簡易檢索 / 詳目顯示

研究生: 王元川
Yuan-Chuan Wang
論文名稱: 快速類比記憶體編程之積體電路與系統及其應用於一自適功率調變緩衝放大器
Integrated Circuits and Systems for Rapid Analog Memory Programming and the Application on A Power Adaptive Buffer Amplifier
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 姚嘉瑜
Chia-Yu Yao
陳筱青
Hsiao-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 94
中文關鍵詞: 懸浮閘電晶體穩壓式負電荷幫浦熱載子注入效應穿隧效應自適功率可調變緩衝放大器AB類
外文關鍵詞: floating-gate transistor, regluated negative charge pump, hot-electron injection, Fowler-Nordheim tunneling, A power adaptive buffer amplifier, class AB
相關次數: 點閱:267下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文提出兩個類比記憶體之研究主題,以使用台積電 0.35 微米 2P4M 互補式金氧半導體製程為主,第一部分提出快速類比記憶體編成之積體電路與系統,可以透過改良後之編程系統對懸浮閘上之非揮發性電荷進行快速編程。第二部分提出一個具有功率調節之緩衝放大器,運用第一部分之類比記憶體技術,將緩衝放大器達成可因應不同之需求進行可重組之變化,以符合在不同使用情境之需求,並用超級 AB 類之架構去應對在輸入訊號之劇烈變化下,能產生自動調節功率之能力。

為了滿足在編程時可能因懸浮閘電晶體之數量過多,而導致在編程上會花費許多時間,為了改善可能在熱載子注入時之負壓無法快速回升之現象,本文提出一個具有能調節負壓高低與快速回穩之負壓電荷幫浦電路,能達成在 5 微秒 之內回到穩定,相比原本所使用之負電荷幫浦電路需花費 500 微秒 才能穩定。並且使用了穩壓負電荷幫浦電路,利用負回授機制將負壓透過電阻分壓的方式調節負壓深淺。在原先之編程系統所使用晶片外之數位類比轉換器、類比數位轉換器、可編程邏輯陣列與個人電腦。為了更進一步縮短編程時間,在開發軟體上進行修改,並減少 MATLAB 傳遞時間,使所有控制訊號均由可編程邏輯陣列中之微處理器來達成所有需求。如此一來,編成一顆類比記憶體平均只需要 10 毫秒。

為了能有效降低在生醫應用上之功率消耗,本篇論文提出一個適用於低功耗類比前端電路中之緩衝放大器,藉由前者所使用之懸浮閘電晶體編程技術,可達成在生理訊號中不同頻域上之需求變化。在選擇電路架構上,使用了全電容回授之緩衝放大器並搭配懸浮閘所提供之可調節輸入直流準位以及消除輸入電壓之偏移。並且此緩衝放大器為了能有驅動晶片外之藍芽晶片,並以其藍芽晶片前端之類比數位轉換器的輸入電容值為負載考量。為了能確保擁有足夠之驅動能力用以推動後級,因此在放大器之設計架構上採用了二階組態之 AB 類架構達到應有之迴轉率。已在台積電下 0.35 微米 之 CMOS 製程實現,其面積為 0.151 毫米平方。量測結果上在後端為藍芽晶片之使用情境下,用以輸出負載為 10 pF 之下進行量測,在增益頻寬為 100 kHz 時其功率消耗為 3 µW,並量測輸入二階截取點為 52.66 dBV 與迴轉率為 7.86 V/ us。而為了測試其電路上能接受之最大輸出負載上並維持其應有足夠之相位裕度之下,用以輸出負載為 70 pF 之下進行量測,在增益頻寬為100 kHz 時其功率消耗為 3.05 uW,並量測輸入二階截取點為 50.9dBV 與迴轉率為2.97 V/ us。


This paper proposes two research topics on analog memory, mainly using TSMC 0.35 um 2P4M complementary metal oxide semiconductor process. The first part presents an integrated circuit and system based on fast analog memory, which can be programmed through an improved programming system. Fast programming of non-volatile charges on floating gates. The second part proposes a buffer amplifier with power adjustment; using the analog memory technology of the first part, the buffer amplifier can be reconfigured according to different needs to meet the needs of different usage scenarios and use the super AB class structure. To sense with the drastic changes in the input signal, it can produce the ability to adjust the power automatically.

To meet the requirement that it may take a lot of time to program due to the excessive number of floating thyristors during programming, in order to improve the phenomenon that the negative pressure may not be able to recover quickly during hot carrier injection, this paper proposes a method with adjustable negative pressure. The negative voltage charge pumps circuit with high and low voltage, and fast stabilization can achieve stability within 5 µs, compared to the original negative charge pump circuit that needs 500 µs to stabilize. And a regulated negative charge pump circuit is used, and a negative feedback mechanism is used to adjust the depth of the negative pressure by dividing the negative pressure through a resistor. Off-chip digital-to-analog converters, analog-to-digital converters, programmable logic arrays and personal computers used in previous programming systems. To further shorten the programming time, modify the development software and reduce the MATLAB transfer time so that all control signals are achieved by the micro-processor in the programmable logic array to accomplish all requirements. As a result, it only takes an average of 10 milliseconds to program an analog memory.

To effectively reduce the power consumption in biomedical applications, this paper proposes a buffer amplifier suitable for low-power analog front-end circuits. Using the floating thyristor programming techniques used in the former can be used in physiological signals. Demand changes in different frequency domains. In the selection circuit structure, a buffer amplifier with full capacitance feedback is used, and the adjustable input DC level provided by the floating gate is used to eliminate the offset of the input voltage. And this buffer amplifier can drive the bluetooth chip outside the chip, and the input capacitance value of the analog-digital converter at the front end of the bluetooth chip is considered a load. In order to ensure enough driving capability to drive the post-stage, the amplifier design structure adopts the class-AB structure of the second-order configuration to achieve the proper slew rate. It has been implemented in TSMC’s 0.35 um CMOS process with an area of 0.151 mm2. The back-end is used as a Bluetooth chip in the measurement results, and the output load is 10 pF. The power consumption is 3 uW when the gain bandwidth is 100 kHz, and the second-order input interception is measured. The point is 52.66 dBV, and the slew rate is 7.86 V/ us. In order to test the maximum output load that can be accepted on the circuit and maintains it with sufficient phase margin, the power consumption is measured when the output load is 70 pF, the gain bandwidth at 100 kHz is 3.05 uW, and the measured input second-order intercept point is 50.9 dBV, and the slew rate is 2.97 V/us.

Abstract in Chinese . . . iii Abstract in English . . . v Acknowledgements . . . vii Contents . . . vii List of Figures . . . xi List of Tables . . . xvi 1 Introduction . . . 1 1.1 Motivation . . . 1 1.2 Background Knowledge of Floating-gate Transistor . . . 4 1.2.1 Hot-Electron Injection . . . 6 1.2.2 Fowler-Nordheim Tunneling . . . 8 1.3 Analog Memory Architecture . . . 9 2 Integrated Circuits and Systems for Rapid Analog Memory Programming . . . 10 2.1 Analog Memory Programming Circuits Design . . . 11 2.1.1 Charge Pump . . . 11 2.1.2 High Voltage Select Circuit . . . 13 2.1.3 Selecting Voltage Circuit for FN Tunneling . . . 14 2.1.4 Negative Charge Pump . . . 16 2.1.5 Two-Dimensional Floating-Gate Array . . . 18 2.2 Existing Analog Memory Programming Systems Design . . . 20 2.2.1 Fowler-Nordheim tunneling . . . 22 2.2.2 hot-electron injection . . . 23 2.2.3 Flow Chart of Programming Circuit . . . 25 2.2.4 Programming Timing Diagram . . . 26 2.3 Rapid Analog Memory Programming Systems and Circuits Design . . . 28 2.3.1 Regulated Negative Charge Pump . . . 29 2.3.2 Flow Chart of Proposed Programming Circuit . . . 31 2.3.3 Programming Timing Diagram with Calculate Voltage . . . 32 2.3.4 Programming Strategy with Look-up Table . . . 33 2.3.5 Programming Timing Diagram with Look-up Table . . . 34 2.4 Measurement Results . . . 36 2.4.1 Programming Timing Diagram . . . 37 2.4.2 characterization . . . 38 2.4.3 Different Target Current Measurement Results . . . 39 2.4.4 Different Target Voltage Measurement Results . . . 40 2.4.5 Comparison Table . . . 41 3 A Power Adaptive Buffer Amplifier Suitable for Biomedical Applications . . . 42 3.1 Motivation . . . 42 3.2 Literature Review And Background Knowledge . . . 45 3.2.1 Buffer Amplifiers . . . 45 3.2.2 Capacitive Circuits . . . 47 3.3 Proposed Power Adaptive Buffer Amplifier . . . 49 3.3.1 Capacitor Array for Adjustable Gain Amplifier . . . 49 3.3.2 Power Adaptive Buffer Amplifier . . . 51 3.3.3 Operation Principle . . . 53 3.3.4 Advantages of Floating-Gate . . . 55 3.4 Analysis . . . 56 3.4.1 Closed-Loop Analysis . . . 56 3.4.2 Stability Analysis . . . 57 3.4.3 Noise Analysis . . . 58 3.4.4 Slew Rate Analysis . . . 59 3.5 Measurement Results . . . 61 3.5.1 Bandwidth and Gain Programmability . . . 62 3.5.2 Slew Rate . . . 63 3.5.3 Linearity . . . 65 3.5.4 Noise, Common-mode Rejection, and Supply Rejection . . . 66 3.5.5 Biological Signal Measurement Results . . . 67 3.5.6 Figures of Merit and Comparison . . . 68 4 Conclusion and Contribution . . . 70 4.1 Conclusion . . . 70 4.2 Contribution . . . 71 References . . . 72 Letter of Authority . . . 78

[1] J. H. S. Brink and R. Wunderlich, “Adaptive floating-gate circuit enabled large-scale fpaa,” vol. 22, no. 11, pp. 2307–2315, 2014.
[2] J. G. V. Srinivasan, G. Serrano and P. Hasler, “A precision cmos amplifier using floating-gate transistors for offset cancellation,” IEEE Journal of Solid–State Circuits, vol. 42, no. 2, pp. 280–291, 2007.
[3] E. Ozalevli and P. E. Hasler, “Tunable highly linear floating-gate cmos resistor using common-mode linearization technique,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 55, no. 4, pp. 999–1010, 2008.
[4] R. C. D. Graham, P. Hasler and P. Smith, “A low-power programmable bandpass filter section for higher order filter applications,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 54, no. 6, pp. 1165–1176, 2007.
[5] E. Ozalevli, H.-J. Lo, and P. Hasler, “Binary-weighted digital-to-analog converter design using floating-gate voltage references,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 55, no. 4, pp. 990–998, 2008.
[6] C. D. B. Degnan and P. Hasler, “Crossbar switch matrix for floating-gate programming over large current ranges,” IEEE Proceedings of the International Symposium on Circuits and Systems, 2010.
[7] A. Basu and P. E. Hasler, “A fully integrated architecture for fast and accurate programming of floating gates over six decades of current references,” vol. 19, no. 6, pp. 953–962, 2011.
[8] C. Huang, P. Sarkar, and S. Chakrabartty, “Rail-to-rail, linear hot-electron injection programming of floating-gate voltage bias generators at 13-bit resolution,” IEEE Journal of Solid–State Circuits, vol. 46, no. 11, pp. 2685–2692, 2011.
[9] J. Lu and J. Holleman, “A floating-gate analog memory with bidirectional sigmoid updates in a standard digital process,” IEEE Proceedings of the International Symposium on Circuits and Systems, pp. 1600–1603, 2013.
[10] J. H. S. Kim and S. George, “Integrated floating-gate programming environment for system-level ics,” vol. 24, no. 6, pp. 2244–2252, 2016.
[11] T.-Y. Wang, M.-R. Lai, C. M. Twigg, and S.-Y. Peng, “A fully reconfigurable lownoise biopotential sensing amplifier with 1.96 noise efficiency factor,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 3, pp. 411–422, 2014.
[12] T.-Y. Wang, L.-H. Liu, and S.-Y. Peng, “Power-efficient highly linear reconfigurable biopotential sensing amplifier using gate-balanced pseudoresistors,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 2, pp. 199 – 203, 2015.
[13] S.-Y. Peng, L.-H. Liu, P.-K. Chang, T.-Y. Wang, and H.-Y. Li, “A power-efficient reconfigurable output-capacitor-less low-drop-out regulator for low-power analog sensing front-end,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 64, no. 6, pp. 1318 – 1327, 2017.
[14] S.-Y. Peng, Y.-H. Lee, T.-Y. Wang, H.-C. Huang, M.-R. Lai, C.-H. Lee, and L.-H. Liu, “A power-efficient reconfigurable OTA-C filter for low-frequency biomedical applications,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 65, no. 2, pp. 543 – 555, 2018.
[15] T.-Y. Wang, H.-Y. Li, Z.-Y. Ma, Y.-J. Huang, and S.-Y. Peng, “A bypass-switching SAR ADC with a dynamic proximity comparator for biomedical applications,” IEEE Journal of Solid–State Circuits, vol. 53, no. 6, pp. 1743–1754, 2018.
[16] K.-J. de Langen and J. H. Huijsing, “Compact low-voltage power-efficient operational amplifier cells for VLSI,” IEEE Journal of Solid–State Circuits, vol. 33, no. 10, pp. 1482–1496, 1998.
[17] J.Ramirez-Angulo, R.G.Carvajal, J. A. Galan, and A. Lopez-Martin, “A free but efficient low-voltage class-AB two-stage operational amplifier,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 53, no. 7, pp. 568–571, 2006.
[18] P. R. Surkanti and P. M. Furth, “Converting a three-stage pseudoclass-AB amplifier to a true-class-AB amplifier,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 59, no. 4, pp. 229–233, 2012.
[19] C. G.-Alberdi, J. A.-Ruiz, A. J. L.-Martin, and J. R.-Angulo, “Micropower classAB VGA with gain-independent bandwidth,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 60, no. 7, pp. 397–401, 2013.
[20] F. E.-Alfaro, S. Pennisi, G. Palumbo, and A. J. L.-Martin, “Low-power class-AB CMOS voltage feedback current operational amplifier with tunable gain and bandwidth,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 61, no. 8, pp. 574–578, 2014.
[21] E. C.-Bernal, S. Pennisi, A. D. Grasso, A. Torralba, and R. G. Carvajal, “0.7-V threestage class-AB CMOS operational transconductance amplifier,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 63, no. 11, pp. 1807–1815, 2016.
[22] M. Degrauwe, J. Rijmenants, E. A. Vittoz, and D. Man, “Adaptive biasing CMOS amplifier,” IEEE Journal of Solid–State Circuits, vol. SC-17, no. 3, pp. 522–528, 1982.
[23] R. Kline, B. J. Hosticka, and H. J. Pfleiderer, “A very-high-slew-rate CMOS operational amplifier,” IEEE Journal of Solid–State Circuits, vol. 24, no. 3, pp. 744–76, 1989.
[24] L. Callewaert and W. Sansen, “Class AB CMOS amplifiers with high efficiency,”IEEE Journal of Solid–State Circuits, vol. 25, no. 6, pp. 684–691, 1990.
[25] A. J. L.-Martin, S. Baswa, J. R.-Angulo, and R. G.-Carvajal, “Low-voltage super class AB CMOS OTA cells with very high slew rate and power efficiency,” IEEE Journal of Solid–State Circuits, vol. 40, no. 5, pp. 1068–1077, 2005.
[26] B. A. Minch, “A simple class-AB transconductor in CMOS,” in IEEE Proceedings of the International Symposium on Circuits and Systems, pp. 69–72, May 2008.
[27] A. L.-Martin, M. P. Garde, J. M. Algueta, C. A. C. Blas, R. G. Carvajal, and J. R.-Angulo, “Enhanced single-stage folded cascode OTA suitable for large capacitive loads,”IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 65, no. 4, pp. 441–445, 2018.
[28] M. Garde, A. Lopez-Martin, R.G.Carvajal, and J.Ramirez-Angulo, “Super classAB recycling folded cascode OTA,” IEEE Journal of Solid–State Circuits, vol. 53, no. 22, pp. 2614–2623, 2018.
[29] T. Delbruck, “Bump circuits for computing similarity and dissimilarity of analog voltage,” in IEEE Proceedings of the International Neural Network Society, vol. 1, pp. 475–479, Oct. 1991.
[30] F. Bahmani and E. Sánchez-Sinencio, “A highly linear pseudo-differential transconductance,” pp. 111––114, 2004.
[31] R. Assaad and J. Silva-Martinez, “Enhancing general performance of folded cascode amplifier by recycling current,” IEEE Electronics Letters, vol. 43, no. 23, 2007.
[32] R. S. Assaad and J. Silva-Martinez, “The recycling folded cascode: A general enhancement of the folded cascode amplifier,” IEEE Journal of Solid–State Circuits, vol. 44, no. 9, pp. 2535–2542, 2009.
[33] B. A. Minch, “A low-voltage MOS cascode bias circuit for all current levels,” pp. 619–622, May 2002.
[34] M. R. V. Bernal, S. Celma, N. Medrano, and B. Calvo, “An ultralow-power lowvoltage class-ab fully differential opamp for long-life autonomous portable equipment,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 10, pp. 643–647, 2012.
[35] A. D. Sundararajan and S. M. R. Hasan, “Quadruply split cross-driven doubly recycled gm-doubling recycled folded cascode for microsensor instrumentation amplifiers,” vol. 63, no. 6, pp. 543–547, 2016.

無法下載圖示 全文公開日期 2027/07/06 (校內網路)
全文公開日期 2027/07/06 (校外網路)
全文公開日期 2027/07/06 (國家圖書館:臺灣博碩士論文系統)
QR CODE