簡易檢索 / 詳目顯示

研究生: 王忠蔚
Chung-Wei Wang
論文名稱: 應用於NLIS模組之新穎楔形導光管與透鏡耦合器
Innovative Coupler Design Based on Tapered Light Pipe with Lens
指導教授: 黃忠偉
Allen Jong-Woei Whang
口試委員: 李偉裕
Wei-Yu Lee
李昆益
Kun-Yi Lee
林晏瑞
Yen-Juei Lin
郭鴻飛
Hung-fei Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 70
中文關鍵詞: 自然光照明系統縮減光展角光學耦合傳光裝置
外文關鍵詞: NLIS, view angle, coupler
相關次數: 點閱:231下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著目前綠能科技蓬勃的發展,愈來愈多人埋首於自然光照明的領域。也因此,可以發現不少文獻中發現許多元件開始被創造,開發,並朝向高效率研究,有著各種不同的應用。自然光照明系統R包含了三個子系統:集光子系統,傳光子系統,以及放光子系統。此外,在各個子系統之間的連接也關係著整個自然光照明系統R的效率。對於傳光子系統的效率而言,集光子系統所收集後的配光曲線影響甚鉅,若光展角太大,光線可能還沒耦合進傳光元件就先散失掉了,非常不利於之後的傳光,會產生很嚴重的損耗。故本論文,我們提出一種新的方式來縮減集光子系統輸出之光展角以增加傳光子系統效率,是利用楔形導光管與稜鏡的結合,搭配本實驗室所研發設計之直角稜鏡集光模組以及現有的塑膠光纖,分析直角稜鏡集光模組接上塑膠光纖後輸出的配光曲線,入射至本實驗室研發之傳光模組的效率,發現本論文提出之結構其輸出效率較光纖直接接入傳光模組隨著長度的不同高出二至四倍的效率。


    Research interests on Natural Light Illumination System(NLIS) is arising due to recent green energy trends. Various optical components used in the NLIS have been analyzed, designed and fabricated to obtain high efficiency. A complete NLIS consists of three sub-systems: light collection sub-system(LCS), light transmission subsystem(LTS) and light emitting subsystem(LES). In addition to these subsystems, there are interface components in-between each pair of systems is also crucial to affect the overall NLIS efficiency.
    As to the LTS’s efficiency, it is crucial when used in NLIS for causing large amount of light loss owing to the large view angle when light entering LTS from LCS. The light would loss before entering the LTS. Hence the main purpose of this paper is to design a coupler to collimate the view angle that output from the LCS, which could significantly enhance the efficiency of LTS. Tapered light pipe (TLP) is used to collimate the light view angle. Here we combined the TLP and traditional lens as a new coupler with Etendue theorem. With the LCS that our team developed called Light Brick, and plastic optical fiber, we analyzed the light distribution output from the plastic optical fiber which connected to the output surface of the LB. We compared two conditions and founded that if we don’t use our coupler design, which means we directly input the plastic optical fiber into the LTS we developed, we can have only 17.54% efficiency. But with the new coupler designed, we can have above 70% efficiency.

    論文摘要 II ABSTRACT III 誌謝 IV 目錄 V 圖索引 VII 表索引..................................................................................................................IX 第一章 緒論 2 1.1 研究背景................................................................................................2 1.2 研究動機................................................................................................3 1.3 論文概述................................................................................................4 第二章 自然光照明系統R介紹...........................................................................6 2.1 集光........................................................................................................6 2.1.1 直角稜鏡式靜態集光器........................................................6 2.1.2 漸層式堆疊圓盤集光器....................................................... 9 2.2 傳光......................................................................................................11 2.3 放光......................................................................................................15 第三章 光學基礎理論........................................................................................16 3.1 光學名詞介紹......................................................................................16 3.1.1 光通量 (Luminous Flux, Φ) ...............................................16 3.1.2 光強度 (Luminous Intensity, I) ..........................................16 3.1.3 照度 (Illuminance, E) .........................................................17 3.1.4 均勻度..................................................................................18 3.1.5 輝度 (Luminance, L) ..........................................................19 3.1.6 輻射度學與光度學..............................................................19 3.1.7 眩光(Glare) .........................................................................21 3.1.8 色溫(Color Temperature) ....................................................23 3.1.9 演色性(Color Rendering Index) .........................................24 3.2 幾何光學原理......................................................................................26 3.2.1 反射定律..............................................................................26 3.2.2 司乃爾定律 (Snell’s Law) .................................................26 3.2.3 折射定律..............................................................................27 3.2.4 全反射 (Total internal reflection) .......................................28 3.2.5 集光比定義..........................................................................28 3.2.6 光展量定理..........................................................................29 3.3 透鏡......................................................................................................30 3.3.1 近軸理論..............................................................................30 3.3.2 透鏡成像公式......................................................................31 3.3.3 非球面數學表達式..............................................................32 3.3.4 菲涅爾透鏡 (Fresnel lens)原理..........................................33 3.4 光纖材料特性......................................................................................36 3.4.1 全反射現象與光纖構造......................................................36 3.4.2 光纖數值孔徑......................................................................36 3.4.3 光纖傳遞能量的損失..........................................................38 3.4.4 光纖材料與耐熱..................................................................40 第四章 新穎楔形導光管與稜鏡耦合器之模擬分析........................................42 4.1 楔形導光管設計..........................................................................42 4.2 加入輔助透鏡與楔形導光管設計..............................................49 4.3 實際使用情況之長度關係..........................................................53 第五章 結論與未來展望..................................................................................56 5.1 結論..............................................................................................56 5.2 未來展望......................................................................................56 Reference.............................................................................................................57

    1. Wehrmann, A., Puttnins, S., Hartmann, L., Ehrhardt, M., Lorenz, P., Zimmer, K. Analysis of laser scribes at CIGS thin-film solar cells by localized electrical and optical measurements. Optics and Laser Technology 2012; 44:1753-1757
    2. AlHajri, M.F., El-Naggar, K.M., AlRashidi, M.R. , Al-Othman, A.K. Optimal extraction of solar cell parameters using pattern search. Renewable Energy 2012; 44:238-245
    3. Whang AJW, Chen CC, Chen YY. Design, analysis, and fabrication of cascadable unit of static concentrator by prismatic structure for indoor illumination: Proceedings of the Asia Pacific Conference on Optics Manufacture, Taipei, Taiwan, 2009.
    4. Laikin M, Lens Design, New York: Marcel Dekker, 1991
    5. Chou KH, Chen YY, Whang AJW, An optical switch of natural light guiding system based on cubic structure with Fresnel surface, Proceedings of SPIE 7428, 74280O (2009)
    6. Light Coupling of LED Plastic Optical Fiber: Design and Application. MsC thesis. Chien-yu Chou: National Taiwan University of Science and Technology, 2010.
    7. Eugene Hecht, Optics, Addison Wesley, 4th ed. (2002)
    8. Winston, R., Minano, J.C., et al., Eds., Nonimaging Optics, Elsevier (2004)
    9. 謝瑋哲,「非聚焦式自由曲面透鏡圓盤集光器設計」,碩士論文,國立台灣科技大學,台北 (2010)。
    10. 陳偉安,「具光學結構設計之高效率傳光管」,碩士論文,國立台灣科技大學,台北 (2012)。
    11. 游仁龍,「利用田口法設計自然光照明系統R之放光模組」,碩士論文,國立台灣科技大學,台北 (2012)。
    12. 光度學名詞定義http://www.docin.com/p-8755529.html
    13. 周俊翰,「運用同步多曲面方法設計新型放光燈聚」,碩士論文,私立中華科技大學,台北 (2013)。
    14. 耿繼業、何建娃,幾何光學,全華圖書股份有限公司,台北,2009年
    15. 百度百科http://baike.baidu.com/view/229022.htm
    16. 顧乃倫,「光學耦合傳光裝置應用於SunLego模組」,碩士論文,國立台灣科技大學,台北 (2012)。

    QR CODE