簡易檢索 / 詳目顯示

研究生: VO THI PHUNG GIAO
VO - THI PHUNG GIAO
論文名稱: 以鈣礬石去除水中磷酸根之研究
Removal of Phosphate by Using Ettringite
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 陳君弢
Chun-Tao Chen
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 104
中文關鍵詞: 吸附鈣礬石磷酸鹽沉澱
外文關鍵詞: Adsorption, ettringite, phosphate, precipitation, water
相關次數: 點閱:263下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究合成鈣礬石去除磷之反應, 其中鈣礬石之合成是由富含鈣的氧化鈣與硫酸鋁溶液在 酸鹼值12的條件下下混合 24 小時生成。吸附之前,鈣礬石在 60℃ 下乾燥一天然後碾碎,並以 100 目篩子過篩。含磷酸鹽之合成廢水用於吸附實驗,初始濃度在約200 – 1,000 毫克 PO 4 /公升之範圍內。吸附反應可以用擬二階動力學模型(R2 = 0.98)來描述。平衡吸附實驗之數據在pH範圍 11.05 - 12.04 下,符合 Langmuir和 Freundlich 等溫吸附模型。酸鹼值對磷酸鹽吸附量影響較小,但吸附量受到磷酸鹽初始濃度和溫度影響較大。熱力學分析表明,由合成鈣礬石之移除反應是自發的、吸熱的、並具有隨機性的行為。此外,由固體定性分析(FE-SEM 和XRD)結果,我們推斷羥基磷灰石在高酸鹼值和高溫下形成。這項研究結果表明,鈣礬石是一種有效的除磷吸附劑,反應機制包括與鈣礬石所含硫酸根離子置換,以及沉澱反應。


    Phosphate removal by using synthesized ettringite was investigated in this study. Ettringite was synthesized by mixing CaO suspension and aluminum sulfate solution at pH 12 for 24 h. It was dried at 60oC for one day, crushed, and sieved through 100 mesh sieve before used for experiments. Synthetic wastewater containing phosphate was used for adsorption. Initial concentration was in a range of ca. 200 – 1000 mg PO4/L. The adsorption reaction could be described by a pseudo-second-order kinetic model (R2 = 0.98). The results of equilibrium experiments could be modeled by both Langmuir and Freundlich adsorption isotherms in pH range of 11.05 – 12.04. The phosphate uptake capacity was less dependent on pH, yet was affected by initial phosphate concentration and temperature. Thermodynamic analysis revealed that the reaction was spontaneous, endothermic, and exhibited randomness behavior. Besides, solid characterization by FE-SEM and XRD inferred the evidence of hydroxyapatite formation at high pH and high temperature. The results of this study show that ettringite is an effective sorbent for phosphate removal. The reaction mechanisms included adsorption via the replacement of sulfate with phosphate and precipitation.

    摘要 I ABSTRACT II ACKNOWLEDGEMENT III NOMENCLATURES IV TABLE OF CONTENTS V LIST OF FIGURES VII LIST OF TABLES X CHAPTER 1 INTRODUCTION 1 1.1. BACKGROUND 1 1.2. OBJECTIVES 2 CHAPTER 2 LITERATURE REVIEW 3 2.1 THEORY OF PHOSPHATE AND REMOVAL OF PHOSPHATE 3 2.1.1 Phosphate 3 2.1.2 Phosphorus toxicity and regulations 3 2.1.3 Technologies for phosphate removal 3 2.1.4 Adsorption of phosphate 4 2.2 THEORY OF ETTRINGITE 12 2.2.1 Ettringite 12 2.2.2 Synthesis of ettringite 13 2.2.3 Removal contaminant potential of ettringite 13 2.2.4 Possible mechanism of phosphate uptake by ettringite 14 CHAPTER 3 MATERIALS AND METHODS 16 3.1 CHEMICALS 16 3.2 EQUIPMENTS AND INSTRUMENTS 17 3.3 EXPERIMENTAL METHOD 18 3.3.1 Synthesis of ettringite 18 3.3.2 Characterization of ettringite 19 3.3.3 Solubility of ettringite 21 3.3.4 Thermodynamic modeling software (PHREEQC) 21 3.4. ADSORPTION OF PHOSPHATE 22 3.4.1 Kinetic study of phosphate adsorption 22 3.4.2 Effect of pH on phosphate adsorption 23 3.4.3 Adsorption isotherms and effect of temperature 23 3.4.4 Effect of ettringite dose on phosphate adsorption 24 CHAPTER 4 RESULTS AND DISCUSSION 25 4.1 CHARACTERIZATION OF SYNTHESIZED ETTRINGITE 25 4.2 SOLUBILITY OF ETTRINGITE 33 4.3 ZETA POTENTIAL OF ETTRINGITE 33 4.4 REMOVAL OF PHOSPHATE EXPERIMENT BY USING ETTRINGITE 35 4.4.1 Kinetic study on phosphate removal 35 4.4.2 Effect of equilibrium pH 38 4.4.3. Adsorption isotherms study 40 4.4.4 Stoichiometry calculation 44 4.4.5 Effect of ettringite dose 48 4.5 ANALYSIS OF LOADED ETTRINGITE 49 4.6 PROPOSED MECHANISMS 63 CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 64 5.1. CONCLUSIONS 64 5.2. SUGGESTIONS 64 REFERENCES 66 APPENDIX A: EXPERIMENTAL DATA 74 APPENDIX B: PHREEQC CODING 83

    Barca, C., Gérente, C., Meyer, D., Chazarenc, F., Andrès, Y. (2012). Phosphate removal from synthetic and real wastewater using steel slags produced in Europe. Water Research, 46(7), 2376–2384.
    Black, J., Hasting, G. (2013). Handbook of Biomaterial Properties, Chapman & Hall, London, UK.
    Chen, H., Wang, D., Li, X., Yang, Q., Luo, K., Zeng, G. (2013). Biological phosphorus removal from real wastewater in a sequencing batch reactor operated as aerobic/extended-idle regime. Biochemical Engineering Journal, 77, 147-153.
    Chen, L., Zhao, X., Pan, B., Zhang, W., Hua, M., Lv, L., Zhang, W. (2015). Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability. Journal of Hazadous Materials, 284, 35-42.
    Chen, S. S., Mehta, P. K. (1982). Zeta potential and surface area measurements on ettringite. Cement and Concrete Research, 12(2), 257-259.
    Chrysochoou, M., Dermatas, D. (2006). Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: Literature review and experimental study. Journal of Hazardous Materials, 136(1), 20-33.
    Cody, A. M, Lee, H., Cody, R. D., Spry, P. G. (2004). The effect of chemical environment on the nucleation, growth, and stability of ettringite [Ca3Al(OH)6]2(SO4)3�O26 H2O. Cement and Concrete Research, 34(5), 869-881.
    Cordell, D., Jackson, M., White, S. (2013). Phosphorus flows through the Australian food system: Indentifying intervention points as a roadmap to phosphorus security. Environment Science and Policy, 29, 87-102.
    Cooper, J., Carliell-Marquet, C. (2013). A substance flow analysis of phosphorus in the UK food production and consumption system. Resource, Conservation and Recycling, 74, 82-100.
    Damidot, D., Glasser, F. P. (1993). Thermodynamic investigation of the CaO-Al2O3-CaSO4-H2O system at 25oC and the influence of Na2O. Cement and Concrete Research, 23(1), 221-238.
    Ding, L., Wu, C., Deng, H., Zhang, X. (2012). Adsorptive characteristics of phosphate from aqueous solutions by MIEX resin. Journal of Colloid and Interface Science, 376(1), 224-232.
    Do, D. D. (1998). Adsorption analysis: Equilibria and kinetics, Imperial College Press, London.
    Evangelou, V. P. (1995). Pyrite oxidation and its control, CRC Press, Inc.
    Ge, H., Batstone, D. J., Keller, J. (2015). Biological phosphorus removal from abattoir wastewater at very short sludge ages mediated by novel PAO clade Comamonadaceae. Water Research, 69, 173-182.
    Gougar, M. L. D., Scheetz, B. E., Roy, D. M. (1996). Ettringite and C-S-H portland cement phases for waste ion immobilization: A review. Waste Management, 16(4), 295-303.
    Guaya, D., Valderrama, C., Farran, A., Armijios, C., Cortina, J. L. (2015). Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chemical Engineering Journal, 271, 204-213.
    Harrad, M. A., Boualy, B., Firdoussi, L.E., Ali, M. A. (2012). Aluminum phosphate catalyzed free solvent preparation of β-enamino ester. American Journal of Chemistry, 2(5), 271-276.
    He, G. X., He, L. H., Zhao, Z. W., Chen, X. Y., Gao, L. L., Liu, X. H. (2013). Thermodynamic study on phosphorus removal from tungstate solution via magnesium salt precipitation method. Transactions of Noferrous Metals Society China, 23(11), 3440-3447.
    Hendrix, J. L. (2012). Sustainable agricultural practices impact on phosphate rock production. Procedia Engineering, 46, 54-61.
    Hussain, S., Aziz, H. A., Isa, M. H., Ahmad, A., Leeu, J. V., Zou, L., Beecham, S., Umar, M. (2011). Orthophosphate removal from domestic wastewater using limestone and granular activated carbon. Desalination, 271(1-3), 265-272.
    Jha, V. K., Kameshima, Y., Nakajama, A., Okada, K. (2008). Utilization of steel-making slag for the uptake of ammonium and phosphate ions from aqueous solution. Journal of Hazardous Materials, 156 (1-3), 156-162.
    Jeon, D.J., Yeom, S.H. (2009). Recycling wasted biomaterial, crab shells, as an adsorbent for the removal of high concentration of phosphate. Bioresource Technology, 100(9), 2646–2649.
    Kaasik, A., Vohla, C., Mõtlep, R., Mander, Ü., Kirsimäe, K. (2008). Hydrated calcareous oil-shale ash as potential filter media for phosphorus removal in constructed wetlands. Water Research, 42(4-5), 1315-1323.
    Kalinichev, A. G., Kirkpatrick, R. J. (2002). Molecular dynamics modeling of chloride binding to the surfaces of calcium hydroxide, hydrated calcium aluminate, and calcium silicate phases. Chemical Materials, 14(8), 3539-3549.
    Karaca, S., Gürses, A., Ejder, M., Açıkyıldız, M. (2004). Kinetic modeling of liquid-phase adsorption of phosphate on dolomite. Journal of Colloid and Interface Science, 277(2), 257-263.
    Karaca, S., Gürses, A., Ejder, M., Açıkyıldız, M. (2006). Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite. Journal of Hazardous Materials, 128(2-3), 273-279.
    Kelter, P., Mosher, M., Scott, A. (2000). Chemistry: The practical science, Charles Hartford.
    Kim, H. C. (2014). High-rate MIEX filtration for simultaneous removal of phosphorus and membrane foulants from secondary effluent. Water Research, 69, 40-50.
    Komatsu, R., Mizukoshi, N., Makida, K., Tsukamoto, K. (2009). In-situ observation of ettringite crystals. Journal of Crystal Growth, 311(3), 1005-1008.
    Koppelaar, R. H. E. M., Weikard, H. P. (2013). Assessing phosphate rock depletion and phosphorus recycling options. Global Environment Change, 23(6), 1454-1466.
    Köse, T. E., Kivanç, B. (2011). Adsorption of phosphate from aqueous using calcined waste eggshell. Chemical Engineering Journal, 178, 34-39.
    Littler, J., Geroni, J. N., Sapsford, D. J., Coulton, R., Griffiths, A. J. (2013). Mechanisms of phosphorus removal by cement-bound ochre pellets. Chemosphere, 90(4), 1533-1538.
    Liu, T., Wu, K., Zeng, L. (2012). Removal of phosphorus by a composite metal oxide adsorbent derived from manganese ore tailings. Journal of Hazardous Materials, 217-218, 29-35.
    Liu, X., Zhang, L. (2015). Removal of phosphate anions using the modified chitosan beads: Adsorption kinetic, isotherm and mechanism studies. Powder technology, 277, 112-119.
    Lu, X., Wang, Y. B., Wang, J. X., Qu, S. X., Weng, J., Xin, R. L., Leng, Y. (2006). Calcium phosphate crystal growth under controlled environment through urea hydrolysis. Journal of Crystal Growth, 297(2), 396-402.
    Mangwandi, C., Albadarin, A. B., Glocheux, Y., Walker, G. M. (2014). Removal of ortho-phosphate from aqueous solution by adsorption onto dolomite. Journal of Environmental Chemical Engineering, 2(2), 1123-1130.
    Medala, M., Labbez, C., Pochard, I., Nonat, A. (2011). Ettringite surface chemistry: Interplay of electrostatic and ion specificity. Journal of Colloid and Interface Science, 354(2), 765-770.
    Mӧschner, G., Lothenbach, B., Rose, J., Ulrich, A., Figi, R., Kretzschmar, R. (2008). Solutbility of Fe-ettringite (Ca6[Fe(OH)6]2(SO4)3.26H2O). Geochimica et Cosmochimica Acta, 72, 1-18.
    Motlagh, A. M., Bhattacharjee, A. S., Goel, R. (2015). Microbiological study of bacteriophage induction in the presence of chemical stress factors in enhanced biological phosphorus removal (EBPR). Water Research, 81, 1-14.
    Moutin, T., Gal, J. Y., Halouani, H. E., Picot, B., Bontoux, J. (1992). Decrease of phosphate concentration in a high rate pond by precipitation of calcium phosphate: Theoretical and experimental results. Water Research, 26(11), 1445-1450.
    Myneni, S. C. B, Traina, S. J., Logan, T. J., Waychunas, G. A. (1997). Oxyanion behavior in alkaline environments: Sorption and desorption of arsenate in ettringite. Environmental Science and Technology, 31(6), 1761-1768.
    Myneni, S. C. B., Traina, S. J., Waychunas, G. A., Logan, T. J. (1998). Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geochimica et Cosmochimica Acta, 62(21-22), 3499-3514.
    Myneni, S. C. B., Traina, S. J., Logan, T. J. (1998). Ettringite solubility and geochemistry of the Ca(OH)2-Al2(SO4)3-H2O system at 1 atm pressure and 298K. Chemical Geology, 148(1-2), 1-19.
    Mustafa, S., Zaman, M. I., Khan, S. (2008). Temperature effect on the mechanism of phosphate anions sorption by ß-MnO2. Chemical Engineering Journal, 141(1-3), 51–57.
    Nair, A. T., Ahammed, M. M. (2015). Water treatment sludge for phosphate removal from the effluent of UASB reactor treating municipal wastewater. Process Safety and Environmental Protection, 94, 105-112.
    Neunhoeffer, F. G., Neubauer, J., Schwesig, P. (2004). Minerlogical characteristics of Ettringites synthesized from solutions and suspensions. Cement and Concrete Research, 36(1), 65-70.
    Oladoja, N., Ahmad, A., Adesina, O., Adelagun, R. (2012). Low-cost biogenic waste for phosphate capture from aqueous system. Chemical Engineering Journal, 209, 170-179.
    Oladoja, N. A., Adelagun, R. O. A., Ololade, I. A., Anthony, E. T., Alfred, M. O. (2014). Synthesis of nano-sized hydrocalumite from a Gastropod shell for aqua system phosphate removal. Separation and Purification Technology, 124, 186-194.
    Özacar, M. (2003). Adsorption of phosphate from aqueous solution onto alunite. Chemosphere, 51(4), 321-327.
    Park, J. Y., Byun, H. J., Choi, W. H., Kang, W. H. (2008). Cement paste column for simultaneous removal of fluoride, phosphate, and nitrate in acidic wastewater. Chemosphere, 70(8), 1429-1437.
    Parkhurst, D. L., Appelo, C. A. J. (1999). User’s Guide to PHREEQC (version 2)-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Water Resources Investigations Report, US Geological Survey, Denver, Colorado.
    Pengthamkeerati, P., Satapanajaru, T., Chularuengoaksorn, P. (2008). Chemical modification of coal fly ash for the removal of phosphate from aqueous solution. Fuel, 87(12), 2469-2476.
    Perkin, R. B., Palmer, C. D. (1999). Solubility of ettringite (Ca6[Al(OH)6]2(SO4)3�O26H2O) at 5-75oC. Geochimica et Cosmochimica Acta, 63(13-14), 1969-1980.
    Prochaska, C. A., Zouboulis, A. I. (2006). Removal of phosphates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate. Ecological Engineering, 26(3), 293-303.
    Qian, G., Feng, L., Zhou, J. Z., Xu, Y., Liu, J., Zhang, J., Xu, Z. P. (2012). Solubility product (Ksp)-controlled removal of chromate and phosphate by hydrocalumite. Chemical Engineering Journal, 181-182, 251-258.
    Rout, P. R., Bhunia, P., Dash, R. R. (2014). Modeling isotherms, kinetics and understanding the mechanism of phosphate adsorption onto a solid waste: Ground burnt patties. Journal of Environmental Chemical Engineering, 2(3), 1331-1342.
    Smith, V. H., Joye, B. S., Howarth, R. W. (2006). Eutrophication of freshwater and marine ecosytems. Limnology and Oceanography, 51(1, part 2), 351-355.
    Song, Y., Hahn, H. H., Hoffmann, E. (2002). Effects of solution conditions on the precipitation of phosphate for recovery, A thermodynamic evaluation. Chemosphere, 48(10), 1029-1034.
    Song, Y., Weidler, P. G., Berg, U., Nuesch, R., Donnert, D. (2006). Calcite-seeded crystallization of calcium phosphate for phosphorus recovery, Chemosphere, 63(2), 236-243.
    Strang, T. J., Wareham, D.G. (2006) Phosphorus removal in a waste-stabilization pond containing limestone rock filters. Journal of Environmental Engineering and Science, 5(6), 447-457.
    Stark, J., Bollman, K. (2000). Delay ettringite formation in concrete. Nordic Concrete Research, 23, 4-28.
    Tsunashima, Y., Iizuka, A., Akimoto, J., Hongo, T., Yamasaki, A. (2012). Preparation of sorbents containing ettringite phase from concrete sludge and their performance in removing borate and fluorite ions from waste water. Chemical Engineering Journal, 200-202, 338-343.
    Uludag-Demirer, S., Othman, M. (2009). Removal of ammonium and phosphate from the supernatant of anaerobically digested waste activated sludge by chemical precipitation. Bioresource Technology, 100(13), 3236-3244.
    Varadarajan, N., Balu, R., Rana, D., Ramalingam, M., Kumar, T. S. S. (2014). Accelerated sonochemical synthesis of calcium deficient hydroxyapatite nanopaerticles, structural and morphological evolution. Journal of Biomaterials and Tissue Engineering, 4(4), 295-299.
    Wajima, T., Munakata, K. (2010). Material conversion from paper sludge ash in NaOH solution to synthesize adsorbent for removal of Pb2+, NH4+, PO43- from aqueous solution. Journal of Environmental Sciences, 23(5), 718-724.
    Wajima, T., Rakovan, J. F. (2013). Removal behavior of phosphate from aqueous solution by calcined paper sludge. Colloid and Surfaces A: Physicochemical and Engineering Aspects, 435, 132-138.
    Wang, W., Zhang, H., Zhang, L., Wan, H., Zheng, S., Xu, Z. (2015). Adsorptive removal of phosphate by magnetic Fe3O4@C@ZrO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 469, 100-106.
    Xie, J., Wang, Z., Fang, D., Li, C., Wu, D. (2014). Green synthesis of a novel hybrid sorbent of zeolite/lanthanum hydroxide and its application in the removal and recovery of phosphate from water. Journal of Colloid and Interface Science, 423, 13-19.
    Xiong, W., Peng, J. (2008). Development and characterization of ferrihydrite-modified diatomite as a phosphorus adsorbent. Water Research, 42(19), 4869-4877.
    Yadav, D., Kapur, M., Kumar, P., Mondal, M. K. (2015). Adsorptive removal of phosphate from aqueous solution using rice husk and fruit juice residue. Process Safety and Environmental Protection, 94, 402-409.
    Yan, Y., Sun, X., Ma, F., Li, J., Shen, J., Han, W., Liu, X., Wang, L. (2014). Removal of phosphate from wastewater using alkaline residue. Journal of Environmental Sciences, 26(5), 970-980.
    Yan, Y., Sun, X., Ma, F., Li, J., Shen, J., Han, W., Liu, X., Wang, L. (2014). Removal of phosphate from etching wastewater by calcined alkaline residue: Batch and column studies. Journal of then Taiwan Institute of Chemical Engineers, 45(4), 1709-1716.
    Yang, X., Sun, Z., Wang, D., Forsling, W. (2007). Surface acid-base properties and hydration/dehydration mechanisms of aluminum (hydr) oxides. Journal of Colloid and Interface Science, 308(2), 395-404.
    Yin, G., Liu, Z., Zhan, J., Ding, F., Yuan, N. (2002). Impacts of the surface charge property on protein adsorption on hydroxyapatite. Chemical Engineering Journal, 87(2), 181-186.
    Zhang, Q., Saito, F. (2000). Sonochemical synthesis of ettringite from a powder mixture suspended in water. Powder Technology, 107(1-2), 43-47.
    Zhang, M., Reardon, E. J. (2003). Removal of B, Cr, Mo, and Se from wastewater by incorporation into hydrocalumite and ettringite. Environmental Science and Technology, 37(13), 2947-2952.

    QR CODE