簡易檢索 / 詳目顯示

研究生: Chinmai Bhat
Chinmai Bhat
論文名稱: 以積層製造技術實現可調結構和功能特性之晶格結構排列與嵌套策略
ADDITIVE MANUFACTURING ENABLED TESSELLATION AND NESTING STRATEGIES OF LATTICE STRUCTURES FOR TUNABLE STRUCTURAL AND FUNCTIONAL PROPERTIES
指導教授: 鄭正元
Jeng-Ywan Jeng
Ajeet Kumar
Ajeet Kumar
口試委員: 鄭正元
鄭中緯
石昭明
鄭逸琳
蔡榮庭
Ajeet Kumar
江卓培
羅裕龍
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 302
中文關鍵詞: 可调特性镶嵌策略嵌套策略晶格结构立方金属晶体结构多射流融合工艺增材制造
外文關鍵詞: Tunable properties, tessellation strategies, nesting strategies, lattice structures, cubic metallic crystal structures, multi-jet fusion process, additive manufacturing
相關次數: 點閱:258下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用各種積層製造技術製作晶格結構的應用已大大提高了工業產品的定制性,並具有高品質的特定性能。透過不同的晶格結構可以獲得多種功能,可以根據需求調節性能。晶格結構的這種可調節性能的能力,對常用於取得可調節機械性能的多材料組合件提出了挑戰。使用晶格結構獲得可調節性能的替代方案,將減輕多材料列印的需求,該需求常常涉及材料兼容性、界面結合和製造相關問題。
      本論文主要著重於透過模仿自然界的結構和現象,設計具有可調節性能的晶格結構。由於自然界基於適應和優化,以經過數十億年的進化,模仿這些結構將產出最有效的晶格結構。在本研究中,以海膽晶格單元(Sea Urchin ,SU)作為設計領域中的不同模式堆疊的生物啟發格局。堆疊序列的靈感來自立方金屬晶體結構中的原子排列,例如簡單立方 (SC)、體心立方 (BCC)、面心立方 (FCC) 和六方密堆積 (HCP)。根據相鄰單位晶格之間的連接方式,堆疊方式分為非邊緣對邊緣(Non Edge-to-Edge,NETE)、邊緣對邊緣(Edge-to-Edge,ETE)和重疊。這種連接的多樣性將提供負載不同的傳遞路徑,從而產生不同的結構和功能性能(從高強度到高度可伸展的晶格結構)。這些結構的概念被應用於獲得可調節和可定制屬性。除了堆疊式結構,還提出了一種在晶格結構中透過生物啟發的嵌套策略,獲得可調節性能的替代方法。大尺寸單位晶格包含類似嵌套的內部結構。使用不同的內部結構生成不同的屬性,這些屬性可以組合以獲得可調性能。
      所有設計的結構均使用HP-MJF粉末床熔融積層製造技術,並使用聚酰胺-12(PA-12)材料所製造出的。此結構和功能性能通過機械實驗和有限元素分析(FEA)進行評估。NETE堆疊結構能夠透過晶格結構策略將結構行為從受拉伸導向轉變為受彎曲導向,反之亦然。然而,與ETE堆疊結構相比,它們的結構性能較差。ETE晶結構在結構性能方面表現出色,其中FCC堆疊結構在所有現有排列結構中具有最高的負載和吸能能力。除了結構性能外,ETE堆疊結構可以相互互鎖,因此使用單一材料即可提供多材料般的性能。剛性ETE和NETE堆疊結構所缺乏的彈性將透過被重疊此結構所克服,其中剛性結構轉變為可伸展的結構。此外,重疊策略還有助於選擇性地控制各種自由度以獲得可調節性能。
      除了交錯堆疊外,嵌套晶格結構還能在不同應變速率負載條件下為大尺寸表面單位晶格提供優異的穩定性。除了穩定性外,內部的彎曲和拉伸導向的結構還能在這些晶格結構中產生次要性能,可以根據需要進行調整。設計的交錯堆疊結構和嵌套策略將幫助使用單一材料實現多材料般的性能。此外,此論文還鼓勵設計師探索其他以自然界中的結構來獲得可調節特性。


    The use of lattice structures using various additive manufacturing processes has extensively increased the customization of industrial products along with high mass-specific properties. The wide range of functionalities that can be obtained through different lattice structures has paved the way to tune the properties as per the requirements. This ability of lattice structures has challenged the multi-material components that are often used to obtain tunable mechanical properties. The role of lattice structures as an alternative to obtain the tunable properties would mitigate the need for multi-material printing that are often dealt with material compatibility, interface, and manufacturing-related issues.
    This thesis dissertation mainly focuses on designing lattice structures with tunable properties by biomimicking nature-inspired structures and phenomena. Since nature has evolved through billions of years of evolution based on adaptation and optimization, biomimicking such structures would result in the most efficient lattices. In the current study, the bioinspired tessellation strategies were framed to stack the sea urchin (SU) unit cell in different patterns within the design domain. The stacking sequences are inspired by the arrangement of atoms in the cubic metallic crystal structures such as simple cubic (SC), body centered cubic (BCC), face centered cubic (FCC), and hexagonal close packing (HCP). The tessellation strategies were categorized into Non Edge-to-Edge (NETE), Edge-to-Edge (ETE), and overlapping based on the connections between the adjacent unit cells. Such diversity in the connections would provide diverse options of load transfer paths, thus delivering different structural and functional properties (ranging from high strength to highly stretchable lattices). These concept of tessellations are exploited in obtaining tunable/customizable properties. Apart from tessellation strategies, an alternative way of obtaining tunable properties in lattice structures through bioinspired nesting strategies was also framed. The large-sized unit cells enclose internal trusses similar to eggs being nested. Different internal trusses are used to generate different properties which can be combined together to obtain tunable properties.
    All the designed structures were additively manufactured using HP-MJF powder bed fusion technology using polyamide-12 material. Their respective structural and functional properties were evaluated using both mechanical experiments and finite element analysis (FEA). The NETE tessellations were capable of interchanging the structural behavior from stretch-dominated to bending-dominated and vice versa using the tessellation strategies. However, their structural performance was weak compared to ETE tessellated lattice structures. ETE tessellated lattice structures delivered an excellent structural performance with FCC tessellation showing the highest load-bearing and energy absorption abilities among all the existing lattices. Apart from structural performances, the ETE tessellations could interlock into each other, thereby delivering multi-material-like properties using a single material. The lack of flexibility involved with rigid ETE and NETE tessellations was overcome by overlapping tessellation where the rigid lattices transform into stretchable fabrics. Moreover, the overlapping strategy also facilitated selective manipulation of various degrees of freedom to obtain tunable properties.
    Apart from tessellations, the nested lattice structures deliver excellent stability to the large-sized surface unit cells against varied strain rate loading conditions. Along with stability, the internal bending and stretch dominated trusses generate the secondary properties in these lattice structures that can be tuned as per requirement.

    Table of contents ABSTRACT iii 摘要 iiiii Acknowledgement ix Table of contents xi List of figures xiv List of tables xxv CHAPTER – 1: INTRODUCTION 1 1.1 Overview 1 1.2 Motivation 4 1.3 Problem statement 5 1.4 Objectives 6 1.5 Thesis organization 8 CHAPTER – 2: LITERATURE REVIEW 11 2.1 Industry 4.0 – an approach to digital manufacturing 11 2.2 Additive manufacturing processes 14 2.3 Nature of the lattice structures 24 2.4 Design of lattice structures for additive manufacturing 28 2.4.1 Density grading strategies 30 2.4.2 Morphology grading strategies 40 2.4.3 Grading of spatial arrangement of unit cells (tessellations) 51 2.5 Bioinspired tessellations 57 2.6 Inspiration from various categories of crystal structures 63 2.7 Bioinspired nesting strategies and their biomimicking 67 CHAPTER – 3: MATERIALS AND METHODS 69 3.1 Design of basic unit cell 69 3.2 Tessellations of basic unit cell 71 3.2.1 Non-Edge-To-Edge (NETE) Tessellation Principles 72 3.2.2 Edge-To-Edge (ETE) Tessellation Principles 78 3.2.3 Overlapping tessellation principles 91 3.3 Nesting strategies of lattice structures 101 3.4 Additive manufacturing and post-processing of all the designed samples 111 3.5 Uniaxial compression testing of samples 112 3.6 Tensile testing of chainmail fabrics 114 3.7 Numerical simulation studies of NETE, ETE, and nested lattice structures 115 3.8 Numerical simulation studies of chainmail fabrics 119 CHAPTER – 4: RESULTS AND DISCUSSION 120 4.1 Non-Edge-To-Edge (NETE) Tessellated Lattice Structures 120 4.1.1 Non-edge-to-edge tessellated lattice structures: stress vs. strain curves 120 4.1.2 Non-edge-to-edge tessellated lattice structures: deformation behavior 122 4.1.3 Non-edge-to-edge tessellated lattice structures: numerical simulation study 129 4.1.4 Non-edge-to-edge tessellated lattice structures: experimental and numerical simulation comparison of properties 142 4.1.5 Non-edge-to-edge tessellated lattice structures: proposed applications 146 4.2 Edge-To-Edge (ETE) Tessellated Lattice Structures 149 4.2.1 Edge-to-edge tessellated lattice structures: stress vs. strain curves, deformation behavior and their properties comparison using experimental and numerical analysis. 149 4.2.2 Comparison of ETE tessellated lattice structures with other lattice structures 160 4.2.3 Multi-tessellated ETE lattice structures 162 4.2.4 Interface of multi-tessellated lattice structures 167 4.2.5 Edge-To-Edge tessellated lattice structures: proposed application 170 4.3 Overlapping Tessellated Chainmail Fabrics 172 4.3.1 Mechanical properties of BCC chainmail fabrics at different orientations 172 4.3.2 Mechanical properties of FCC chainmail fabrics at different orientations 179 4.3.3 Tuning of mechanical properties of BCC and FCC fabrics 185 4.3.4 Fabrication of chainmail fabrics with different AM processes 195 4.3.5 Overlapping tessellated chainmail fabrics – proposed applications 197 4.4 Nested Lattice Structures 202 4.4.1 Experimental and numerical simulation comparison of properties 202 4.4.2 Composition-property relationship of nested lattice structures 212 4.4.3 Effect of relative density on the properties of lattice structures 221 4.4.4 Effect of static strain rates on the structural behavior of lattice structures 224 4.4.5 Additive manufacturability of nested lattice structures 228 CHAPTER – 5: CONCLUSIONS 230 5.1 Study on Non-Edge-To-Edge (NETE) tessellations 230 5.2 Study on Edge-To-Edge (ETE) tessellations 233 5.3 Study on overlapping tessellations 235 5.4 Study on nested lattice structures 238 CHAPTER – 6: FUTURE SCOPE 242 REFERENCES 246

    References
    [1] M.J.Prajapati, A.Kumar, S.-C.Lin, J.-Y.Jeng, Multi-material additive manufacturing with lightweight closed-cell foam-filled lattice structures for enhanced mechanical and functional properties, Addit. Manuf. 54 (2022) 102766. https://doi.org/10.1016/j.addma.2022.102766.
    [2] S.Verma, A.Kumar, S.C.Lin, J.Y.Jeng, CFD and strength analysis of novel biomimetic lattice structure designed for additive manufacturing and post-processing, Mater. Des. 224 (2022) 111375. https://doi.org/10.1016/j.matdes.2022.111375.
    [3] D.Kang, S.Park, Y.Son, S.Yeon, S.H.Kim, I.Kim, Multi-lattice inner structures for high-strength and light-weight in metal selective laser melting process, Mater. Des. 175 (2019) 107786. https://doi.org/10.1016/j.matdes.2019.107786.
    [4] S.Babaee, J.Shim, J.C.Weaver, E.R.Chen, N.Patel, K.Bertoldi, 3D soft metamaterials with negative poisson’s ratio, Adv. Mater. 25 (2013) 5044–5049. https://doi.org/10.1002/adma.201301986.
    [5] C.Bhat, A.Kumar, S.-C.Lin, J.Y.Jeng, A novel bioinspired architectured materials with interlocking designs based on tessellation, Addit. Manuf. 58 (2022) 103052. https://doi.org/10.2139/ssrn.4122442.
    [6] P.Fratzl, John W. C. Dunlop, Richard Weinkamer, Materials Design Inspired by Nature - Function through inner architecture, RCS Publishing, Cambridge, England, 2013.
    [7] J.Holmström, J.Partanen, Digital manufacturing-driven transformations of service supply chains for complex products, Supply Chain Manag. 19 (2014) 421–430. https://doi.org/10.1108/SCM-10-2013-0387.
    [8] D.Chen, S.Heyer, S.Ibbotson, K.Salonitis, J.G.Steingrímsson, S.Thiede, Direct digital manufacturing: Definition, evolution, and sustainability implications, J. Clean. Prod. 107 (2015) 615–625. https://doi.org/10.1016/j.jclepro.2015.05.009.
    [9] J.Holmström, G.Liotta, A.Chaudhuri, Sustainability outcomes through direct digital manufacturing-based operational practices: A design theory approach, J. Clean. Prod. 167 (2017) 951–961. https://doi.org/10.1016/j.jclepro.2017.03.092.
    [10] C.Bhat, A.Kumar, J.-Y.Jeng, Effect of atomic tessellations on structural and functional properties of additive manufactured lattice structures, Addit. Manuf. 47 (2021) 102326. https://doi.org/10.1016/j.addma.2021.102326.
    [11] J.-Y.J.Chinmai Bhat, Ajeet Kumar, Shang-Chih Lin, Design, Fabrication, and Properties Evaluation of Novel Nested Lattice Structures, 09 (2022) 7352–7363.
    [12] A.Nazir, K.M.Abate, A.Kumar, J.Y.Jeng, A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures, Int. J. Adv. Manuf. Technol. 104 (2019) 3489–3510. https://doi.org/10.1007/s00170-019-04085-3.
    [13] Y.Wu, J.Fang, C.Wu, C.Li, G.Sun, Q.Li, Review Additively manufactured materials and structures : A state-of-the-art review on their mechanical characteristics and energy absorption, Int. J. Mech. Sci. (2023) 108102. https://doi.org/10.1016/j.ijmecsci.2023.108102.
    [14] J.Feng, J.Fu, X.Yao, Y.He, Triply periodic minimal surface (TPMS) porous structures: From multi-scale design, precise additive manufacturing to multidisciplinary applications, Int. J. Extrem. Manuf. 4 (2022). https://doi.org/10.1088/2631-7990/ac5be6.
    [15] A.I.H.Nasrullah, S.P.Santosa, T.Dirgantara, Design and optimization of crashworthy components based on lattice structure configuration, Structures. 26 (2020) 969–981. https://doi.org/10.1016/j.istruc.2020.05.001.
    [16] O.Al-Ketan, R.K.Abu Al-Rub, Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices, Adv. Eng. Mater. 21 (2019) 1–39. https://doi.org/10.1002/adem.201900524.
    [17] J.Khaira, What are Tilings and Tessellations and how are they used in Architecture?, Young Sci. J. 2 (2009) 35–46.
    [18] D.Bhate, C.Penick, L.Ferry, C.Lee, Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches, Designs. 3 (2019) 19. https://doi.org/10.3390/designs3010019.
    [19] L.S.Dalenogare, G.B.Benitez, N.F.Ayala, A.G.Frank, The expected contribution of Industry 4.0 technologies for industrial performance, Int. J. Prod. Econ. 204 (2018) 383–394. https://doi.org/10.1016/j.ijpe.2018.08.019.
    [20] M.Ghobakhloo, Industry 4.0, digitization, and opportunities for sustainability, J. Clean. Prod. 252 (2020) 119869. https://doi.org/10.1016/j.jclepro.2019.119869.
    [21] K.A.Dwivedi, S.-J.Huang, C.-T.Wang, Integration of various technology-based approaches for enhancing the performance of microbial fuel cell technology: A review, Chemosphere. 287 (2022) 132248. https://doi.org/10.1016/j.chemosphere.2021.132248.
    [22] E.Oztemel, S.Gursev, Literature review of Industry 4.0 and related technologies, J. Intell. Manuf. 31 (2020) 127–182. https://doi.org/10.1007/s10845-018-1433-8.
    [23] Aura Quantic, Industry 4.0 technologies, (n.d.). https://doi.org/https://www.auraquantic.com/technologies-intelligent-industry/.
    [24] M.Pagac, J.Hajnys, Q.P.Ma, L.Jancar, J.Jansa, P.Stefek, J.Mesicek, A review of vat photopolymerization technology: Materials, applications, challenges, and future trends of 3d printing, Polymers (Basel). 13 (2021) 1–20. https://doi.org/10.3390/polym13040598.
    [25] F.Zhang, L.Zhu, Z.Li, S.Wang, J.Shi, W.Tang, N.Li, J.Yang, The recent development of vat photopolymerization: A review, Addit. Manuf. 48 (2021). https://doi.org/10.1016/j.addma.2021.102423.
    [26] B.J.Lee, K.Hsiao, G.Lipkowitz, T.Samuelsen, L.Tate, J.M.DeSimone, Characterization of a 30 µm pixel size CLIP-based 3D printer and its enhancement through dynamic printing optimization, Addit. Manuf. 55 (2022) 102800. https://doi.org/10.1016/j.addma.2022.102800.
    [27] J.Mancilla-De-la-Cruz, M.Rodriguez-Salvador, J.An, C.K.Chua, Three-Dimensional Printing Technologies for Drug Delivery Applications: Processes, Materials, and Effects, Int. J. Bioprinting. 8 (2022) 321–346. https://doi.org/10.18063/ijb.v8i4.622.
    [28] I.Gibson, D.Rosen, B.Stucker, M.Khorasani, Industrial Drivers for AM Adoption, 2021. https://doi.org/10.1007/978-3-030-56127-7_21.
    [29] G.H.Loh, E.Pei, J.Gonzalez-Gutierrez, M.Monzón, An overview of material extrusion troubleshooting, Appl. Sci. 10 (2020). https://doi.org/10.3390/app10144776.
    [30] J.Gonzalez-Gutierrez, S.Cano, S.Schuschnigg, C.Kukla, J.Sapkota, C.Holzer, Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives, Materials (Basel). 11 (2018). https://doi.org/10.3390/ma11050840.
    [31] L.Baich, G.Manogharan, H.Marie, Study of infill print design on production cost-time of 3D printed ABS parts, Int. J. Rapid Manuf. 5 (2015) 308. https://doi.org/10.1504/ijrapidm.2015.074809.
    [32] C.A.Chatham, T.E.Long, C.B.Williams, A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing, Prog. Polym. Sci. 93 (2019) 68–95. https://doi.org/10.1016/j.progpolymsci.2019.03.003.
    [33] L.Ladani, M.Sadeghilaridjani, Review of powder bed fusion additive manufacturing for metals, Metals (Basel). 11 (2021). https://doi.org/10.3390/met11091391.
    [34] Z.Snow, A.R.Nassar, E.W.Reutzel, Invited Review Article: Review of the formation and impact of flaws in powder bed fusion additive manufacturing, Addit. Manuf. 36 (2020) 101457. https://doi.org/10.1016/j.addma.2020.101457.
    [35] M.S.Hossain, J.A.Gonzalez, R.M.Hernandez, M.A.I.Shuvo, J.Mireles, A.Choudhuri, Y.Lin, R.B.Wicker, Fabrication of smart parts using powder bed fusion additive manufacturing technology, Addit. Manuf. 10 (2016) 58–66. https://doi.org/10.1016/j.addma.2016.01.001.
    [36] A.Wiberg, Towards Design Automation for Additive Manufacturing A Multidisciplinary Optimization approach Anton Wiberg FACULTY OF SCIENCE AND ENGINEERING, 2019. www.liu.se.
    [37] O.Gülcan, K.Günaydın, A.Tamer, The state of the art of material jetting—a critical review, Polymers (Basel). 13 (2021). https://doi.org/10.3390/polym13162829.
    [38] H.Yang, J.C.Lim, Y.Liu, X.Qi, Y.L.Yap, V.Dikshit, W.Y.Yeong, J.Wei, Performance evaluation of ProJet multi-material jetting 3D printer, Virtual Phys. Prototyp. 12 (2017) 95–103. https://doi.org/10.1080/17452759.2016.1242915.
    [39] M.Sireesha, J.Lee, A.S.Kranthi Kiran, V.J.Babu, B.B.T.Kee, S.Ramakrishna, A review on additive manufacturing and its way into the oil and gas industry, RSC Adv. 8 (2018) 22460–22468. https://doi.org/10.1039/c8ra03194k.
    [40] S.Mirzababaei, S.Pasebani, A review on binder jet additive manufacturing of 316L stainless steel, J. Manuf. Mater. Process. 3 (2019) 8–12. https://doi.org/10.3390/jmmp3030082.
    [41] W.Du, X.Ren, Z.Pei, C.Ma, Ceramic Binder Jetting Additive Manufacturing: A Literature Review on Density, J. Manuf. Sci. Eng. Trans. ASME. 142 (2020) 1–19. https://doi.org/10.1115/1.4046248.
    [42] M.Li, W.Du, A.Elwany, Z.Pei, C.Ma, Metal binder jetting additive manufacturing: A literature review, J. Manuf. Sci. Eng. Trans. ASME. 142 (2020) 1–17. https://doi.org/10.1115/1.4047430.
    [43] J.A.Gonzalez, J.Mireles, Y.Lin, R.B.Wicker, Characterization of ceramic components fabricated using binder jetting additive manufacturing technology, Ceram. Int. 42 (2016) 10559–10564. https://doi.org/10.1016/j.ceramint.2016.03.079.
    [44] P.Nandwana, A.M.Elliott, D.Siddel, A.Merriman, W.H.Peter, S.S.Babu, Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challenges☆, Curr. Opin. Solid State Mater. Sci. 21 (2017) 207–218. https://doi.org/10.1016/j.cossms.2016.12.002.
    [45] P.M.Bhatt, A.M.Kabir, M.Peralta, H.A.Bruck, S.K.Gupta, A robotic cell for performing sheet lamination-based additive manufacturing, Addit. Manuf. 27 (2019) 278–289. https://doi.org/10.1016/j.addma.2019.02.002.
    [46] A.Rashid, Additive Manufacturing Technologies, 2019. https://doi.org/10.1007/978-3-642-35950-7_16866-1.
    [47] A.Razavykia, E.Brusa, C.Delprete, R.Yavari, An overview of additive manufacturing technologies-A review to technical synthesis in numerical study of selective laser melting, Materials (Basel). 13 (2020). https://doi.org/10.3390/ma13173895.
    [48] A.Riveiro, J.delVal, R.Comesaña, F.Lusquiños, F.Quintero, M.Boutinguiza, J.Pou, Laser Additive Manufacturing Processes for Near Net Shape Components, 2019. https://doi.org/10.1007/978-3-030-10579-2_5.
    [49] A.Dass, A.Moridi, State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design, Coatings. 9 (2019) 1–26.
    [50] A.Saboori, A.Aversa, G.Marchese, S.Biamino, M.Lombardi, P.Fino, Application of directed energy deposition-based additive manufacturing in repair, Appl. Sci. 9 (2019). https://doi.org/10.3390/app9163316.
    [51] A.Saboori, D.Gallo, S.Biamino, P.Fino, M.Lombardi, An overview of additive manufacturing of titanium components by directed energy deposition: Microstructure and mechanical properties, Appl. Sci. 7 (2017). https://doi.org/10.3390/app7090883.
    [52] N.S.Development, D.Additive, M.Process, Numerical Simulation Development and Computational Optimization for Directed Energy Deposition Additive Manufacturing Process, Materials (Basel). (2020).
    [53] L.Zhang, S.Feih, S.Daynes, S.Chang, M.Y.Wang, J.Wei, W.F.Lu, Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading, Addit. Manuf. 23 (2018) 505–515. https://doi.org/10.1016/j.addma.2018.08.007.
    [54] S.Yu, J.Sun, J.Bai, Investigation of functionally graded TPMS structures fabricated by additive manufacturing, Mater. Des. 182 (2019) 108021. https://doi.org/10.1016/j.matdes.2019.108021.
    [55] J.Plocher, A.Panesar, Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures, Addit. Manuf. (2020) 101171. https://doi.org/10.1016/j.addma.2020.101171.
    [56] M.Zhao, D.Z.Zhang, F.Liu, Z.Li, Z.Ma, Z.Ren, Mechanical and energy absorption characteristics of additively manufactured functionally graded sheet lattice structures with minimal surfaces, Int. J. Mech. Sci. 167 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105262.
    [57] R.Alberdi, R.Dingreville, J.Robbins, T.Walsh, B.C.White, B.Jared, B.L.Boyce, Multi-morphology lattices lead to improved plastic energy absorption, Mater. Des. 194 (2020) 108883. https://doi.org/10.1016/j.matdes.2020.108883.
    [58] I.Maskery, A.O.Aremu, L.Parry, R.D.Wildman, C.J.Tuck, I.A.Ashcroft, Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading, Mater. Des. 155 (2018) 220–232. https://doi.org/10.1016/j.matdes.2018.05.058.
    [59] H.Lei, C.Li, X.Zhang, P.Wang, H.Zhou, Z.Zhao, D.Fang, Deformation behavior of heterogeneous multi-morphology lattice core hybrid structures, Addit. Manuf. 37 (2021) 101674. https://doi.org/10.1016/j.addma.2020.101674.
    [60] L.Y.Zhu, L.Li, J.P.Shi, Z.A.Li, J.Q.Yang, Mechanical characterization of 3D printed multi-morphology porous Ti6AL4V scaffolds based on triply periodic minimal surface architectures, Am. J. Transl. Res. 10 (2018) 3443–3454.
    [61] N.Yang, Z.Quan, D.Zhang, Y.Tian, Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering, CAD Comput. Aided Des. 56 (2014) 11–21. https://doi.org/10.1016/j.cad.2014.06.006.
    [62] Z.Liu, M.A.Meyers, Z.Zhang, R.O.Ritchie, Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications, Prog. Mater. Sci. 88 (2017) 467–498. https://doi.org/10.1016/j.pmatsci.2017.04.013.
    [63] B.J.F.Bruet, J.Song, M.C.Boyce, C.Ortiz, Materials design principles of ancient fisharmour, Nat. Mater. 7 (2008) 748–756. https://doi.org/10.1038/nmat2231.
    [64] Y.S.Lin, C.T.Wei, E.A.Olevsky, M.A.Meyers, Mechanical properties and the laminate structure of Arapaima gigas scales, J. Mech. Behav. Biomed. Mater. 4 (2011) 1145–1156. https://doi.org/10.1016/j.jmbbm.2011.03.024.
    [65] C.Y.Sun, P.Y.Chen, Structural design and mechanical behavior of alligator (Alligator mississippiensis) osteoderms, Acta Biomater. 9 (2013) 9049–9064. https://doi.org/10.1016/j.actbio.2013.07.016.
    [66] O.Al-Ketan, D.W.Lee, R.Rowshan, R.K.Abu Al-Rub, Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties, J. Mech. Behav. Biomed. Mater. 102 (2020) 103520. https://doi.org/10.1016/j.jmbbm.2019.103520.
    [67] J.Plocher, A.Panesar, Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures, Addit. Manuf. 33 (2020) 101171. https://doi.org/10.1016/j.addma.2020.101171.
    [68] L.Xiao, W.Song, Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: Experiments, Int. J. Impact Eng. 111 (2018) 255–272. https://doi.org/10.1016/j.ijimpeng.2017.09.018.
    [69] A.Nazir, J.Y.Jeng, A high-speed additive manufacturing approach for achieving high printing speed and accuracy, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 234 (2020) 2741–2749. https://doi.org/10.1177/0954406219861664.
    [70] I.Maskery, A.Hussey, A.Panesar, A.Aremu, C.Tuck, I.Ashcroft, R.Hague, An investigation into reinforced and functionally graded lattice structures, J. Cell. Plast. 53 (2017) 151–165. https://doi.org/10.1177/0021955X16639035.
    [71] D.S.J.Al-Saedi, S.H.Masood, M.Faizan-Ur-Rab, A.Alomarah, P.Ponnusamy, Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM, Mater. Des. 144 (2018) 32–44. https://doi.org/10.1016/j.matdes.2018.01.059.
    [72] H.Zhou, M.Zhao, Z.Ma, D.Z.Zhang, G.Fu, Sheet and network based functionally graded lattice structures manufactured by selective laser melting: Design, mechanical properties, and simulation, Int. J. Mech. Sci. 175 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105480.
    [73] L.Bai, C.Gong, X.Chen, Y.Sun, L.Xin, H.Pu, Y.Peng, J.Luo, Mechanical properties and energy absorption capabilities of functionally graded lattice structures: Experiments and simulations, Int. J. Mech. Sci. 182 (2020) 105735. https://doi.org/10.1016/j.ijmecsci.2020.105735.
    [74] S.Y.Choy, C.N.Sun, K.F.Leong, J.Wei, Compressive properties of functionally graded lattice structures manufactured by selective laser melting, Mater. Des. 131 (2017) 112–120. https://doi.org/10.1016/j.matdes.2017.06.006.
    [75] A.H.Brothers, D.C.Dunand, Mechanical properties of a density-graded replicated aluminum foam, Mater. Sci. Eng. A. 489 (2008) 439–443. https://doi.org/10.1016/j.msea.2007.11.076.
    [76] A.Ajdari, P.Canavan, H.Nayeb-Hashemi, G.Warner, Mechanical properties of functionally graded 2-D cellular structures: A finite element simulation, Mater. Sci. Eng. A. 499 (2009) 434–439. https://doi.org/10.1016/j.msea.2008.08.040.
    [77] H.B.Zeng, S.Pattofatto, H.Zhao, Y.Girard, V.Fascio, Impact behaviour of hollow sphere agglomerates with density gradient, Int. J. Mech. Sci. 52 (2010) 680–688. https://doi.org/10.1016/j.ijmecsci.2009.11.012.
    [78] X.Jin, Z.Wang, J.Ning, G.Xiao, E.Liu, X.Shu, Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading, Compos. Part B Eng. 106 (2016) 206–217. https://doi.org/10.1016/j.compositesb.2016.09.037.
    [79] S.Li, G.Lu, Z.Wang, L.Zhao, G.Wu, Finite element simulation of metallic cylindrical sandwich shells with graded aluminum tubular cores subjected to internal blast loading, Int. J. Mech. Sci. 96–97 (2015) 1–12. https://doi.org/10.1016/j.ijmecsci.2015.03.011.
    [80] J.Zheng, Q.Qin, T.J.Wang, Impact plastic crushing and design of density-graded cellular materials, Mech. Mater. 94 (2016) 66–78. https://doi.org/10.1016/j.mechmat.2015.11.014.
    [81] C.Peng, P.Tran, Bioinspired functionally graded gyroid sandwich panel subjected to impulsive loadings, Compos. Part B Eng. 188 (2020) 107773. https://doi.org/10.1016/j.compositesb.2020.107773.
    [82] M.Odeling, S.Imulation, T.Esting, V.A.Mstv, M.I.N.I.Ymposium, A.U.D.Earborn, M.Ichigan, M.Pompetzki, 2010 Ndia Ground Vehicle Systems Engineering and Technology Symposium Investigation of the Durability Transfer Concept for, (2010) 1–15.
    [83] Y.Xu, H.Zhang, Y.Gan, B.Šavija, Cementitious composites reinforced with 3D printed functionally graded polymeric lattice structures: Experiments and modelling, Addit. Manuf. 39 (2021). https://doi.org/10.1016/j.addma.2021.101887.
    [84] S.Daynes, S.Feih, W.F.Lu, J.Wei, Optimisation of functionally graded lattice structures using isostatic lines, Mater. Des. 127 (2017) 215–223. https://doi.org/10.1016/j.matdes.2017.04.082.
    [85] Y.Tang, Y.F.Zhao, A survey of the design methods for additive manufacturing to improve functional performance, Rapid Prototyp. J. 22 (2016) 569–590. https://doi.org/10.1108/RPJ-01-2015-0011.
    [86] X.Shi, W.Liao, T.Liu, C.Zhang, D.Li, W.Jiang, C.Wang, F.Ren, Design optimization of multimorphology surface-based lattice structures with density gradients, Int. J. Adv. Manuf. Technol. (2021). https://doi.org/10.1007/s00170-021-07175-3.
    [87] F.Liu, Z.Mao, P.Zhang, D.Z.Zhang, J.Jiang, Z.Ma, Functionally graded porous scaffolds in multiple patterns: New design method, physical and mechanical properties, Mater. Des. 160 (2018) 849–860. https://doi.org/10.1016/j.matdes.2018.09.053.
    [88] O.Al-Ketan, R.K.Abu Al-Rub, Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices, Adv. Eng. Mater. 21 (2019). https://doi.org/10.1002/adem.201900524.
    [89] M.J.Mirzaali, R.Hedayati, P.Vena, L.Vergani, M.Strano, A.A.Zadpoor, Rational design of soft mechanical metamaterials: Independent tailoring of elastic properties with randomness, Appl. Phys. Lett. 111 (2017). https://doi.org/10.1063/1.4989441.
    [90] M.S.Pham, C.Liu, I.Todd, J.Lertthanasarn, Damage-tolerant architected materials inspired by crystal microstructure, Nature. 565 (2019) 305–311. https://doi.org/10.1038/s41586-018-0850-3.
    [91] D.J.Yoo, K.H.Kim, An advanced multi-morphology porous scaffold design method using volumetric distance field and beta growth function, Int. J. Precis. Eng. Manuf. 16 (2015) 2021–2032. https://doi.org/10.1007/s12541-015-0263-2.
    [92] U.G.K.Wegst, H.Bai, E.Saiz, A.P.Tomsia, R.O.Ritchie, Bioinspired structural materials, Nat. Mater. 14 (2015) 23–36. https://doi.org/10.1038/nmat4089.
    [93] S.Bhushan, S.Singh, T.K.Maiti, C.Sharma, D.Dutt, S.Sharma, C.Li, E.M.Tag Eldin, Scaffold Fabrication Techniques of Biomaterials for Bone Tissue Engineering: A Critical Review, Bioengineering. 9 (2022). https://doi.org/10.3390/bioengineering9120728.
    [94] M.F.Ashby, The properties of foams and lattices, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364 (2006) 15–30. https://doi.org/10.1098/rsta.2005.1678.
    [95] Peter Pearce, Structure in Nature is a Strategy for Design, (1377) 68–70.
    [96] A.Okabe, Spatial Tessellations, Int. Encycl. Geogr. People, Earth, Environ. Technol. (2017) 1–11. https://doi.org/10.1002/9781118786352.wbieg0601.
    [97] L.Burtseva, F.Werner, B.Valdes, A.Pestryakov, R.Romero, V.Petranovskii, Tessellation Methods for Modeling the Material Structure, Appl. Mech. Mater. 756 (2015) 426–435. https://doi.org/10.4028/www.scientific.net/amm.756.426.
    [98] R.H.Baughman, J.M.Shacklette, A.A.Zakhidov, S.Stafström, Negative poisson’s ratios as a common feature of cubic metals, Nature. 392 (1998) 362–365. https://doi.org/10.1038/32842.
    [99] S.Yuan, C.K.Chua, K.Zhou, 3D-Printed Mechanical Metamaterials with High Energy Absorption, Adv. Mater. Technol. 4 (2019) 1–9. https://doi.org/10.1002/admt.201800419.
    [100] S.Yuan, F.Shen, J.Bai, C.K.Chua, J.Wei, K.Zhou, 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization, Mater. Des. 120 (2017) 317–327. https://doi.org/10.1016/j.matdes.2017.01.098.
    [101] K.Schladitz, C.Redenbach, T.Sych, M.Godehardt, Microstructural characterisation of open foams using 3d images, 148 (2008). https://kluedo.ub.uni-kl.de/frontdoor/deliver/index/docId/2047/file/bericht148.pdf.
    [102] Q.Zhang, X.Yang, P.Li, G.Huang, S.Feng, C.Shen, B.Han, X.Zhang, F.Jin, F.Xu, T.J.Lu, Bioinspired engineering of honeycomb structure - Using nature to inspire human innovation, Prog. Mater. Sci. 74 (2015) 332–400. https://doi.org/10.1016/j.pmatsci.2015.05.001.
    [103] S.Oliver, A.Kuperman, N.Coombs, A.Lough, G.A.Ozin, Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons, Nature. 378 (1995) 47–50. https://doi.org/10.1038/378047a0.
    [104] R.Seidel, K.Lyons, M.Blumer, P.Zaslansky, P.Fratzl, J.C.Weaver, M.N.Dean, Ultrastructural and developmental features of the tessellated endoskeleton of elasmobranchs (sharks and rays), J. Anat. 229 (2016) 681–702. https://doi.org/10.1111/joa.12508.
    [105] A.Lin, M.A.Meyers, Growth and structure in abalone shell, Mater. Sci. Eng. A. 390 (2005) 27–41. https://doi.org/10.1016/j.msea.2004.06.072.
    [106] M.A.Meyers, P.Y.Chen, M.I.Lopez, Y.Seki, A.Y.M.Lin, Biological materials: A materials science approach, J. Mech. Behav. Biomed. Mater. 4 (2011) 626–657. https://doi.org/10.1016/j.jmbbm.2010.08.005.
    [107] M.Tadayon, S.Amini, Z.Wang, A.Miserez, Biomechanical Design of the Mantis Shrimp Saddle: A Biomineralized Spring Used for Rapid Raptorial Strikes, IScience. 8 (2018) 271–282. https://doi.org/10.1016/j.isci.2018.08.022.
    [108] S.E.Naleway, J.R.A.Taylor, M.M.Porter, M.A.Meyers, J.McKittrick, Structure and mechanical properties of selected protective systems in marine organisms, Mater. Sci. Eng. C. 59 (2016) 1143–1167. https://doi.org/10.1016/j.msec.2015.10.033.
    [109] A.Mendoza-Galván, L.F.DelRío, K.Järrendahl, H.Arwin, Graded pitch profile for the helicoidal broadband reflector and left-handed circularly polarizing cuticle of the scarab beetle Chrysina chrysargyrea, Sci. Rep. 8 (2018) 1–12. https://doi.org/10.1038/s41598-018-24761-w.
    [110] N.Suksangpanya, N.A.Yaraghi, R.B.Pipes, D.Kisailus, P.Zavattieri, Crack twisting and toughening strategies in Bouligand architectures, Int. J. Solids Struct. 150 (2018) 83–106. https://doi.org/10.1016/j.ijsolstr.2018.06.004.
    [111] N.Suksangpanya, N.A.Yaraghi, D.Kisailus, P.Zavattieri, Twisting cracks in Bouligand structures, J. Mech. Behav. Biomed. Mater. 76 (2017) 38–57. https://doi.org/10.1016/j.jmbbm.2017.06.010.
    [112] M.E.Launey, M.J.Buehler, R.O.Ritchie, On the mechanistic origins of toughness in bone, 2010. https://doi.org/10.1146/annurev-matsci-070909-104427.
    [113] W.Yang, V.R.Sherman, B.Gludovatz, M.Mackey, E.A.Zimmermann, E.H.Chang, E.Schaible, Z.Qin, M.J.Buehler, R.O.Ritchie, M.A.Meyers, Protective role of Arapaima gigas fish scales: Structure and mechanical behavior, Acta Biomater. 10 (2014) 3599–3614. https://doi.org/10.1016/j.actbio.2014.04.009.
    [114] B.Wang, W.Yang, V.R.Sherman, M.A.Meyers, Pangolin armor: Overlapping, structure, and mechanical properties of the keratinous scales, Acta Biomater. 41 (2016) 60–74. https://doi.org/10.1016/j.actbio.2016.05.028.
    [115] S.Lee, E.E.Novitskaya, B.Reynante, J.Vasquez, R.Urbaniak, T.Takahashi, E.Woolley, L.Tombolato, P.Y.Chen, J.McKittrick, Impact testing of structural biological materials, Mater. Sci. Eng. C. 31 (2011) 730–739. https://doi.org/10.1016/j.msec.2010.10.017.
    [116] I.H.Chen, J.H.Kiang, V.Correa, M.I.Lopez, P.Y.Chen, J.McKittrick, M.A.Meyers, Armadillo armor: Mechanical testing and micro-structural evaluation, J. Mech. Behav. Biomed. Mater. 4 (2011) 713–722. https://doi.org/10.1016/j.jmbbm.2010.12.013.
    [117] M.R.W.Rashidi, G.J.Frank, T.Dohn, R.Seifert, W.A.Chapkin, J.W.Baur, P.P.Walgren, Biomimicry of the armadillo carapace for the design of bending cylinders for aerospace applications, AIAA Scitech 2019 Forum. (2019) 1–7. https://doi.org/10.2514/6.2019-1632.
    [118] J.Sun, B.Bhushan, The structure and mechanical properties of dragonfly wings and their role on flyability, Comptes Rendus - Mec. 340 (2012) 3–17. https://doi.org/10.1016/j.crme.2011.11.003.
    [119] S.R.Jongerius, D.Lentink, Structural Analysis of a Dragonfly Wing, Exp. Mech. 50 (2010) 1323–1334. https://doi.org/10.1007/s11340-010-9411-x.
    [120] M.K.Ahamed, H.Wang, P.J.Hazell, From biology to biomimicry: Using nature to build better structures – A review, Constr. Build. Mater. 320 (2022). https://doi.org/10.1016/j.conbuildmat.2021.126195.
    [121] F.Box, A.Erlich, J.H.Guan, C.Thorogood, Gigantic floating leaves occupy a large surface area at an economical material cost, Sci. Adv. 8 (2022) 1–8. https://doi.org/10.1126/sciadv.abg3790.
    [122] M.C.Fernandes, J.Aizenberg, J.C.Weaver, K.Bertoldi, Mechanically robust lattices inspired by deep-sea glass sponges, Nat. Mater. 20 (2021) 237–241. https://doi.org/10.1038/s41563-020-0798-1.
    [123] G.Falcucci, G.Amati, P.Fanelli, V.K.Krastev, G.Polverino, M.Porfiri, S.Succi, Extreme flow simulations reveal skeletal adaptations of deep-sea sponges, Nature. 595 (2021) 537–541. https://doi.org/10.1038/s41586-021-03658-1.
    [124] J.Zhang, H.Huang, G.Liu, H.Zong, C.Zhang, Stiffness and energy absorption of additive manufactured hybrid lattice structures, Virtual Phys. Prototyp. 16 (2021) 428–443. https://doi.org/10.1080/17452759.2021.1954405.
    [125] B.Barnes, B.B.Babamiri, G.Demeneghi, A.Soltani-Tehrani, N.Shamsaei, K.Hazeli, Quasi-static and dynamic behavior of additively manufactured lattice structures with hybrid topologies, Addit. Manuf. 48 (2021). https://doi.org/10.1016/j.addma.2021.102466.
    [126] Z.P.Sun, Y.B.Guo, V.P.W.Shim, Characterisation and modeling of additively-manufactured polymeric hybrid lattice structures for energy absorption, Int. J. Mech. Sci. 191 (2021) 106101. https://doi.org/10.1016/j.ijmecsci.2020.106101.
    [127] D.Sharma, S.S.Hiremath, Bio-inspired repeatable lattice structures for energy absorption: Experimental and finite element study, Compos. Struct. 283 (2022) 115102. https://doi.org/10.1016/j.compstruct.2021.115102.
    [128] P.Wang, F.Yang, G.Lu, Y.Bian, S.Zhang, B.Zheng, H.Fan, Anisotropic compression behaviors of bio-inspired modified body-centered cubic lattices validated by additive manufacturing, Compos. Part B Eng. 234 (2022) 109724. https://doi.org/10.1016/j.compositesb.2022.109724.
    [129] L.Li, F.Yang, P.Li, W.Wu, L.Wang, A novel hybrid lattice design of nested cell topology with enhanced energy absorption capability, Aerosp. Sci. Technol. 128 (2022) 107776. https://doi.org/10.1016/j.ast.2022.107776.
    [130] Z.P.Sun, Y.B.Guo, V.P.W.Shim, Deformation and energy absorption characteristics of additively-manufactured polymeric lattice structures — Effects of cell topology and material anisotropy, Thin-Walled Struct. 169 (2021) 108420. https://doi.org/10.1016/j.tws.2021.108420.
    [131] L.Xiao, X.Xu, G.Feng, S.Li, W.Song, Z.Jiang, Compressive performance and energy absorption of additively manufactured metallic hybrid lattice structures, Int. J. Mech. Sci. 219 (2022) 107093. https://doi.org/10.1016/j.ijmecsci.2022.107093.
    [132] L.Dong, Mechanical responses of Ti-6Al-4V truss lattices having a combined simple-cubic and body-centered-cubic (SC-BCC) topology, Aerosp. Sci. Technol. 116 (2021) 106852. https://doi.org/10.1016/j.ast.2021.106852.
    [133] J.Austermann, A.J.Redmann, V.Dahmen, A.L.Quintanilla, S.J.Mecham, T.A.Osswald, Fiber-reinforced composite sandwich structures by co-curing with additive manufactured epoxy lattices, J. Compos. Sci. 3 (2019) 1–13. https://doi.org/10.3390/jcs3020053.
    [134] A.Kumar, S.Verma, J.Jeng, Support-less Lattice Structures for Energy Absorption Fabricated by Fused Deposition Modeling, 3D Print. Addit. Manuf. (2020). https://doi.org/10.1089/3dp.2019.0089.
    [135] A.Kumar, L.Collini, A.Daurel, J.Y.Jeng, Design and additive manufacturing of closed cells from supportless lattice structure, Addit. Manuf. 33 (2020) 101168. https://doi.org/10.1016/j.addma.2020.101168.
    [136] U.Philippi, W.Nachtigall, Functional morphology of regular echinoid tests (Echinodermata, Echinoida): A finite element study, Zoomorphology. 116 (1996) 35–50. https://doi.org/10.1007/BF02526927.
    [137] M.Telford, Domes, arches and urchins: The skeletal architecture of echinoids (Echinodermata), Zoomorphology. 105 (1985) 114–124. https://doi.org/10.1007/BF00312146.
    [138] A.Kumar, L.Collini, C.Ursini, Energy Absorption and Stiffness of Thin and Thick-Walled Closed-Cell 3D-Printed Structures Fabricated from a Hyperelastic Soft Polymer, (2022).
    [139] M.Chanda, Atomic Arrangements in Crystalline Solids, in: Sci. Eng. Mater., Palgrave, London, 1979: pp. 107–173. https://doi.org/10.1007/978-1-349-06051-1_4.
    [140] R.Montanari, A.Varone, Processing-structure-property relationships in metals, Metals (Basel). 9 (2019) 10–12. https://doi.org/10.3390/met9080907.
    [141] H.Askeland, Donald R., Haddleton, F., Green, P., Robertson, The Science and Engineering of Mateirals, 7th ed., Cengage Learning, 1996.
    [142] G.Vastola, Q.X.Pei, Y.W.Zhang, Predictive model for porosity in powder-bed fusion additive manufacturing at high beam energy regime, Addit. Manuf. 22 (2018) 817–822. https://doi.org/10.1016/j.addma.2018.05.042.
    [143] A.Kumar, S.Verma, J.-Y.Jeng, Supportless Lattice Structures for Energy Absorption Fabricated by Fused Deposition Modeling, 3D Print. Addit. Manuf. 7 (2020) 85–96. https://doi.org/10.1089/3dp.2019.0089.
    [144] X.Zhang, Y.Lin, N.A.Eschmann, H.Zhou, J.N.Rauch, I.Hernandez, E.Guzman, K.S.Kosik, S.Han, RNA stores tau reversibly in complex coacervates, PLoS Biol. 15 (2017) 1–28. https://doi.org/10.1371/journal.pbio.2002183.
    [145] S.Rungsiyaphornrat, E.Klaseboer, B.C.Khoo, K.S.Yeo, The merging of two gaseous bubbles with an application to underwater explosions to underwater explosions, Comput. Fluids. 32 (2003) 1049–1074. https://doi.org/10.1016/S0045-7930(02)00078-6.
    [146] S.Verma, A.Kumar, S.C.Lin, J.Y.Jeng, A bio-inspired design strategy for easy powder removal in powder-bed based additive manufactured lattice structure, Virtual Phys. Prototyp. 0 (2022) 1–21. https://doi.org/10.1080/17452759.2022.2039071.
    [147] K.M.Conway, G.J.Pataky, Effective area method for calculating global properties of cellular materials, Mater. Today Commun. 17 (2018) 144–152. https://doi.org/10.1016/j.mtcomm.2018.09.003.
    [148] A.Nazir, J.Y.Jeng, Buckling behavior of additively manufactured cellular columns: Experimental and simulation validation, Mater. Des. 186 (2020) 108349. https://doi.org/10.1016/j.matdes.2019.108349.
    [149] F.N.Habib, P.Iovenitti, S.H.Masood, M.Nikzad, Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology, Mater. Des. 155 (2018) 86–98. https://doi.org/10.1016/j.matdes.2018.05.059.
    [150] S.McKown, Y.Shen, W.K.Brookes, C.J.Sutcliffe, W.J.Cantwell, G.S.Langdon, G.N.Nurick, M.D.Theobald, The quasi-static and blast loading response of lattice structures, Int. J. Impact Eng. 35 (2008) 795–810. https://doi.org/10.1016/j.ijimpeng.2007.10.005.
    [151] A.Kumar, L.Collini, A.Daurel, J.Y.Jeng, Design and additive manufacturing of closed cells from supportless lattice structure, Addit. Manuf. 33 (2020) 101168. https://doi.org/10.1016/j.addma.2020.101168.
    [152] American Society for Testing and Materials (ASTM), Standard test method for compressive properties of rigid cellular plastics, in: Annu. B. ASTM Stand., 1991: pp. 1621–1673.
    [153] Y.H.Song, M.Tane, H.Nakajima, Appearance of a plateau stress region during dynamic compressive deformation of porous carbon steel with directional pores, Scr. Mater. 64 (2011) 797–800. https://doi.org/10.1016/j.scriptamat.2011.01.006.
    [154] M.Tane, F.Zhao, Y.H.Song, H.Nakajima, Formation mechanism of a plateau stress region during dynamic compression of porous iron: Interaction between oriented cylindrical pores and deformation twins, Mater. Sci. Eng. A. 591 (2014) 150–158. https://doi.org/10.1016/j.msea.2013.10.078.
    [155] L.Zhang, S.Feih, S.Daynes, S.Chang, M.Y.Wang, J.Wei, W.F.Lu, Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading, Addit. Manuf. 23 (2018) 505–515. https://doi.org/10.1016/j.addma.2018.08.007.
    [156] I.Levadnyi, J.Awrejcewicz, Y.Zhang, M.F.Goethel, Y.Gu, Finite Element Analysis of Impact for Helmeted and Non-helmeted Head, J. Med. Biol. Eng. 38 (2018) 587–595. https://doi.org/10.1007/s40846-017-0324-3.
    [157] M.Nasim, M.J.Hasan, U.Galvanetto, Impact behavior of energy absorbing helmet liners with PA12 lattice structures: A computational study, Int. J. Mech. Sci. 233 (2022) 107673. https://doi.org/10.1016/j.ijmecsci.2022.107673.
    [158] M.R. ulHaq, A.Nazir, S.C.Lin, J.Y.Jeng, Design and performance evaluation of multifunctional midsole using functionally gradient wave springs produced using multijet fusion additive manufacturing process, Mater. Today Commun. 31 (2022) 103505. https://doi.org/10.1016/j.mtcomm.2022.103505.
    [159] Jake Boly, The Ultimate Guide To Lifting Shoes, Barbend. (2018). https://barbend.com/ultimate-guide-weightlifting-shoes/.
    [160] Nicholas Rizzo, The Complete Science-Backed Guide to Lifting Shoes: Barefoot and Beyond, RunRepeat. (2021). https://runrepeat.com/complete-guide-lifting-shoes.
    [161] Y.Xiao, C.Kan, Review on Development and Application of 3D-Printing Technology in Textile and Fashion Design, Coatings. (2018). https://doi.org/10.23977/etmhs.2018.29053.
    [162] J.White, M.Foley, A.Rowley, A Novel Approach to 3D-Printed Fabrics and Garments, 3D Print. Addit. Manuf. 2 (2015) 145–149. https://doi.org/10.1089/3dp.2015.0019.
    [163] S.Gowthaman, G.S.Chidambaram, D.B.G.Rao, H.V.Subramya, U.Chandrasekhar, A Review on Energy Harvesting Using 3D Printed Fabrics for Wearable Electronics, J. Inst. Eng. Ser. C. 99 (2018) 435–447. https://doi.org/10.1007/s40032-016-0267-4.
    [164] D.Kuswanto, N.J.Iftira, O.M.Hapinesa, 3D Printing for Fashion Development, Proc. - 2018 4th Int. Conf. Sci. Technol. ICST 2018. (2018) 1–6. https://doi.org/10.1109/ICSTC.2018.8528597.
    [165] A.Yamamoto, K.Takagishi, T.Kobayashi, H.Shitara, T.Ichinose, E.Takasawa, D.Shimoyama, T.Osawa, The impact of faulty posture on rotator cuff tears with and without symptoms, J. Shoulder Elb. Surg. 24 (2015) 446–452. https://doi.org/10.1016/j.jse.2014.07.012.
    [166] A.Yamamoto, K.Takagishi, T.Osawa, T.Yanagawa, D.Nakajima, H.Shitara, T.Kobayashi, Prevalence and risk factors of a rotator cuff tear in the general population, J. Shoulder Elb. Surg. 19 (2010) 116–120. https://doi.org/10.1016/j.jse.2009.04.006.
    [167] Spinal cord injury model system, Heersink Sch. Med. (2023). https://www.uab.edu/medicine/sci/faqs-about-spinal-cord-injury-sci/what-is-the-spine.
    [168] D.Wang, L.Dong, G.Gu, 3D Printed Fractal Metamaterials with Tunable Mechanical Properties and Shape Reconfiguration, Adv. Funct. Mater. 33 (2023). https://doi.org/10.1002/adfm.202208849.

    無法下載圖示 全文公開日期 2024/07/05 (校內網路)
    全文公開日期 2025/07/05 (校外網路)
    全文公開日期 2025/07/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE