簡易檢索 / 詳目顯示

研究生: 莊智軒
Chih-Hsuan CHUANG
論文名稱: 太陽能光電發電系統切換控制之研製
Design and Implementation of Switch Control for Photovoltaic Power Generation Systems
指導教授: 郭明哲
Ming-Tse Kuo
口試委員: 吳啟瑞
Chi-Jui Wu
楊宗銘
Chung-Ming Young
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 76
中文關鍵詞: 太陽能電池變流器效率太陽能發電系統
外文關鍵詞: Solar cell, Inverter efficiency, Solar Photovolatic Power Generation System
相關次數: 點閱:235下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主要在探討太陽能發電系統效率提升。傳統上,一組太陽能發電系統使用一台變流器,而當太陽能發電系統規模越大,所需變流器也相對越多。當太陽能發電系統使用多台變流器做轉換,則能量分散給多台變流器;若能將變流器依照順序開啟,並非同時開啟,則能將全部的能量供給單台變流器做轉換,整體的轉換效率就會提升;此效率提升在太陽能發電系統低發電量情況下最為明顯,為本文實行的依據。
本文數據與模擬皆使用MATLAB/Simulink模擬軟體進行分析,作為系統控制依據,而控制單元使用單晶片(AT89S51)為整體系統的控制中心,其控制與偵測方式皆由軟體完成,可增加其修改與閱讀性,並減少硬體成本。


The purpose of this thesis is to improve the efficiency of photovoltaic (PV) systems. A set of a PV system needs an inverter in tradition, and therefore a larger set of a PV system requires relatively more inverters. When a PV system uses more inverters to convert power, energy will be separated to every inverter. If inverters are activated in sequence rather than simultaneously in together, all of the energy can be provided to part of inverters for power conversion. By using this method, the power conversion efficiency will improve. The increase of power conversion efficiency is very high when the energy generated by a PV system is low. This method is used in the thesis.
All of the data and simulation are analyzed by MATLAB/Simulink to provide system control algorithm. All of actions and detections are controlled by software and PV system control unit, chip AT89S51. By using this method, it can be modified and read easier and reduced the cost of hardware.

摘要………………………………………………………………………I 英文摘要………………………………………………………………II 誌謝……………………………………………………………………III 目錄……………………………………………………………………IV 圖目錄…………………………………………………………………VII 表目錄…………………………………………………………………XI 符號表…………………………………………………………………XII 第一章 緒論…………………………………………………………1 1.1 研究動機……………………………………………………1 1.2 研究方法……………………………………………………1 1.3 本文大綱……………………………………………………1 第二章 太陽能電池…………………………………………………3 2.1 前言…………………………………………………………3 2.2 太陽能電池光電轉換原理…………………………………4 2.3 太陽能電池種類介紹………………………………………6 2.3.1 矽晶型太陽能電池………………………………7 2.3.2 薄膜型太陽能電池………………………………9 2.4 太陽能電池等效電路探討………………………………13 2.5 太陽能電池模擬曲線……………………………………16 第三章 太陽能系統架構…………………………………………21 3.1 太陽能架構分析…………………………………………21 3.1.1 直接耦合直流系統………………………………21 3.1.2 太陽能直流系統…………………………………21 3.1.3 儲能的交/直流轉換系統………………………22 3.1.4 電網連結系統……………………………………23 3.2 太陽能併市電架構………………………………………24 3.3 直流/直流升壓轉換器……………………………………26 3.4 變流器(Inverter)介紹…………………………………29 3.5 孤島效應…………………………………………………32 3.5.1 孤島效應防治法…………………………………34 第四章 系統環境介紹……………………………………………37 4.1 模擬系統介紹……………………………………………37 4.2 SMA SUNNY BOY變流器(Inverter)介紹………………38 4.3 偵測與驅動電路板………………………………………41 4.3.1 電壓偵測電路……………………………………41 4.3.2 電流偵測電路……………………………………42 4.3.3 驅動電路板………………………………………43 4.3.4 控制電路板………………………………………44 4.4 太陽能切換器工作原理…………………………………46 4.5 太陽能切換器工作方塊圖………………………………48 4.6 程式控制流程……………………………………………49 4.6.1 高發電量副程式…………………………………50 4.6.2 中發電量副程式…………………………………51 4.6.3 低發電量副程式…………………………………52 4.7 結論………………………………………………………53 第五章 實測與模擬………………………………………………54 5.1 實際測試系統……………………………………………54 5.2 單台變流器實測…………………………………………55 5.3 變流器與負載並聯實測…………………………………57 5.4 雙台變流器並聯模擬與實測……………………………58 5.4.1 均流模擬…………………………………………58 5.4.2 實際測量…………………………………………60 5.5 雙變流器並聯切換模擬與實測…………………………63 5.6 結論………………………………………………………71 第六章 結論與未來研究方向……………………………………72 6.1 結論………………………………………………………72 6.2 未來研究方向……………………………………………72 參考文獻………………………………………………………………74

[1] PVCDROM Honsberg & Bowden
http://pvcdrom.pveducation.org
[2] http://www.ctci.org.tw/public/Attachment/562714495371.doc
[3] Staebler, L. David ,” Stability of Amorphous Silicon Solar Cells” IEEE Transactions on Reliability, Vol.R-31, pp.281-284, 1982.
[4] J. Yi, R. Wallace, J. Palmer and W.A. Anderson, “Amorphous and Micro-Crystalline Silicon for Photovoltaic Application” Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference, pp.977-980, 1993.
[5] M. Yamaguchi, Y. Ohmachi, T. Oh'hara, Y. Kadota, M. Imaizumi, and S.Matsuda, “GaAs-on-Si solar cells for space use” Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, 2000.
[6] A. Anctil, B. J. Landi, R.P. Raffaelle, “Multi-junction Polymer Solar Cells,” IEEE Photovoltaic Specialists Conference (PVSC), pp.1344-1348, 2009.
[7] 茂迪股份有限公司
http://www.motech.com.tw/products/pvmodules.aspx?view=all
[8] J. H. R. Enslin and D. B. Snyman, “Combined Low-Cost, High-Efficient Inverter, Peak Power Tracker and Regulator for PV Applications,” IEEE Trans. On Power Electronics, Vo1. 6,NO. 1, Jan. 1991, pp.73-82.
[9] C. V. Nayar, M. Ashar, W. W. L. Keerthipala, “A Grid-Interactive Photovoltaic Uninterruptible Power Supply System Using Battery Storage and a Back Up Diesel Generator.” IEEE Trans. On Energy Conversion, Vo1. 15,Sept. 2000,pp.348-353.
[10] R. J. Hacker, D. K. Munro, J. M. Thomycroft, “Small Grid-Connected Solar Photovoltaic Generators in the UK,” International Conference on Renewable Energy-clean Power 2001, 1993, pp.61-66.
[11] F. Antunes, A. M. Torres, “ A Three-Phase Grid-Connected PV System,” Industrial Electronics Society, 2000. IECON 2000. 26th Annual Conference of the IEEE, Vol.1, pp.723-728, Oct. 2000.
[12] N. Mohan, T. M. Undeland, W. P. Robbins, Power Electronics Converers, Applications, and Design . John Wiley and Sons, Inc 2003.
[13] Y. Gong, T. Lv, Y. Duan, H. Wang and Q. Li, “Controllable Power Output Research for Single Phase Photovoltaic Inverter,” International Conference on Sustainable Power Generation and Supply, SUPERGEN '09, pp.1-4,2009.
[14] 張仁謙,「風力發電系統孤島效應偵測技術」,中原大學電機工程學系碩士論文,中華民國九十三年。
[15]H. Kobayashi, K. Takigawa, E. Hashimoto, A. Kitamura, and H. Matsuda,” Method for Preventing Islanding Phenomenon on Utility Grid with a Number of small Scale PV Systems,”, 1991., Conference Record of IEEE Photovoltaic Specialists Conference,pp.695-700, 1991.
[16] 吳財福,「太陽能供電與照明系統綜論第二版」,全華科技圖書股份有限公司,民國九十六年。
[17] O. Tsukamoto, T. Okayasu and K. Yamagishi, “ Study on Islanding of Dispersed Photovoltaic Power Systems Connected to a Utility Power Grid,” Solar Energy, vo1. 70, no. 6, pp. 505-511, 2001.
[18] A. Kitamura, M. Okamoto, K. Hotta, “Islanding Prevention Measure:Demonstration Testing at Rokko Test Center for Advance Energy Systems,” Proceedings of the 23th IEEE Photovoltaic Specialists Conference, pp.1063-1067,1993.
[19] Ghali and F. M. A,”A Combined Technique for Elimination of Islanding Phenomenon [Grid-Connected Power Systems],” Proceedings of IEEE Photovoltaic Specialists Conference, pp. 1473-1476,1996.
[20] A,Kitamura,M. Okamoto,F. Yamamoto, K. Nakaji, H. Matsuda,and K.hotta, ”Islanding Phenomenon Elimination Study at Rokko Test Center,” Conference Record of IEEE Photovoltaic Specialists Conference, vol. 1,pp.759-762, 1994.
[21] SMA http://www.sma.de/en

無法下載圖示 全文公開日期 2015/08/02 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE