簡易檢索 / 詳目顯示

研究生: 盧思婷
Sih-Ting Lu
論文名稱: 石墨烯改質塗料與樹脂物化性質之探討
Study on Physico-chemical Properties of Graphene-modified Paint and Resin
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 何郡軒
Jinn-Hsuan Ho
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 71
中文關鍵詞: 石墨烯抗黃化紫外光吸收劑
外文關鍵詞: Graphene, yellowing resistance, ultraviolet-light absorber
相關次數: 點閱:298下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

發展環境友善性的塗料為化工產業的長期目標,其中部分添加物對環境汙染已為急需解決的問題。在2017年1月底,美國通過禁止售出含有二苯甲酮、桂皮酸鹽的防曬乳產品,係因此類化學物質會影響珊瑚生長,造成海洋生態的破壞,而其中二苯甲酮即為塗料中常用的紫外光吸收劑。本實驗將探討利用石墨烯或氧化石墨烯的吸光特性來取代現有的紫外光吸收劑。
本實驗將選用常用的PMMA(聚甲基丙烯酸甲酯)、PU(聚氨酯)、Epoxy(環氧樹脂)、NC(硝基漆)塗料作為研究標的,探討塗料摻混石墨烯的抗黃化反應特性,並探討其他物理化學特性的變化,如:附著性、硬度、抗腐蝕性、光澤度等。此外,進一步使用PMMA、PU、PC、Epoxy、PVC(聚氯乙烯)樹脂,探討石墨烯的共振結構以及氧化石墨烯的親水官能基,對樹脂特性的影響以及抗黃化的機制。
本實驗結果顯示塗料添加石墨烯或氧化石墨烯後,可有效的提高抗黃化效果,特別是針對PMMA塗料。部分配方可將抗黃化效果提高15倍,附著性上升2-3倍,由此可知石墨烯與氧化石墨烯除可有效的取代既有的紫外光吸收劑,亦能提高塗料的功能特性,長時間測試結果顯示石墨烯和氧化石墨烯作為在塗料與樹脂添加劑的應用潛力。


The development of environment-friendly paint is the long-term target in chemical industry, and reducing pollution from some additives becomes an urgent problem now. At the end of January in 2017, the United States forbids the addition of octinoxate and oxybenzone for suntan lotion due to these materials will affect the growth of coral ocean and thus damage marine ecology seriously. However, the oxybenzone is the most popular ultraviolet-light absorber for paint so far. In this study, graphene and graphene oxide with peculiar light-absorbent property were applied to replace the common absorber.
The popular paints, PMMA (Polymethylmethacrylate), PU (polyurethanes), Epoxy (polyepoxide) and NC (Nitro-Lacquer), were chosen as targets. The graphene or graphene oxide were respectively added into paints for the investigation of the yellowing resistance and other physical and chemical characteristics, such as adhesion, hardness, corrosion resistance, and glossiness. The basic raw material of paint, resins (PMMA, PU, PC, Epoxy and PVC (polyvinyl chloride), were further mixed with graphene and graphene oxide skillfully. The effects of conjugation structure and hydrophilic functional group of graphene and graphene oxide on resins were analyzed to clarify the anti-yellowing mechanism.

The results indicated that yellowing resistance of paint is increased with the presence of proper amount of graphene or graphene oxide, especially for PMMA paints. A certain formula is 15 times the yellowing resistance and 2-3 times the adhesion of the raw paint. As shown in results, the additions of graphene and graphene oxide can not only act as good ultraviolet-light absorber but also enhance the mechanic property of paint. The long-term tests indicated the practicability of graphene and graphene oxide as the environmental-friendly additives for paint and resin.

摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 塗料簡介 1 1.2 塗料功能 1 1.3 塗料發展 2 1.4 塗料組成 2 1.5 石墨烯與氧化石墨烯簡介 4 1.5.1 石墨烯簡介 4 1.5.2 氧化石墨烯簡介 5 1.6 研究目的與動機 6 第二章 文獻回顧 7 2.1 紫外光吸收劑簡介 7 2.2 紫外光吸收劑的種類 7 2.3 紫外光吸收劑作用原理 9 2.4 紫外光吸收劑危害 10 2.5 石墨烯與氧化石墨烯複合材料應用 10 2.6 石墨烯與氧化石墨烯製程 12 第三章 實驗方法與步驟 13 3.1 分析儀器 13 3.2 表面性質測定 15 3.3 黃化測試斜率計算 16 第四章 結果與討論 17 4.1 石墨烯與氧化石墨烯的紫外-可見光吸收光譜 17 4.2 石墨烯與氧化石墨烯塗料摻混之結果 21 4.2.1 分散性測試 21 4.2.2 黃化測試 24 4.2.3 附著性測試 29 4.2.4 水滴接觸角分析 36 4.2.5 交流阻抗測試 38 4.2.6 表面導電性測試 40 4.2.7 硬度測試 43 4.2.8 光澤度測試 46 4.2.9 熱穩定性測試 50 4.3.1 樹脂黃化機制探討-白度計測試結果 55 4.3.2 螢光光譜實驗分析 61 4.3.3 拉伸測試 63 第五章 結論與未來展望 65 5.1 結論 65 5.2 未來展望 66 文獻回顧 68 附錄 71

[1]蘇清源, (2011) ,石墨烯氧化物之特性與應用前景 ,物理專文
[2]郭振宇, (2007) ,紫外光吸收劑的研究發展, 甘肅石油和化工, 第3期,
[3]于淑娟, (2007), 含二苯甲酮、苯并三唑結構的水溶性紫外线吸收劑的合成與研究, 大連理工大學博士論文
[4] Haereticus Environmental Laboratory, 2015, 環境污染和毒理學檔案
[5]賴品瑀, (2017), 護珊瑚夏威夷擬禁含二苯甲酮防曬品台灣或可循柔珠經驗跟進, 環境資訊中心
[6] Tapas Kuilla, Sambhu Bhadra, Dahu Yao, Nam Hoon Kim, Saswata Bose, Joong Hee Lee. (2010). Recent advances in graphene based polymer composites. Progress in polymer science, 35(11), 1350-1375.
[7]吳定宇, (2015) , 石墨烯在複合材料上的應用, 石墨烯技術, 五南出版社
[8] MIT TR Editors. (2010). Graphic Graphene. MIT Technology Review.
[9] JDra, Fatima Tuz, Jee-Wook Lee, Woo-Gwang Jung. (2014). Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry, 20(5), 2883-2887.
[10] Kausik Mannaa, Cheng-Yu Hsiehb, Shen-Chuan Lob, Yan-Sheng Lia, Huin-Ning Huanga, and Wei-Hung Chianga. (2016). Toward understanding the efficient exfoliation of layered materials by water-assisted cosolvent liquid-phase exfoliation. Chemistry of Materials, 28(21), 7586-7593.
[11] He, H., Klinowski, J., Forster, M., Lerf, A. (1998). A new structural model for graphite oxide. Chemical physics letters, 287(1), 53-56.
[12] Lerf, Anton, He, Heyoung, Forster Michael, Klinowski Jacek. (1998). Structure of graphite oxide revisited. The Journal of Physical Chemistry B, 102(23), 4477-4482.
[13] Tamás Szabó, Ottó Berkesi, Péter Forgó, Katalin Josepovits, Yiannis Sanakis, Dimitris Petridis, and Imre Dékány. (2006). Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chemistry of materials, 18(11), 2740-2749.
[14] Taolei Sun, Guojie Wang, Lin Feng , Biqian Liu, Yongmei Ma, Lei Jiang, Daoben Zhu. (2004). Reversible switching between superhydrophilicity and superhydrophobicity. Angewandte Chemie, 116(3), 361-364.
[15] Kui-Xiang Ma, Tai-Shung Chung. (2001). Effect of− C (CF3) 2− on the Surface Energy of Main-Chain Liquid Crystalline and Crystalline Polymers. The Journal of Physical Chemistry B, 105(19), 4145-4150.
[16] Martin Muth, Andreas Freytag, René Nagelsdiek. (2012). Chained to the surface. European Coatings JOURNAL, 7(08).
[17] Boukhvalov, Danil W, and Mikhail I. Katsnelson. (2008). Modeling of graphite oxide. Journal of the American Chemical Society, 130(32), 10697-10701.
[18] K. Andre Mkhoyan, Alexander W. Contryman, JDn Silcox, Derek A. Stewart, Goki Eda, Cecilia Mattevi, Steve Miller, and Manish Chhowalla. (2009). Atomic and electronic structure of graphene-oxide. Nano letters, 9(3), 1058-1063.
[19] Nico frankhuizen, (2016), 美國PCI中文版電子雜誌6月刊
[20] Hawkins, W. Lincoln. (2012). Polymer degradation and stabilization (Vol. 8). Springer Science & Business Media.
[21] Ghorbel, E., Hadriche, I., Casalino, G., & Masmoudi, N. (2014). Characterization of thermo-mechanical and fracture behaviors of thermoplastic polymers. Materials, 7(1), 375-398.
[22] Caddeo, Silvia, Baino Francesco, Ferreira Ana Marina, Sartori Susanna, Novajra Giorgia, Ciardelli Gianluca, and Vitale-Brovarone Chiara. (2015). Collagen/polyurethane-coated bioactive glass: early achievements towards the modelling of healthy and osteoporotic bone. Key Engineering Materials (Vol. 631, pp. 184-189). Materials Science by Trans Tech Publications Inc.
[23] 陳盈君, (2007), 紫外線環氧樹脂之調製及性質研究, 崑山科技大學學生專題.
[24] 翁詩甫, 徐怡庄, (2016), 傅立葉變換紅外光譜分析, 化學工業出版社, 第三版

無法下載圖示 全文公開日期 2022/07/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE