, Blanchard V, Blanchet P, et al. Deposition of Hydrophobic Functional Groups on Wood Surfaces Using Atmospheric-Pressure Dielectric Barrier Discharge in HeliumHexamethyldisiloxane Gas Mixtures. Plasma Process Polym. 2012;9:1168–75.
[83] Fanelli F, Lovascio S, d’Agostino R, Arefi-Khonsari F, Fracassi F. Ar/HMDSO/O2 Fed Atmospheric Pressure DBDs: Thin Film Deposition and GC-MS Investigationof By-Products. Plasma Process Polym. 2000;7:535–43.
[84] Morra M, Occhiello E, Garbassi F. Contact Angle Hysteresis on Oxygen Plasma Treated Polypropylene Surfaces Colloid andlnterface Science. 1988;132:504-8.
[85] Tsougeni K, Vourdas N, Tserepi A, Gogolides E. Mechanisms of Oxygen Plasma Nanotexturing of Organic Polymer Surfaces: From Stable Super Hydrophilic to Super Hydrophobic Surfaces. Langmuir. 2009;25:11748–59.
[86] Wu C-C, Wei C-K, Ho C-C, Ding S-J. Enhanced Hydrophilicity and Biocompatibility of Dental Zirconia Ceramics by Oxygen Plasma Treatment
Materials Chemistry and Physics. 2015;8: 684-99.
[87] Multanen V, Chaniel G, Grynyov R, Loew RY, Siany NK, Bormashenko E. Hydrophilization of liquid surfaces by plasma treatment. Colloids and Surfaces A: Physicochem Eng Aspects. 2014;461:225-30.
[88] Lu Q-F, Zhang J-Y, Yang J, He Z-W, Fang C-Q, Lin Q. Self-Assembled Poly(N-methylaniline)–Lignosulfonate Spheres: From Silver Ion Adsorbent to Antimicrobial Material. Chem Eur J. 2013;19:10935 – 44.
[89] Liu P, Sehaqui H, Tingaut P, Wichser A, Oksman K, Mathew AP. Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose. 2014;21:449–61.
[90] Kim A, Jo Y, Won JC, Choi Y, Jang K-S, Jeong S, et al. Site-Selective Multi-Stacked Assembly of Silver Nanoparticles on Amine-Functionalized Printed Patterns: Comparative Studies on the Role of Electrostatic Interaction and Meniscus. Adv Mater Interfaces. 2015.
[91] Awwad AM, Salem NM, Abdeen AO. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Industrial Chemistry 2013;4:1-6.
[92] Alissawi N, Zaporojtchenko V, Strunskus T, Kocabas I, Chakravadhanula VSK, Kienle L, et al. Effect of gold alloying on stability of silver nanoparticles and control of silver ion release from vapor-deposited Ag–Au/polytetrafluoroethylene nanocomposites. Gold Bulletin. 2013;46:3-11.
[93] Zimmermann R, Pfuch A, Horn K, Weisser Jr, Heft A, Roぴder M, et al. An Approach to Create Silver Containing Antibacterial Coatings by Use of Atmospheric Pressure Plasma Chemical Vapour Deposition (APCVD) and Combustion Chemical Vapour Deposition (CCVD) in an Economic Way. Plasma Process Polym. 2011;8:295–304.
[94] Alexander MR, Short RD, Jones FR, Michaeli W, Blomfield CJ. A study of HMDSOrO plasma deposits using a high-sensitivity and energy resolution XPS instrument: curve fitting of the Si 2p core level. Applied Surface Science. 1999;137:179–83.
[95] Azioune A, Marcozzi M, Revello V, Pireaux J-J. Deposition of polysiloxane-like nanofilms onto an aluminium alloy by plasma polymerized hexamethyldisiloxane: characterization by XPS and contact angle measurements. Surf Interface Anal. 2007;39:615-23.

無法下載圖示 全文公開日期 2020/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE