簡易檢索 / 詳目顯示

研究生: 吳思函
Szu-han Wu
論文名稱: 含PFOT超分子結構之高分子薄膜的製備與特性探討
Preparation and Characterization of Polymer Films Derived from Supramolecular Structure of Poly[9,9-dioctyl-2,7-fluorene-alt-2,5-(3-hexylsulfonylthiophene)]
指導教授: 邱顯堂
Hsien-tang Chiu
口試委員: 邱智瑋
Chih-wei Chiu
陳建光
Jem-kun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 90
中文關鍵詞: 超分子聚芴高分子光致發光高分子混摻旋轉塗佈
外文關鍵詞: Supramolecules
相關次數: 點閱:158下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

高分子發光二極體(PLEDs)元件的製造方式中,最常使用方法為高分子混摻,不論是藉由與非發光之高分子的混合,來達到稀釋的效用,或者是與其他的共軛發光高分子混摻,皆可達到改良發光層之效果。本研究的目標就是嘗試將光致發光之超分子─poly[9,9-dioctyl-2,7-fluorene-alt-2,5-(3-hexylsulfonylthiophene)] (PFOT)與非發光之高分子混摻製作成薄膜。PFOT是由芴及噻吩衍生物交替組成的共軛共聚高分子,剛性平面的結構,加上足夠的共軛雙鍵數,使得芴之吸收波長落在可見光範圍內,至於噻吩則是具有良好的成膜性、明顯的吸收度和高電荷傳輸的特性。
首先,以不同濃度之PFOT來探討溶液狀態及薄膜狀態的表現,在薄膜固體下,因為團聚的現象,造成分散性不如在液體中良好。因此,為了要改善固態薄膜時的光學性質,便利用PFOT與不具備發光特性之高分子如PC來作混摻,透過添加量的變化、製程轉速的修正,以及摻混物質的改變等方式,發現到摻入非發光之高分子能夠降低PFOT分子鏈之間的作用力,達到增進薄膜態之光學表現。混摻後的薄膜又以分散在EVA中的效果最高,測得的螢光強度最多可至純PFOT薄膜的6倍。


Polymer blending is practiced frequently for the fabrication of PLEDs. The optical properties may be enhanced or modified by blending a luminescent conjugated polymer with another material, either a photonically inert polymer due to the dilution effect, or another luminescent conjugated polymer. In this research, a supramolecular polymer with photoluminescence, poly[9,9-dioctyl-2,7-fluorene-alt-2,5-(3-hexyl- sulfonylthiophene)](PFOT) was used to blend with another nonluminescent polymer.
PFOT is a conjugated alternating copolymer which is derived from fluorene and thiophene. The fluorene moiety spans the entire visible range owing to the rigid coplanar structure and sufficient conjugation of double bonds while the thiophene moiety affords good film-forming, strong absorption, and high hole-transporting properties.
First of all, various solutions and films with different concentrations of PFOT were prepared and characterized. The results reveal that phase separation in solid state is worse than in solution state due to the increased aggregation. For this reason, blending PFOT with another nonluminescent polymer such as PC was conducted in order to make progress on optical properties of solid film. Through the variations of doping amount, spin speed of coating processes, and being separated by four kinds of matrices, it was found that the introduction of photonically inert polymer could reduce interchain interactions which improve the optical properties of thin film. Especially with EVA, the blending film yielded up to 6 times the photoluminescence of the neat PFOT film.

目錄 誌謝 I 摘要 III Abstract IV 目錄 V 圖目錄 IX 表目錄 XII 縮寫與符號說明 XIII 中英對照表 XVII 第1章 緒論 1 1.1 研究背景與動機 1 1.2 基礎原理與特性 2 1.2.1 能帶理論 2 1.2.2 螢光與磷光 3 1.2.3 共軛系統與光譜 5 1.2.4 共軛高分子 6 一維結構 7 二維結構 8 1.2.5 有機半導體元件 10 有機發光二極體(OLED) 10 有機場效電晶體(OFET) 12 第2章 文獻回顧 14 2.1 共軛高分子 14 2.2 聚芴高分子及其衍生物 15 2.2.1 電致發光效率之問題與改善 16 2.2.2 色光穩定性之問題與改善 17 2.2.3 對人眼敏銳度之問題與改善 18 2.2.4 PFOT超分子 20 2.3 高分子混摻 22 2.3.1 與發光高分子之混摻 23 2.3.2 與非發光高分子之混摻 24 2.3.3 與非高分子之混摻 25 第3章 實驗材料、儀器與方法 26 3.1 實驗材料 26 3.2 實驗儀器 27 3.3 實驗方法 28 3.3.1 塗佈液配置 28 3.3.2 薄膜製備 29 3.3.3 儀器分析 30 紫外光-可見光分析儀(UV) 30 螢光光譜儀(PL) 31 全自動霧度計(Haze) 32 迴轉式動態流變儀(Rheometer) 33 熱重損失分析儀 (TGA) 33 示差掃描量熱儀(DSC) 34 場發射掃瞄式電子顯微鏡(FESEM) 34 第4章 結果與討論 35 4.1 PFOT超分子 35 4.1.1 光學性質 35 吸收度 35 放光強度 38 霧度 41 4.1.2 物理性質 43 TGA 43 DSC 44 流變 44 4.1.3表面形態與特徵 45 FESEM 45 4.2 高分子混摻 46 4.2.1 光學性質 46 吸收度 46 放光強度 53 霧度 59 4.2.2 物理性質 63 TGA 63 DSC 65 流變 66 4.2.2 表面形態與特徵 68 FESEM 68 4.3 老化試驗 70 4.3.1 光學性質變化 70 吸收度 70 放光強度 74 霧度 77 第5章 結論 79 5.1 PFOT超分子 79 5.2 高分子混摻 79 5.3 老化試驗 80 第6章 參考文獻 81

1. Petrucci, R.H., General Chemistry-Principles and Modern Applications. 2010.
2. Sauer, M., J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging: From Single Molecules to Ensembles. 2011. 1-30.
3. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). 2014.
4. Sharma, B.K., Instrumental Methods of Chemical Analysis. 2000: Krishna Prakashan.
5. Guo, X., M. Baumgarten, and K. Mullen, Designing π-conjugated polymers for organic electronics. Progress in Polymer Science, 2013. 38(12): p. 1832-1908.
6. Grimsdale, A.C. and K. Mullen, Oligomers and polymers based on bridged phenylenes as electronic materials. Macromolecular Rapid Communications, 2007. 28(17): p. 1676-1702.
7. Mishra, A., C.-Q. Ma, and P. Bäuerle, Functional Oligothiophenes: Molecular Design for Multidimensional Nanoarchitectures and Their Applications+. Chemical reviews, 2009. 109(3): p. 1141-1276.
8. Guo, X., et al., Benzotrithiophene-based donor–acceptor copolymers with distinct supramolecular organizations. Journal of the American Chemical Society, 2012. 134(20): p. 8404-8407.
9. Sakamoto, J., et al., Two‐Dimensional Polymers: Just a Dream of Synthetic Chemists? Angewandte Chemie International Edition, 2009. 48(6): p. 1030-1069.
10. Iyoda, M., J. Yamakawa, and M.J. Rahman, Conjugated macrocycles: concepts and applications. Angewandte Chemie International Edition, 2011. 50(45): p. 10522-10553.
11. Figueira-Duarte, T.M. and K. Müllen, Pyrene-based materials for organic electronics. Chemical reviews, 2011. 111(11): p. 7260-7314.
12. Chen, L., et al., From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angewandte Chemie International Edition, 2012. 51(31): p. 7640-7654.
13. Dou, L., et al., Systematic investigation of benzodithiophene-and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. Journal of the American Chemical Society, 2012. 134(24): p. 10071-10079.
14. Facchetti, A., Semiconductors for organic transistors. Materials Today, 2007. 10(3): p. 28-37.
15. Inokuchi, H., The discovery of organic semiconductors. Its light and shadow. Organic electronics, 2006. 7(2): p. 62-76.
16. Muller, C.D., et al., Multi-colour organic light-emitting displays by solution processing. Nature, 2003. 421(6925): p. 829-833.
17. Samuel, I. and G. Turnbull, Organic semiconductor lasers. Chemical Reviews, 2007. 107(4): p. 1272-1295.
18. Sirringhaus, H., N. Tessler, and R.H. Friend, Integrated optoelectronic devices based on conjugated polymers. Science, 1998. 280(5370): p. 1741-1744.
19. Grimsdale, A.C., et al., Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chemical reviews, 2009. 109(3): p. 897-1091.
20. Bernius, M.T., et al., Progress with light-emitting polymers. Advanced Materials, 2000. 12(23): p. 1737-1750.
21. Kulkarni, A.P., et al., Electron transport materials for organic light-emitting diodes. Chemistry of materials, 2004. 16(23): p. 4556-4573.
22. Antoniadis, H., Overview of OLED display technology. 2003.
23. Braun, D., Semiconducting polymer LEDs. Materials Today, 2002. 5(6): p. 32-39.
24. Guo, T.-F., et al., Influence of polymer gate dielectrics on n-channel conduction of pentacene-based organic field-effect transistors. Journal of applied physics, 2007. 101(12): p. 124505.
25. Gundlach, D., et al., Thin-film transistors based on well-ordered thermally evaporated naphthacene films. Applied physics letters, 2002. 80(16): p. 2925-2927.
26. Dimitrakopoulos, C.D. and D.J. Mascaro, Organic thin-film transistors: A review of recent advances. IBM Journal of Research and Development, 2001. 45(1): p. 11-27.
27. Singh, T.B. and N.S. Sariciftci, Progress in plastic electronics devices. Annu. Rev. Mater. Res., 2006. 36: p. 199-230.
28. Newman, C.R., et al., Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chemistry of materials, 2004. 16(23): p. 4436-4451.
29. Bian, L., et al., Recent progress in the design of narrow bandgap conjugated polymers for high-efficiency organic solar cells. Progress in Polymer Science, 2012. 37(9): p. 1292-1331.
30. Kola, S., J. Sinha, and H.E. Katz, Organic transistors in the new decade: Toward n‐channel, printed, and stabilized devices. Journal of Polymer Science Part B: Polymer Physics, 2012. 50(15): p. 1090-1120.
31. Heeger, A.J., Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angewandte Chemie International Edition, 2001. 40(14): p. 2591-2611.
32. Shirakawa, H., et al., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. Journal of the Chemical Society, Chemical Communications, 1977(16): p. 578-580.
33. Burroughes, J., et al., Light-emitting diodes based on conjugated polymers. Nature, 1990. 347(6293): p. 539-541.
34. Gustafsson, G., et al., The “plastic” led: A flexible light-emitting device using a polyaniline transparent electrode. Synthetic Metals, 1993. 57(1): p. 4123-4127.
35. Neher, D., Polyfluorene Homopolymers: Conjugated Liquid‐Crystalline Polymers for Bright Blue Emission and Polarized Electroluminescence. Macromolecular Rapid Communications, 2001. 22(17): p. 1365-1385.
36. Xie, L.-H., et al., Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics. Progress in Polymer Science, 2012. 37(9): p. 1192-1264.
37. Janietz, S., et al., Electrochemical determination of the ionization potential and electron affinity of poly(9,9-dioctylfluorene). Applied Physics Letters, 1998. 73(17): p. 2453-2455.
38. Ego, C., et al., Triphenylamine-Substituted Polyfluorene—A Stable Blue-Emitter with Improved Charge Injection for Light-Emitting Diodes. Advanced Materials, 2002. 14(11): p. 809-811.
39. Miteva, T., et al., Improving the Performance of Polyfluorene-Based Organic Light-Emitting Diodes via End-capping. Advanced Materials, 2001. 13(8): p. 565-570.
40. Redecker, M., et al., High Mobility Hole Transport Fluorene-Triarylamine Copolymers. Advanced Materials, 1999. 11(3): p. 241-246.
41. Inbasekaran, M., et al., Fluorene homopolymers and copolymers. Synthetic Metals, 2000. 111–112(0): p. 397-401.
42. Wu, F.-I., et al., Novel oxadiazole-containing polyfluorene with efficient blue electroluminescence. Chemistry of materials, 2003. 15(1): p. 269-274.
43. Ding, J., et al., Synthesis and characterization of alternating copolymers of fluorene and oxadiazole. Macromolecules, 2002. 35(9): p. 3474-3483.
44. Sung, H.-H. and H.-C. Lin, Novel alternating fluorene-based conjugated polymers containing oxadiazole pendants with various terminal groups. Macromolecules, 2004. 37(21): p. 7945-7954.
45. Hung, M.-C., et al., Fine Tuning the Purity of Blue Emission from Polydioctylfluorene by End-Capping with Electron-Deficient Moieties. Journal of the American Chemical Society, 2005. 127(42): p. 14576-14577.
46. Shu, C.-F., et al., Highly Efficient Blue-Light-Emitting Diodes from Polyfluorene Containing Bipolar Pendant Groups. Macromolecules, 2003. 36(18): p. 6698-6703.
47. Becker, K., et al., On-Chain Fluorenone Defect Emission from Single Polyfluorene Molecules in the Absence of Intermolecular Interactions. Advanced Functional Materials, 2006. 16(3): p. 364-370.
48. List, E.J.W., et al., The role of keto defect sites for the emission properties of polyfluorene-type materials. Synthetic Metals, 2003. 139(3): p. 759-763.
49. Gong, X., et al., Excitation energy transfer from polyfluorene to fluorenone defects. Synthetic Metals, 2004. 141(1–2): p. 17-20.
50. Gamerith, S., et al., Emission properties of pristine and oxidatively degraded polyfluorene type polymers. physica status solidi (a), 2004. 201(6): p. 1132-1151.
51. Weinfurtner, K.-H., et al., Highly efficient pure blue electroluminescence from polyfluorene: Influence of the molecular weight distribution on the aggregation tendency. Applied Physics Letters, 2000. 76(18): p. 2502-2504.
52. Marsitzky, D., et al., Amorphous Poly-2,7-fluorene Networks. Chemistry of Materials, 2001. 13(11): p. 4285-4289.
53. Setayesh, S., et al., Polyfluorenes with Polyphenylene Dendron Side Chains:  Toward Non-Aggregating, Light-Emitting Polymers. Journal of the American Chemical Society, 2001. 123(5): p. 946-953.
54. Pogantsch, A., et al., Polyfluorenes with Dendron Side Chains as the Active Materials for Polymer Light‐Emitting Devices. Advanced Materials, 2002. 14(15): p. 1061-1064.
55. Hwang, D.-H., M.-J. Park, and J.-H. Lee, EL properties of stable blue light-emitting polyfluorene copolymers. Materials Science and Engineering: C, 2004. 24(1–2): p. 201-204.
56. Lee, J.-H. and D.-H. Hwang, Alkoxyphenyl-substituted polyfluorene: a stable blue-light-emitting polymer with good solution processability. Chemical Communications, 2003(22): p. 2836-2837.
57. Lupton, J.M., et al., Influence of Dendronization on Spectral Diffusion and Aggregation in Conjugated Polymers. Advanced Functional Materials, 2003. 13(2): p. 154-158.
58. Klarner, G., et al., Colorfast Blue-Light-Emitting Random Copolymers Derived from Di-n-hexylfluorene and Anthracene. Advanced Materials, 1998. 10(13): p. 993-997.
59. Lim, S.F., et al., Suppression of Green Emission in a New Class of Blue‐Emitting Polyfluorene Copolymers with Twisted Biphenyl Moieties. Advanced Functional Materials, 2005. 15(6): p. 981-988.
60. Xia, C. and R.C. Advincula, Decreased Aggregation Phenomena in Polyfluorenes by Introducing Carbazole Copolymer Units. Macromolecules, 2001. 34(17): p. 5854-5859.
61. Gualtieri, D., Psychology of Red. 2012.
62. Jacob, J., et al., Ladder-Type Pentaphenylenes and Their Polymers:  Efficient Blue-Light Emitters and Electron-Accepting Materials via a Common Intermediate. Journal of the American Chemical Society, 2004. 126(22): p. 6987-6995.
63. Su, H.-J., F.-I. Wu, and C.-F. Shu, Tuning Wavelength:  Synthesis and Characterization of Spiro-DPVF-Containing Polyfluorenes and Applications in Organic Light-Emitting Diodes. Macromolecules, 2004. 37(19): p. 7197-7202.
64. Su, H.J., et al., Color Tuning of a Light-Emitting Polymer: Polyfluorene-Containing Pendant Amino-Substituted Distyrylarylene Units. Advanced Functional Materials, 2005. 15(7): p. 1209-1216.
65. Guo, X., et al., Fluorene-Based Copolymers Containing Dinaphtho-s-indacene as New Building Blocks for High-Efficiency and Color-Stable Blue LEDs. Macromolecular Rapid Communications, 2009. 30(9-10): p. 816-825.
66. 林維倫, 含芴及噻吩衍生物之高分子的製備與特性探討, 材料科學與工程學系. 2012, 國立臺灣科技大學.
67. Kim, D., H. Cho, and C. Kim, Blue light emitting polymers. Progress in Polymer Science, 2000. 25(8): p. 1089-1139.
68. Yu, G., et al., Enhanced electroluminescence from semiconducting polymer blends. Synthetic metals, 1995. 72(3): p. 249-252.
69. Wu, C.-C., C.-F. Chang, and S.J. Bai, Opto-electronic emission of heterocyclic aromatic coil-like and rigid-rod polymer blends. Thin solid films, 2005. 479(1): p. 245-248.
70. He, G., et al., Efficient polymer light-emitting diodes using conjugated polymer blends. Applied physics letters, 2002. 80(11): p. 1891-1893.
71. Corcoran, N., et al., Increased efficiency in vertically segregated thin-film conjugated polymer blends for light-emitting diodes. Applied physics letters, 2003. 82(2): p. 299-301.
72. Xia, Y. and R.H. Friend, Controlled phase separation of polyfluorene blends via inkjet printing. Macromolecules, 2005. 38(15): p. 6466-6471.
73. Berggren, M., et al., Light-emitting diodes with variable colours from polymer blends. Nature, 1994. 372: p. 444-446.
74. Hu, B. and F.E. Karasz, Blue, green, red, and white electroluminescence from multichromophore polymer blends. Journal of applied physics, 2003. 93(4): p. 1995-2001.
75. Shih, P.I., et al., Stable and efficient white electroluminescent devices based on a single emitting layer of polymer blends. Advanced Functional Materials, 2006. 16(12): p. 1582-1589.
76. Tachelet, W., et al., Blue electroluminescent devices with high quantum efficiency from alkoxy-substituted poly(para-phenylene vinylene-trimers in a polystyrene matrix. Applied Physics Letters, 1994. 64(18): p. 2364-2366.
77. Bolognesi, A., et al., Silicon-substitued PPV for LED preparation. Synthetic metals, 1999. 102(1): p. 919.
78. Lin, K.-F., L. Chang, and H.-L. Cheng, Luminescence properties and aggregation of PPV/PVP polyblends. Polymer Preprint (American Chemical Society, Division of Polymer Chemistry), 1997. 38(2): p. 544-545.
79. Chao, C.-S., W.-T. Whang, and K.-R. Chuang, Significant improvement on the electroluminescence characteristics of MEH-PPV by blending with PMMA. Journal of Polymer Research, 2000. 7(3): p. 175-183.
80. Kim, Y.-G., et al., Variable band gap conjugated polymers for optoelectronic and redox applications. Journal of materials research, 2005. 20(12): p. 3188-3198.
81. Ananthakrishnan, N., et al., Tuning polymer light-emitting device emission colors in ternary blends composed of conjugated and nonconjugated polymers. Macromolecules, 2005. 38(18): p. 7660-7669.
82. He, B., et al., Highly polarized blue luminescence from the oriented poly (9, 9-dioctylfluorene)/polyethylene blending films. Macromolecules, 2005. 38(16): p. 6762-6766.
83. Kulkarni, A.P. and S.A. Jenekhe, Blue light-emitting diodes with good spectral stability based on blends of poly (9, 9-dioctylfluorene): interplay between morphology, photophysics, and device performance. Macromolecules, 2003. 36(14): p. 5285-5296.
84. Partridge, R., Electroluminescence from polyvinylcarbazole films: 3. Electroluminescent devices. Polymer, 1983. 24(6): p. 748-754.
85. Berleb, S., et al., Effect of majority carrier space charges on minority carrier injection in dye doped polymer light-emitting devices. Journal of applied physics, 1998. 83(8): p. 4403-4409.
86. Kawakami, S., et al., Dependence of electroluminescent properties on cathode metalsin PVCz double-layered organic EL devices. Thin Solid Films, 2000. 363(1): p. 17-20.
87. Nam, N.P.H., et al., Photoluminescence and electroluminescence properties of poly (9-vinylcarbarzole) doped with anthracence derivatives containing bis (ethynylphenyl oxadiazole) or bis (vinylphenyl oxadiazole) substituents. Synthetic metals, 2002. 130(3): p. 271-277.
88. Hu, B., N. Zhang, and F. Karasz, Bright red electroluminescence from a dye/copolymer blend. Journal of applied physics, 1998. 83(11): p. 6002-6006.
89. Kim, S., et al., White Luminescence from Polymer Thin Films Containing Excited‐State Intramolecular Proton‐Transfer Dyes. Advanced Materials, 2005. 17(17): p. 2077-2082.
90. Yap, C., M. Yahaya, and M. Salleh, Influence of tetrabutylammonium hexafluorophosphate (TBAPF6) doping level on the performance of organic light emitting diodes based on PVK: PBD blend films. Current Applied Physics, 2009. 9(4): p. 722-726.
91. Shih, P.-I., et al., Efficient white-light-emitting diodes based on poly (N-vinylcarbazole) doped with blue fluorescent and orange phosphorescent materials. Applied physics letters, 2006. 88(25): p. 251110-251110-3.
92. Emslie, A.G., F.T. Bonner, and L.G. Peck, Flow of a viscous liquid on a rotating disk. Journal of Applied Physics, 1958. 29(5): p. 858-862.

QR CODE