簡易檢索 / 詳目顯示

研究生: SAURAV VERMA
SAURAV VERMA
論文名稱: 基於功能流的仿生晶格結構設計和製造,用於基於粉末床的增材製造和工業應用
FUNCTIONAL FLOW BASED DESIGN AND FABRICATION OF BIOINSPIRED LATTICE STRUCTURE FOR POWDER BED BASED ADDITIVE MANUFACTURING AND INDUSTRIAL APPLICATIONS
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 鄭中緯
Zhong-Wei Zheng
石昭明
Albert J. Shih
鄭逸琳
Yih-Lin Cheng
蔡榮庭
Jung-Ting Tsai
Ajeet Kumar
Ajeet Kumar
楊政綱
Cheng-Kang Leo
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 241
外文關鍵詞: Bio-inspiration
相關次數: 點閱:163下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著積層製造(Additive Manufacturing , AM)技術的出現,現在可以實現更加複雜的仿生設計,並且可以為終端用戶及其應用製作客製化與優化的產品。然而,目前的積層製造技術仍存在許多挑戰,並限制其製造最終產品的能力。而該行業面臨的其中一個挑戰,是如何將傳統的量產技術與積層製造相輔相成,從而增加使用3D列印設計的機會。
    這一挑戰可以透過正確實施積層製造設計(Design for Additive Manufacturing, DfAM)的原則來解決;但在大規模採用積層製造技術中有另一個鮮少被討論的問題,那便是不同的積層製造技術中所牽涉到的後處理(Post-Processing , PP)也不盡相同。在3D列印的後處理階段中,像支撐材料、粉末或樹脂的去除,仍是一個需要手動移除的過程,此過程需要大量人力且不易掌控結果,這無疑增加了成本並可能降低列印零件的品質。為此,本研究提出了一種新的積層製造設計和後處理(DfAM&PP)方法。
    結合增材製造和傳統製造、大規模定制和按需製造進行大規模生產的高速 3D 打印的關鍵在於使用基於粉末床的增材製造技術。在本論文中,將透過設計應用於多種粉床成型技術中的仿生晶格結構,來解決上述挑戰。首先,製作了一款基於桁架所設計的晶格結構,其結構透過選擇性雷射熔融技術(Selective Laser Melting , SLM)與傳統注塑成型技術,將塑膠與金屬在界面上相互接合,製造出塑膠和金屬一體成型的零件。接下來,本研 究的重點在於仿生晶格結構的設計和流體力學分析,以解決例如HP公司的Multi Jet Fusion(MJF)粉末床製造技術的粉末後處理。同時對新型仿生晶格結構和其他不同晶格結構進行了流體力學(CFD)和有限元素(FEA)分析,以預測其機械性能,隨後再進行實驗驗證。
    最後,為了分析流體力學以及熱傳導,設計並製造出針對粉末移除的晶格結構,並於專為熱流分析的環境中,測試不同的晶格結構。而該結構使用Digital Metal的金屬黏著劑噴印技術製作,常用於電子元件的冷卻管道和散熱裝置。本研究中討論的新型設計方案和晶格結構具有廣泛的工業應用,包括生物醫學植入物、鞋子中底和鞋墊設計、食品和藥品投遞系統,特別是電動汽車的能源管理系統。


    With the advent of advanced technologies for additive manufacturing (AM), more sophisticated bioinspired designs can now be realized for products that are customized as well as optimized for end users and their applications. However, there are still many challenges in the present AM technologies that limits them from making the final end use products. One of the challenges that the industry is facing is to how to combine or complement their traditional mass-manufacturing techniques with AM so as to leverage the design opportunities of 3D printing. This challenge can be addressed by proper implementation of the principles of design for additive manufacturing (DfAM). But the other seldomly talked about challenges for large-scale adoption of AM in the industries is the post-processing (PP) challenges involved in the various techniques of AM. The removal processes, like the support, powder, or resin removal at the PP stage after 3D printing remains to be a largely labour-intensive, uncontrolled and manual process that adds to the cost and may deteriorate the quality of the parts fabricated by 3D printing. Therefore, a novel methodology of design for additive manufacturing and post-processing (DfAM&PP) has been proposed in this research work.
    The powder-bed based AM technologies holds the key for high-speed 3D printing for mass production with combined additive and traditional manufacturing, mass customisation and on-demand manufacturing. In this thesis, the above challenges have been tried to address by designing bio-inspired lattice structures for fabrication by several powder-bed based AM technologies. Firstly, the truss-based lattice structures were designed and made by selective laser melting (SLM) technology to obtain a metal-polymer interface during the traditional injection molding technology. Later, the major focus of the research lies in designing and analyzing of flow-based bio-inspired lattice structures to address the post-processing powder removal challenges of polymer powder-based AM, like the HP multi-jet fusing (MJF) technology.
    Computational fluid dynamics (CFD) and finite-element analysis (FEA) of the novel bio-inspired lattices and various other lattices were carried out for analyzing and predicting their mechanical behavior, followed by experimental verifications. Finally, the flow functional based lattice structures designed for powder removal was used for analysis of flow and heat transfer application in the design of cooling channels and heat sinks for the thermal management for modern electrical machines and electronics devices. These lattice structures were then made by the Digital Metal metal binder jetting technology and tested in an experimental setup designed for the flow and heat transfer analysis of different lattices. The novel design method and the lattice structures discussed in this study have a wide range of industrial applications, including bio-medical implants, mid-sole and insole designs for footwear, food and drug delivery systems, and particularly energy management systems for electric vehicles.

    摘要 vii ABSTRACT ix Acknowledgement xi Contents xiii List of figures xvii List of tables xxix CHAPTER-I INTRODUCTION 1 1.1. Overview of Additive Manufacturing 2 1.2. Challenges of post-processing 3 1.3. High strength interlocking in multi-material interfaces 5 1.3. Research Objective 7 1.4. Thesis outline/summary 8 CHAPTER-II LITERATURE SURVEY 11 2.1. Material, methods and post-processing challenges in AM 12 2.1.1. Different types of AM technology 13 2.1.2. Post-processing challenges in various AM processes 20 2.2. Design for additive manufacturing 28 2.2.1. Design restrictions in AM 29 2.2.2. Design opportunities provided by AM 30 2.3. Bio-inspired design of cellular structures 31 2.4. Design of lattice structures for additive manufacturing 33 2.5. Design of lattice structures for high strength interlocking in multi-material interfaces 39 2.6. Computational methods for design of lattice structures 42 2.6.1. Finite Element Analysis (FEA) method 42 2.6.2. Flow and heat-transfer simulation within lattice structures 43 2.7. AM for effective fluid flow and heat transfer 44 2.7.1. Lattice structures as Thermal Metamaterials 47 2.7.2. Design challenges for 3D printing cooling channels 49 2.7.3. Manufacturability challenges of Copper 3D printing 51 2.7.4. Lattice structures inside cooling channels 52 Summary 54 CHAPTER-III Design and Simulation of Lattice Structures for various applications 55 3.1. Design of lattice structures for metal-polymer interlocking 56 3.1.1. Design of truss-based lattice structure 57 3.1.2. Numerical modeling and parameters 60 3.1.3. FEA simulation 62 3.2. Biomimicry and Design of lattice structure for Post-processing powder removal 63 3.2.1. Design of bio-inspired vascular lattice structures 66 3.2.2. Design of ventilated sea-urchin lattice structure 68 3.2.2. Design of ventilated 3D-honeycomb structures 69 3.3. CFD simulation of different lattice structures 73 3.4. Flow and ventilation strategy for different surface-based lattices 75 3.5. FEA simulation of different lattice structures 80 3.6. Flow function and heat transfer analysis of various lattice structures 85 3.6.1. Flow in circular tube channels 85 In 3.6.2. Flow in rectangular channels 88 Summary 90 CHAPTER-IV Additive Manufacturing of Lattice Structures, Results and Discussions 92 4.1. Additive manufacturing and pull-tests of metal-polymer interlocking structures 93 4.1.1. Additive Manufacturing of truss-based lattice structures 93 4.1.2. FEA Results 94 4.1.3. Experimental pull-test 99 4.1.4. Discussion 108 4.2. Additive manufacturing and analysis of vascular and SU lattice structures 110 4.2.1. Additive Manufacturing of lattice structures 110 4.2.2. Flow simulation results and discussion 111 4.2.3. Powder removal 116 4.2.4. CT-scan of cellular structures 119 4.2.5. Compression testing results and discussion 125 4.3. Additive manufacturing and experimental analysis of ventilated 3DH and various other lattice structures 128 4.3.1. CFD results and discussion 130 4.3.2. Powder flow experiment 137 4.3.3. FEA results 142 4.3.4. Compression test results and discussion 145 4.4. Ventilated surface-based lattice structures 148 4.4.1. CFD results and Powder flowability 149 4.4.2. FEA and Experimental compression results 155 4.4.3. Discussion on ventilated surface-based lattice structures 160 4.5. AM of metal lattice structures for flow function and heat transfer analysis 161 4.5.1. Flow simulation results of lattice structures in circular channels 161 4.5.2. Flow simulation of lattice structures in rectangular channels 165 4.5.3. AM of cooling channels with lattice structures 168 4.5.4. The flow experiment set-up 170 4.5.5. Discussion on flow and heat transfer analysis 175 Summary 176 CHAPTER-V Conclusion and Future Work 177 5.1. High strength mechanical interlocking of metal and resin during injection molding 178 5.2. Novel Biomimetic Lattice Structure Designed for Additive Manufacturing and Post-processing Powder Removal 179 5.2.1. Design of Ventilated vascular and SU lattice structure 179 5.2.2. Design of ventilated 3D honeycomb and comparison of powder flow and strength with various other surface based lattice structures 180 5.2.3. Ventilated gyroid and 2D honeycomb structures 182 5.3. Future research on functional flow lattice structures 183 5.3.1. Automation of PBF AM technology 183 5.3.2. Ventilated lattice structure in shoe-insole design 184 5.3.3. Flow and heat transfer applications of ventilated lattice structures 185 5.4. Contribution of this research 190 List of Publications 212

    References
    [1] D. Chen, S. Heyer, S. Ibbotson, K. Salonitis, J.G. Steingrímsson, S. Thiede, Direct digital manufacturing: definition, evolution, and sustainability implications, J. Clean. Prod. 107 (2015) 615–625. https://doi.org/10.1016/j.jclepro.2015.05.009.
    [2] K.A. Dwivedi, S.-J. Huang, C.-T. Wang, Integration of various technology-based approaches for enhancing the performance of microbial fuel cell technology: A review, Chemosphere. 287 (2022) 132248. https://doi.org/10.1016/j.chemosphere.2021.132248.
    [3] I. Gibson, D. Rosen, B. Stucker, M. Khorasani, Additive Manufacturing Technologies, Springer International Publishing, Cham, 2021. https://doi.org/10.1007/978-3-030-56127-7.
    [4] ASTM, ASTM F42/ISO TC 261 Develops Additive Manufacturing Standards, ASTM Interational. (2017) 1–2. https://www.astm.org/COMMIT/F42_AMStandardsStructureAndPrimer.pdf.
    [5] Wohlers Report 2021, Wholers Associates, Inc., 2021. https://wohlersassociates.com/2021report.htm.
    [6] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, C.C.L. Wang, Y.C. Shin, S. Zhang, P.D. Zavattieri, The status, challenges, and future of additive manufacturing in engineering, Comput. Des. 69 (2015) 65–89. https://doi.org/10.1016/j.cad.2015.04.001.
    [7] O. Diegel, A. Nordin, D. Motte, Post-processing, in: A Pract. Guid. to Des. Addit. Manuf., Springer Singapore, Singapore, 2019: pp. 181–207. https://doi.org/10.1007/978-981-13-8281-9_12.
    [8] A. Mostafaei, A.M. Elliott, J.E. Barnes, F. Li, W. Tan, C.L. Cramer, P. Nandwana, M. Chmielus, Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges, Prog. Mater. Sci. 119 (2021) 100707. https://doi.org/10.1016/j.pmatsci.2020.100707.
    [9] J. Kranz, D. Herzog, C. Emmelmann, Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4, J. Laser Appl. 27 (2015) S14001. https://doi.org/10.2351/1.4885235.
    [10] J. Nsengimana, J. Van der Walt, E. Pei, M. Miah, Effect of post-processing on the dimensional accuracy of small plastic additive manufactured parts, Rapid Prototyp. J. 25 (2019) 1–12. https://doi.org/10.1108/RPJ-09-2016-0153.
    [11] H. Yang, J.C. Lim, Y. Liu, X. Qi, Y.L. Yap, V. Dikshit, W.Y. Yeong, J. Wei, Performance evaluation of ProJet multi-material jetting 3D printer, Virtual Phys. Prototyp. 12 (2017) 95–103. https://doi.org/10.1080/17452759.2016.1242915.
    [12] A. Chueca de Bruijn, G. Gómez-Gras, M.A. Pérez, Mechanical study on the impact of an effective solvent support-removal methodology for FDM Ultem 9085 parts, Polym. Test. 85 (2020) 106433. https://doi.org/10.1016/j.polymertesting.2020.106433.
    [13] S. Verma, C.-K. Yang, C.-H. Lin, J.Y. Jeng, Additive manufacturing of lattice structures for high strength mechanical interlocking of metal and resin during injection molding, Addit. Manuf. 49 (2022) 102463. https://doi.org/10.1016/j.addma.2021.102463.
    [14] F. Zhang, L. Zhu, Z. Li, S. Wang, J. Shi, W. Tang, N. Li, J. Yang, The recent development of vat photopolymerization: A review, Addit. Manuf. 48 (2021) 102423. https://doi.org/10.1016/j.addma.2021.102423.
    [15] C.A. Chatham, T.E. Long, C.B. Williams, A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing, Prog. Polym. Sci. 93 (2019) 68–95. https://doi.org/10.1016/j.progpolymsci.2019.03.003.
    [16] L.W. Hunter, D. Brackett, N. Brierley, J. Yang, M.M. Attallah, Assessment of trapped powder removal and inspection strategies for powder bed fusion techniques, Int. J. Adv. Manuf. Technol. 106 (2020) 4521–4532. https://doi.org/10.1007/s00170-020-04930-w.
    [17] C. Bhat, A. Kumar, J.-Y. Jeng, Effect of atomic tessellations on structural and functional properties of additive manufactured lattice structures, Addit. Manuf. 47 (2021) 102326. https://doi.org/10.1016/j.addma.2021.102326.
    [18] Z. Šoškić, G.L. Monti, S. Montanari, M. Monti, M. Cardu, Production cost model of the multi-jet-fusion technology, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 235 (2021) 1917–1929. https://doi.org/10.1177/0954406219837300.
    [19] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, C.C.L. Wang, Y.C. Shin, S. Zhang, P.D. Zavattieri, The status, challenges, and future of additive manufacturing in engineering, CAD Comput. Aided Des. 69 (2015) 65–89. https://doi.org/10.1016/j.cad.2015.04.001.
    [20] B. Nagarajan, Z. Hu, X. Song, W. Zhai, J. Wei, Development of Micro Selective Laser Melting: The State of the Art and Future Perspectives, Engineering. 5 (2019) 702–720. https://doi.org/10.1016/j.eng.2019.07.002.
    [21] A. Bin Arshad, A. Nazir, J.-Y. Jeng, The effect of fillets and crossbars on mechanical properties of lattice structures fabricated using additive manufacturing, Int. J. Adv. Manuf. Technol. 111 (2020) 931–943. https://doi.org/10.1007/s00170-020-06034-x.
    [22] M.F. Ashby, The properties of foams and lattices, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364 (2006) 15–30. https://doi.org/10.1098/rsta.2005.1678.
    [23] A. Nazir, K.M. Abate, A. Kumar, J.Y. Jeng, A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures, Int. J. Adv. Manuf. Technol. 104 (2019) 3489–3510. https://doi.org/10.1007/s00170-019-04085-3.
    [24] W. Tao, M.C. Leu, Design of lattice structure for additive manufacturing, in: 2016 Int. Symp. Flex. Autom., IEEE, 2016: pp. 325–332. https://doi.org/10.1109/ISFA.2016.7790182.
    [25] B. Hanks, J. Berthel, M. Frecker, T.W. Simpson, Mechanical properties of additively manufactured metal lattice structures: Data review and design interface, Addit. Manuf. 35 (2020) 101301. https://doi.org/10.1016/j.addma.2020.101301.
    [26] Y. Mass, O. Amir, Topology optimization for additive manufacturing: Accounting for overhang limitations using a virtual skeleton, Addit. Manuf. 18 (2017) 58–73. https://doi.org/10.1016/j.addma.2017.08.001.
    [27] M. Leary, L. Merli, F. Torti, M. Mazur, M. Brandt, Optimal topology for additive manufacture: A method for enabling additive manufacture of support-free optimal structures, Mater. Des. 63 (2014) 678–690. https://doi.org/10.1016/j.matdes.2014.06.015.
    [28] J.K. Guest, J.H. Prévost, Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability, Int. J. Solids Struct. 43 (2006) 7028–7047. https://doi.org/10.1016/j.ijsolstr.2006.03.001.
    [29] A. Ajdari, S. Babaee, A. Vaziri, Mechanical properties and energy absorption of heterogeneous and functionally graded cellular structures, Procedia Eng. 10 (2011) 219–223. https://doi.org/10.1016/j.proeng.2011.04.039.
    [30] Q.T. Deng, Z.C. Yang, Effect of poisson’s ratio on functionally graded cellular structures, Mater. Express. 6 (2016) 461–472. https://doi.org/10.1166/mex.2016.1341.
    [31] C. V, Is generative design changing additive manufacturing?, 3Dnatives. (2020). https://www.3dnatives.com/en/generative-design-changing-additive-manufacturing-130720204/#! (accessed August 15, 2020).
    [32] J. Hu, M. Li, S. Gao, Texture-guided generative structural designs under local control, Comput. Des. 108 (2019) 1–11. https://doi.org/10.1016/j.cad.2018.10.002.
    [33] L.E. Murr, S.M. Gaytan, F. Medina, H. Lopez, E. Martinez, B.I. Machado, D.H. Hernandez, L. Martinez, M.I. Lopez, R.B. Wicker, J. Bracke, Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368 (2010) 1999–2032. https://doi.org/10.1098/rsta.2010.0010.
    [34] L.E. Murr, K.N. Amato, S.J. Li, Y.X. Tian, X.Y. Cheng, S.M. Gaytan, E. Martinez, P.W. Shindo, F. Medina, R.B. Wicker, Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting, J. Mech. Behav. Biomed. Mater. 4 (2011) 1396–1411. https://doi.org/10.1016/j.jmbbm.2011.05.010.
    [35] S. Lammers, G. Adam, H.J. Schmid, R. Mrozek, R. Oberacker, M.J. Hoffmann, F. Quattrone, B. Ponick, Additive Manufacturing of a lightweight rotor for a permanent magnet synchronous machine, in: 2016 6th Int. Electr. Drives Prod. Conf., IEEE, 2016: pp. 41–45. https://doi.org/10.1109/EDPC.2016.7851312.
    [36] P.C. Joshi, R.R. Dehoff, C.E. Duty, W.H. Peter, R.D. Ott, L.J. Love, C.A. Blue, Direct digital additive manufacturing technologies: Path towards hybrid integration, in: 2012 Futur. Instrum. Int. Work. Proc., IEEE, 2012: pp. 1–4. https://doi.org/10.1109/FIIW.2012.6378353.
    [37] A. Baldan, Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment, J. Mater. Sci. 39 (2004) 1–49. https://doi.org/10.1023/B:JMSC.0000007726.58758.e4.
    [38] L.A. Pilato, M.J. Michno, Advanced Composite Materials, 2017. http://www.elsevier.com/locate/scp.
    [39] F.C. Liu, J. Liao, Y. Gao, K. Nakata, Effect of plasma electrolytic oxidation coating on joining metal to plastic, Sci. Technol. Weld. Join. 20 (2015) 291–296. https://doi.org/10.1179/1362171815Y.0000000012.
    [40] Q. Cao, R. Guo, F. Yang, J. Rong, G. Hu, Research on Surface Treatment and Interfacial Bonding Technology of Copper–Polymer Direct Molding Process, Materials (Basel). 14 (2021) 2712. https://doi.org/10.3390/ma14112712.
    [41] F. Kimura, Y. Kajihara, E. Yamaguchi, N. Horie, I. Yoshida, The Effect of Blasted Metal Surface Textures to Joining Strength in Injection Molded Direct Joining, in: 2020 JSPE Spring Conf., 2020: pp. 392–393. https://doi.org/10.11522/pscjspe.2020S.0_392.
    [42] N. L., X. Zhou, N. Birbilis, A.E. Hughes, J.M. C. Mol, S. J., X. Zhou, G. E., Durability and Corrosion of Aluminium and Its Alloys: Overview, Property Space, Techniques and Developments, in: Alum. Alloy. - New Trends Fabr. Appl., InTech, 2012. https://doi.org/10.5772/53752.
    [43] H.K. Park, M. Shin, B. Kim, J.W. Park, H. Lee, A visible light-curable yet visible wavelength-transparent resin for stereolithography 3D printing, NPG Asia Mater. 10 (2018) 82–89. https://doi.org/10.1038/s41427-018-0021-x.
    [44] J.R.C. Dizon, A.H. Espera, Q. Chen, R.C. Advincula, Mechanical characterization of 3D-printed polymers, Addit. Manuf. 20 (2018) 44–67. https://doi.org/10.1016/j.addma.2017.12.002.
    [45] W.S.W. Harun, M.S.I.N. Kamariah, N. Muhamad, S.A.C. Ghani, F. Ahmad, Z. Mohamed, A review of powder additive manufacturing processes for metallic biomaterials, Powder Technol. 327 (2018) 128–151. https://doi.org/10.1016/j.powtec.2017.12.058.
    [46] A.S. Kabalnov, J.T. WRIGHT, V. Kasperchik, WO2016175748A1.pdf, WO2016175748A1, 2016.
    [47] H. Chung, S. Das, Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering, Mater. Sci. Eng. A. 437 (2006) 226–234. https://doi.org/10.1016/j.msea.2006.07.112.
    [48] R.D. Goodridge, M.L. Shofner, R.J.M. Hague, M. McClelland, M.R. Schlea, R.B. Johnson, C.J. Tuck, Processing of a Polyamide-12/carbon nanofibre composite by laser sintering, Polym. Test. 30 (2011) 94–100. https://doi.org/10.1016/j.polymertesting.2010.10.011.
    [49] A. Mazzoli, G. Moriconi, M.G. Pauri, Characterization of an aluminum-filled polyamide powder for applications in selective laser sintering, Mater. Des. 28 (2007) 993–1000. https://doi.org/10.1016/j.matdes.2005.11.021.
    [50] B. Van Hooreweder, F. De Coninck, D. Moens, R. Boonen, P. Sas, Microstructural characterization of SLS-PA12 specimens under dynamic tension/compression excitation, Polym. Test. 29 (2010) 319–326. https://doi.org/10.1016/j.polymertesting.2009.12.006.
    [51] M. Ziaee, N.B. Crane, Binder jetting: A review of process, materials, and methods, Addit. Manuf. 28 (2019) 781–801. https://doi.org/10.1016/j.addma.2019.05.031.
    [52] Y. Huang, M. Ansari, H. Asgari, M.H. Farshidianfar, D. Sarker, M.B. Khamesee, E. Toyserkani, Rapid prediction of real-time thermal characteristics, solidification parameters and microstructure in laser directed energy deposition (powder-fed additive manufacturing), J. Mater. Process. Technol. 274 (2019). https://doi.org/10.1016/j.jmatprotec.2019.116286.
    [53] J.L. Dávila, P.I. Neto, P.Y. Noritomi, R.T. Coelho, J.V.L. da Silva, Hybrid manufacturing: a review of the synergy between directed energy deposition and subtractive processes, Int. J. Adv. Manuf. Technol. 110 (2020) 3377–3390. https://doi.org/10.1007/s00170-020-06062-7.
    [54] O. Diegel, A. Nordin, D. Motte, Post-processing, Springer Singapore, 2019. https://doi.org/10.1007/978-981-13-8281-9_12.
    [55] I. Gibson, D. Rosen, B. Stucker, M. Khorasani, Post-Processing, in: Addit. Manuf. Technol., Springer International Publishing, Cham, 2021: pp. 457–489. https://doi.org/10.1007/978-3-030-56127-7_16.
    [56] H.M. Khan, Y. Karabulut, O. Kitay, Y. Kaynak, I.S. Jawahir, Influence of the post-processing operations on surface integrity of metal components produced by laser powder bed fusion additive manufacturing: a review, Mach. Sci. Technol. 25 (2021) 118–176. https://doi.org/10.1080/10910344.2020.1855649.
    [57] C. Yan, Y. Shi, J. Yang, J. Liu, Preparation and selective laser sintering of nylon-12 coated metal powders and post processing, J. Mater. Process. Technol. 209 (2009) 5785–5792. https://doi.org/10.1016/j.jmatprotec.2009.06.010.
    [58] J.R.C. Dizon, C.C.L. Gache, H.M.S. Cascolan, L.T. Cancino, R.C. Advincula, Post-Processing of 3D-Printed Polymers, Technologies. 9 (2021) 61. https://doi.org/10.3390/technologies9030061.
    [59] W. Piedra-Cascón, V.R. Krishnamurthy, W. Att, M. Revilla-León, 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review, J. Dent. 109 (2021) 103630. https://doi.org/10.1016/j.jdent.2021.103630.
    [60] N. Gilani, N.T. Aboulkhair, M. Simonelli, M. East, I.A. Ashcroft, R.J.M. Hague, From impact to solidification in drop-on-demand metal additive manufacturing using MetalJet, Addit. Manuf. 55 (2022) 102827. https://doi.org/10.1016/j.addma.2022.102827.
    [61] H. Fayazfar, F. Liravi, U. Ali, E. Toyserkani, Additive manufacturing of high loading concentration zirconia using high-speed drop-on-demand material jetting, Int. J. Adv. Manuf. Technol. 109 (2020) 2733–2746. https://doi.org/10.1007/s00170-020-05829-2.
    [62] D. Khrapov, A. Koptyug, K. Manabaev, F. Léonard, T. Mishurova, G. Bruno, D. Cheneler, K. Loza, M. Epple, R. Surmenev, M. Surmeneva, The impact of post manufacturing treatment of functionally graded Ti6Al4V scaffolds on their surface morphology and mechanical strength, J. Mater. Res. Technol. 9 (2020) 1866–1881. https://doi.org/10.1016/j.jmrt.2019.12.019.
    [63] C.M. Cheah, C.K. Chua, K.F. Leong, S.W. Chua, Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping. Part 1: Investigation and Classification, Int. J. Adv. Manuf. Technol. 21 (2003) 291–301. https://doi.org/10.1007/s001700300034.
    [64] H. Hasib, O.L.A. Harrysson, H.A. West, Powder Removal from Ti-6Al-4V Cellular Structures Fabricated via Electron Beam Melting, JOM. 67 (2015) 639–646. https://doi.org/10.1007/s11837-015-1307-x.
    [65] G.A.O. Adam, D. Zimmer, On design for additive manufacturing: evaluating geometrical limitations, Rapid Prototyp. J. 21 (2015) 662–670. https://doi.org/10.1108/RPJ-06-2013-0060.
    [66] A. Uhlmann, E. ; Rethmeier, Michael ; Graf, B. ; Kersting, Robert ; Bergmann, Flexible manufacturing with an additive process chain design, production and surface finish, in: ASPE 2015 Spring Top. Meet. Achiev. Precis. Toler. Addit. Manuf., 2015: pp. 5–9. https://www.researchgate.net/publication/282742543_Flexible_manufacturing_with_an_additive_process_chain_design_production_and_surface_finish.
    [67] B. Verhaagen, T. Zanderink, D. Fernandez Rivas, Ultrasonic cleaning of 3D printed objects and Cleaning Challenge Devices, Appl. Acoust. 103 (2016) 172–181. https://doi.org/10.1016/j.apacoust.2015.06.010.
    [68] S. Jiang, C. Duan, Y. Ye, C. Tang, X. Chen, Discrete Element Simulation of Factors Affecting the Fluidity of Nylon Powder, Math. Probl. Eng. 2019 (2019) 1–10. https://doi.org/10.1155/2019/1082504.
    [69] Y. Mawatari, Y. Hamada, M. Yamamura, H. Kage, Flow Pattern Transition of Fine Cohesive Powders in a Gas-Solid Fluidized Bed under Mechanical Vibrating Conditions, Procedia Eng. 102 (2015) 945–951. https://doi.org/10.1016/j.proeng.2015.01.216.
    [70] G. Campana, E. Uhlmann, M. Mele, L. Raffaelli, A. Bergmann, J. Kochan, J. Polte, Numerical investigation into cleanability of support structures produced by powder bed fusion technology, Rapid Prototyp. J. ahead-of-p (2021). https://doi.org/10.1108/RPJ-02-2021-0039.
    [71] Solukon, Siemens and Solukon develop de-powdering solution for complex additively manufactured parts, (2019). https://www.solukon.de/en/.
    [72] D. Schiochet Nasato, H. Briesen, T. Pöschel, Influence of vibrating recoating mechanism for the deposition of powders in additive manufacturing: Discrete element simulations of polyamide 12, Addit. Manuf. 48 (2021) 102248. https://doi.org/10.1016/j.addma.2021.102248.
    [73] M.P. Bendsøe, O. Sigmund, TOPOLOGY OPTIMIZATION, in: Optim. Struct. Mech. Syst., WORLD SCIENTIFIC, 2007: pp. 161–194. https://doi.org/10.1142/9789812779670_0006.
    [74] O.M. Querin, M. Victoria, C. Alonso, R.A. Loyola, P.M. Montrull, Topology Design Methods for Structural Optimization, Academic Press, 2017.
    [75] S. Vajna, S. Clement, A. Jordan, T. Bercsey, The Autogenetic Design Theory: An evolutionary view of the design process, J. Eng. Des. 16 (2005) 423–440. https://doi.org/10.1080/09544820500267781.
    [76] K. Shea, R. Aish, M. Gourtovaia, Towards integrated performance-driven generative design tools, Autom. Constr. 14 (2005) 253–264. https://doi.org/10.1016/j.autcon.2004.07.002.
    [77] D. Vlah, R. Žavbi, N. Vukašinović, EVALUATION OF TOPOLOGY OPTIMIZATION AND GENERATIVE DESIGN TOOLS AS SUPPORT FOR CONCEPTUAL DESIGN, Proc. Des. Soc. Des. Conf. 1 (2020) 451–460. https://doi.org/10.1017/dsd.2020.165.
    [78] L. Zhang, S. Feih, S. Daynes, S. Chang, M.Y. Wang, J. Wei, W.F. Lu, Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading, Addit. Manuf. 23 (2018) 505–515. https://doi.org/10.1016/j.addma.2018.08.007.
    [79] S. Yu, J. Sun, J. Bai, Investigation of functionally graded TPMS structures fabricated by additive manufacturing, Mater. Des. 182 (2019) 108021. https://doi.org/10.1016/j.matdes.2019.108021.
    [80] H. Lei, C. Li, X. Zhang, P. Wang, H. Zhou, Z. Zhao, D. Fang, Deformation behavior of heterogeneous multi-morphology lattice core hybrid structures, Addit. Manuf. 37 (2021) 101674. https://doi.org/10.1016/j.addma.2020.101674.
    [81] C. Bhat, A. Kumar, J.-Y. Jeng, Effect of atomic tessellations on structural and functional properties of additive manufactured lattice structures, Addit. Manuf. 47 (2021) 102326. https://doi.org/10.1016/j.addma.2021.102326.
    [82] M.J. Prajapati, C. Bhat, A. Kumar, S. Verma, S.-C. Lin, J.-Y. Jeng, Supportless Lattice Structure for Additive Manufacturing of Functional Products and the Evaluation of Its Mechanical Property at Variable Strain Rates, Materials (Basel). 15 (2022) 7954. https://doi.org/10.3390/ma15227954.
    [83] C. Bhat, A. Kumar, S.-C. Lin, J.-Y. Jeng, A novel bioinspired architectured materials with interlocking designs based on tessellation, Addit. Manuf. 58 (2022) 103052. https://doi.org/10.1016/j.addma.2022.103052.
    [84] M.S. Aziz, A.Y. El sherif, Biomimicry as an approach for bio-inspired structure with the aid of computation, Alexandria Eng. J. 55 (2016) 707–714. https://doi.org/10.1016/j.aej.2015.10.015.
    [85] K. Latham, DNA Structure, Biol. Dict. (2021). https://biologydictionary.net/dna-structure/.
    [86] Ice crystals, Wikipedia. (n.d.). https://en.wikipedia.org/wiki/Ice_crystals.
    [87] A. du Plessis, Fluid flow in wood microstructure, (2023). https://blogs.sun.ac.za/ctscanner/image-based-simulations-fluid-flow-in-wood-microstructure/.
    [88] Tia, The Butterfly Egg, WeWantToLearn.Net. (2015). https://wewanttolearn.wordpress.com/2015/11/25/the-butterfly-egg/.
    [89] S.K. Adhikari, Stability of Eiffel Tower Is on the Basis of Structural Design of Human Femur and Its Mathematical Analysis, Int. J. Phys. Math. Sci. ISSN 2277-2111. 7 (2017) 1–21. http://www.cibtech.org/jpms.htm.
    [90] TEDxWarwick, Biomimicry: Looking to Nature for Sustainable Innovation, Medium.Com. (2018). https://medium.com/tedxwarwick/biomimicry-looking-to-nature-for-sustainable-innovation-7f7b334ecdaf.
    [91] The Wave (Arizona), Wikipedia. (n.d.). https://en.wikipedia.org/wiki/The_Wave_%28Arizona%29.
    [92] Spiral Galaxy, Esahubble.Org. (2021). https://esahubble.org/wordbank/spiral-galaxy/.
    [93] M.. Ashby, The properties of foams and lattices, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364 (2006) 15–30. https://doi.org/10.1098/rsta.2005.1678.
    [94] A. du Plessis, C. Broeckhoven, I. Yadroitsava, I. Yadroitsev, C.H. Hands, R. Kunju, D. Bhate, Beautiful and Functional: A Review of Biomimetic Design in Additive Manufacturing, Addit. Manuf. 27 (2019) 408–427. https://doi.org/10.1016/j.addma.2019.03.033.
    [95] L.J. Gibson, M.. Ashby, Cellular_Solids: Structure and properties, 2nd ed., Cambridge University Press, 1999.
    [96] E.W. Weisstein, Platonic solid, Wolfram Res. Inc. (2003). https://mathworld.wolfram.com/PlatonicSolid.html.
    [97] P. Pearce, Structure in Nature Is a Strategy for Design, Br. J. Psychiatry. 112 (1966) 211–212. https://doi.org/10.1192/bjp.112.483.211-a.
    [98] F.T. Lewis, The Typical Shape of Polyhedral Cells in Vegetable Parenchyma and the Restoration of That Shape following Cell Division, Proc. Am. Acad. Arts Sci. 58 (1923) 537. https://doi.org/10.2307/20026027.
    [99] A. Kumar, S. Verma, J. Jeng, Supportless Lattice Structures for Energy Absorption Fabricated by Fused Deposition Modeling, 3D Print. Addit. Manuf. 7 (2020) 85–96. https://doi.org/10.1089/3dp.2019.0089.
    [100] A. Kumar, L. Collini, A. Daurel, J.-Y. Jeng, Design and additive manufacturing of closed cells from supportless lattice structure, Addit. Manuf. 33 (2020) 101168. https://doi.org/10.1016/j.addma.2020.101168.
    [101] L. Zhang, S. Feih, S. Daynes, S. Chang, M.Y. Wang, J. Wei, W.F. Lu, Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading, Addit. Manuf. 23 (2018) 505–515. https://doi.org/10.1016/j.addma.2018.08.007.
    [102] M. Helou, S. Kara, Design, analysis and manufacturing of lattice structures: An overview, Int. J. Comput. Integr. Manuf. 31 (2018) 243–261. https://doi.org/10.1080/0951192X.2017.1407456.
    [103] S. Rajagopalan, R.A. Robb, Schwarz meets Schwann: Design and fabrication of biomorphic and durataxic tissue engineering scaffolds, Med. Image Anal. 10 (2006) 693–712. https://doi.org/10.1016/j.media.2006.06.001.
    [104] A. Nazir, A. Bin Arshad, J. Jeng, Buckling and Post-Buckling Behavior of Uniform and Variable-Density Lattice Columns Fabricated Using Additive Manufacturing, Materials (Basel). 12 (2019) 3539. https://doi.org/10.3390/ma12213539.
    [105] L. Collini, C. Ursini, A. Kumar, Design and optimization of 3D fast printed cellular structures, Mater. Des. Process. Commun. 3 (2021). https://doi.org/10.1002/mdp2.227.
    [106] T. Wester, Nature Teaching Structures, Int. J. Sp. Struct. 17 (2002) 135–147. https://doi.org/10.1260/026635102320321789.
    [107] S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, C. Charitidis, Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Mater. Today. 21 (2018) 22–37. https://doi.org/10.1016/j.mattod.2017.07.001.
    [108] G. Dong, Y. Tang, Y.F. Zhao, A survey of modeling of lattice structures fabricated by additive manufacturing, J. Mech. Des. Trans. ASME. 139 (2017). https://doi.org/10.1115/1.4037305.
    [109] K. Refai, M. Montemurro, C. Brugger, N. Saintier, Determination of the effective elastic properties of titanium lattice structures, Mech. Adv. Mater. Struct. 27 (2020) 1966–1982. https://doi.org/10.1080/15376494.2018.1536816.
    [110] W.E. Warren, A.M. Kraynik, The Linear Elastic Properties of Open-Cell Foams, J. Appl. Mech. 55 (1988) 341–346. https://doi.org/10.1115/1.3173680.
    [111] J.C. Maxwell, L. On the calculation of the equilibrium and stiffness of frames, London, Edinburgh, Dublin Philos. Mag. J. Sci. 27 (1864) 294–299. https://doi.org/10.1080/14786446408643668.
    [112] G. Habenicht, Kleben, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. https://doi.org/10.1007/978-3-540-85266-7.
    [113] P. Amend, S. Pfindel, M. Schmidt, Thermal Joining of Thermoplastic Metal Hybrids by Means Of Mono- and Polychromatic Radiation, Phys. Procedia. 41 (2013) 98–105. https://doi.org/10.1016/j.phpro.2013.03.056.
    [114] A. Heckert, M.F. Zaeh, Laser Surface Pre-treatment of Aluminium for Hybrid Joints with Glass Fibre Reinforced Thermoplastics, Phys. Procedia. 56 (2014) 1171–1181. https://doi.org/10.1016/j.phpro.2014.08.032.
    [115] J. Byskov-Nielsen, J. V. Boll, A.H. Holm, R. Højsholt, P. Balling, Ultra-high-strength micro-mechanical interlocking by injection molding into laser-structured surfaces, Int. J. Adhes. Adhes. 30 (2010) 485–488. https://doi.org/10.1016/j.ijadhadh.2010.03.008.
    [116] J. Byskov-Nielsen, P. Balling, Laser structuring of metal surfaces: Micro-mechanical interlocking, Appl. Surf. Sci. 255 (2009) 5591–5594. https://doi.org/10.1016/j.apsusc.2008.07.118.
    [117] E.G. Baburaj, D. Starikov, J. Evans, G.A. Shafeev, A. Bensaoula, Enhancement of adhesive joint strength by laser surface modification, Int. J. Adhes. Adhes. 27 (2007) 268–276. https://doi.org/10.1016/j.ijadhadh.2006.05.004.
    [118] Y.-H. Chueh, C. Wei, X. Zhang, L. Li, Integrated laser-based powder bed fusion and fused filament fabrication for three-dimensional printing of hybrid metal/polymer objects, Addit. Manuf. 31 (2020) 100928. https://doi.org/10.1016/j.addma.2019.100928.
    [119] Y.-H. Chueh, X. Zhang, J.C.-R. Ke, Q. Li, C. Wei, L. Li, Additive manufacturing of hybrid metal/polymer objects via multiple-material laser powder bed fusion, Addit. Manuf. 36 (2020) 101465. https://doi.org/10.1016/j.addma.2020.101465.
    [120] S.-H. Tang, C.-W. Cheng, R.-Y. Yeh, R.-Q. Hsu, Direct joining of 3D-printed thermoplastic parts to SLM-fabricated metal cellular structures by ultrasonic welding, Int. J. Adv. Manuf. Technol. 99 (2018) 729–736. https://doi.org/10.1007/s00170-018-2409-8.
    [121] S.Y. Chin, V. Dikshit, B.M. Priyadarshini, Y. Zhang, Powder-based 3D printing for the fabrication of device with micro and mesoscale features, Micromachines. 11 (2020) 29–40. https://doi.org/10.3390/MI11070658.
    [122] V.. Deshpande, N.. Fleck, Collapse of truss core sandwich beams in 3-point bending, Int. J. Solids Struct. 38 (2001) 6275–6305. https://doi.org/10.1016/S0020-7683(01)00103-2.
    [123] R. Gümrük, R.A.W. Mines, Compressive behaviour of stainless steel micro-lattice structures, Int. J. Mech. Sci. 68 (2013) 125–139. https://doi.org/10.1016/j.ijmecsci.2013.01.006.
    [124] H.J. O’Connor, A.N. Dickson, D.P. Dowling, Evaluation of the mechanical performance of polymer parts fabricated using a production scale multi jet fusion printing process, Addit. Manuf. 22 (2018) 381–387. https://doi.org/10.1016/j.addma.2018.05.035.
    [125] M. Smith, Z. Guan, W.J. Cantwell, Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique, Int. J. Mech. Sci. 67 (2013) 28–41. https://doi.org/10.1016/j.ijmecsci.2012.12.004.
    [126] D.A. Şerban, L. Marşavina, N. Modler, Finite Element Modelling of the Progressive Damage and Failure of Thermoplastic Polymers in Puncture Impact, Procedia Eng. 109 (2015) 97–104. https://doi.org/10.1016/j.proeng.2015.06.214.
    [127] S. Lee, F. Barthelat, N. Moldovan, H.D. Espinosa, H.N.G. Wadley, Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials, Int. J. Solids Struct. 43 (2006) 53–73. https://doi.org/10.1016/j.ijsolstr.2005.06.101.
    [128] H.J. O’Connor, A.N. Dickson, D.P. Dowling, Evaluation of the mechanical performance of polymer parts fabricated using a production scale multi jet fusion printing process, Addit. Manuf. 22 (2018) 381–387. https://doi.org/10.1016/j.addma.2018.05.035.
    [129] T. Tancogne-Dejean, M. Diamantopoulou, M.B. Gorji, C. Bonatti, D. Mohr, 3D Plate-Lattices: An Emerging Class of Low-Density Metamaterial Exhibiting Optimal Isotropic Stiffness, Adv. Mater. 30 (2018) 1–6. https://doi.org/10.1002/adma.201803334.
    [130] P. Ekade, S. Krishnan, Fluid flow and heat transfer characteristics of octet truss lattice geometry, Int. J. Therm. Sci. 137 (2019) 253–261. https://doi.org/10.1016/j.ijthermalsci.2018.11.031.
    [131] L. Xu, H. Chen, L. Xi, Y. Xiong, J. Gao, Y. Li, Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels, Heat Mass Transf. 58 (2022) 41–64. https://doi.org/10.1007/s00231-021-03100-2.
    [132] W.M. Henk Kaarle Versteeg, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education Limited, 2007.
    [133] B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows, Comput. Methods Appl. Mech. Eng. 3 (1974) 269–289. https://doi.org/10.1016/0045-7825(74)90029-2.
    [134] X. Bai, C. Hasan, M. Mobedi, A. Nakayama, A General Expression for the Stagnant Thermal Conductivity of Stochastic and Periodic Structures, J. Heat Transfer. 140 (2018). https://doi.org/10.1115/1.4038449.
    [135] S. Krishnan, J.Y. Murthy, S. V. Garimella, Direct Simulation of Transport in Open-Cell Metal Foam, J. Heat Transfer. 128 (2006) 793–799. https://doi.org/10.1115/1.2227038.
    [136] J.H. You, K. Park, Design and additive manufacturing of thermal metamaterial with high thermal resistance and cooling capability, Addit. Manuf. 41 (2021) 101947. https://doi.org/10.1016/j.addma.2021.101947.
    [137] I. Kaur, P. Singh, State-of-the-art in heat exchanger additive manufacturing, Int. J. Heat Mass Transf. 178 (2021) 121600. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121600.
    [138] C.K. Stimpson, J.C. Snyder, K.A. Thole, D. Mongillo, Roughness effects on flow and heat transfer for additively manufactured channels, J. Turbomach. 138 (2016) 1–10. https://doi.org/10.1115/1.4032167.
    [139] H. Rastan, A. Abdi, B. Hamawandi, M. Ignatowicz, J.P. Meyer, B. Palm, Heat transfer study of enhanced additively manufactured minichannel heat exchangers, Int. J. Heat Mass Transf. 161 (2020) 120271. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120271.
    [140] M. Searle, J. Black, D. Straub, E. Robey, J. Yip, S. Ramesh, A. Roy, A.S. Sabau, D. Mollot, Heat transfer coefficients of additively manufactured tubes with internal pin fins for supercritical carbon dioxide cycle recuperators, Appl. Therm. Eng. 181 (2020) 116030. https://doi.org/10.1016/j.applthermaleng.2020.116030.
    [141] V. V. Calmidi, R.L. Mahajan, Forced convection in high porosity metal foams, J. Heat Transfer. 122 (2000) 557–565. https://doi.org/10.1115/1.1287793.
    [142] E. Virgillito, A. Aversa, F. Calignano, M. Lombardi, D. Manfredi, D. Ugues, P. Fino, Failure mode analysis on compression of lattice structures with internal cooling channels produced by laser powder bed fusion, Adv. Manuf. 9 (2021) 403–413. https://doi.org/10.1007/s40436-021-00348-z.
    [143] S. Feng, A.M. Kamat, Y. Pei, Design and fabrication of conformal cooling channels in molds: Review and progress updates, Int. J. Heat Mass Transf. 171 (2021) 121082. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121082.
    [144] K. Boukhadia, H. Ameur, D. Sahel, M. Bozit, Effect of the perforation design on the fluid flow and heat transfer characteristics of a plate fin heat exchanger, Int. J. Therm. Sci. 126 (2018) 172–180. https://doi.org/10.1016/j.ijthermalsci.2017.12.025.
    [145] K.M. Au, K.M. Yu, Variable Radius Conformal Cooling Channel for Rapid Tool, Mater. Sci. Forum. 532–533 (2006) 520–523. https://doi.org/10.4028/www.scientific.net/msf.532-533.520.
    [146] C. Tan, D. Wang, W. Ma, Y. Chen, S. Chen, Y. Yang, K. Zhou, Design and additive manufacturing of novel conformal cooling molds, Mater. Des. 196 (2020) 109147. https://doi.org/10.1016/j.matdes.2020.109147.
    [147] J. Liu, H. Yu, Self-Support Topology Optimization With Horizontal Overhangs for Additive Manufacturing, J. Manuf. Sci. Eng. 142 (2020). https://doi.org/10.1115/1.4047352.
    [148] C. Yan, L. Hao, A. Hussein, P. Young, D. Raymont, Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting, Mater. Des. 55 (2014) 533–541. https://doi.org/10.1016/j.matdes.2013.10.027.
    [149] A. Kumar, S. Verma, J.-Y. Jeng, Supportless Lattice Structures for Energy Absorption Fabricated by Fused Deposition Modeling, 3D Print. Addit. Manuf. 7 (2020) 85–96. https://doi.org/10.1089/3dp.2019.0089.
    [150] AvaSpire® AV-651, (n.d.). https://www.solvay.com/en/product/avaspire-av-651 (accessed June 15, 2020).
    [151] R. Groarke, C. Danilenkoff, S. Karam, E. McCarthy, B. Michel, A. Mussatto, J. Sloane, A. O’ Neill, R. Raghavendra, D. Brabazon, 316L Stainless Steel Powders for Additive Manufacturing: Relationships of Powder Rheology, Size, Size Distribution to Part Properties, Materials (Basel). 13 (2020) 5537. https://doi.org/10.3390/ma13235537.
    [152] pharmacognosy, Complex Tissues (Xylem Tissues and Phloem Tissues), Pharmacogn. (2019). https://thepharmacognosy.com/complex-tissues-xylem-tissues-and-phloem-tissues/.
    [153] B. Choat, A.R. Cobb, S. Jansen, Structure and function of bordered pits: new discoveries and impacts on whole‐plant hydraulic function, New Phytol. 177 (2008) 608–626. https://doi.org/10.1111/j.1469-8137.2007.02317.x.
    [154] N.A. Dudukovic, E.J. Fong, H.B. Gemeda, J.R. DeOtte, M.R. Cerón, B.D. Moran, J.T. Davis, S.E. Baker, E.B. Duoss, Cellular fluidics, Nature. 595 (2021) 58–65. https://doi.org/10.1038/s41586-021-03603-2.
    [155] C. Pandelidi, K.P.M. Lee, M. Kajtaz, Effects of polyamide-11 powder refresh ratios in multi-jet fusion: A comparison of new and used powder, Addit. Manuf. 40 (2021) 101933. https://doi.org/10.1016/j.addma.2021.101933.
    [156] K. Wudy, D. Drummer, Aging effects of polyamide 12 in selective laser sintering: Molecular weight distribution and thermal properties, Addit. Manuf. 25 (2019) 1–9. https://doi.org/10.1016/j.addma.2018.11.007.
    [157] S. Dadbakhsh, L. Verbelen, O. Verkinderen, D. Strobbe, P. Van Puyvelde, J.-P. Kruth, Effect of PA12 powder reuse on coalescence behaviour and microstructure of SLS parts, Eur. Polym. J. 92 (2017) 250–262. https://doi.org/10.1016/j.eurpolymj.2017.05.014.
    [158] X. Xu, E. Sachs, S. Allen, The design of conformal cooling channels in injection molding tooling, Polym. Eng. Sci. 41 (2001) 1265–1279. https://doi.org/10.1002/pen.10827.
    [159] G. Wang, Y. Hui, L. Zhang, G. Zhao, Research on temperature and pressure responses in the rapid mold heating and cooling method based on annular cooling channels and electric heating, Int. J. Heat Mass Transf. 116 (2018) 1192–1203. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.126.
    [160] W.M. Henk Kaarle Versteeg, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education Limited, 2007. https://books.google.com.tw/books?id=RvBZ-UMpGzIC.
    [161] A.M. Abou-Ali, O. Al-Ketan, D.-W. Lee, R. Rowshan, R.K. Abu Al-Rub, Mechanical behavior of polymeric selective laser sintered ligament and sheet based lattices of triply periodic minimal surface architectures, Mater. Des. 196 (2020) 109100. https://doi.org/10.1016/j.matdes.2020.109100.
    [162] S. Verma, A. Kumar, S. Lin, J. Jeng, A bio-inspired design strategy for easy powder removal in powder-bed based additive manufactured lattice structure, Virtual Phys. Prototyp. 17 (2022) 468–488. https://doi.org/10.1080/17452759.2022.2039071.
    [163] S. Verma, A. Kumar, S.-C. Lin, J.-Y. Jeng, CFD and strength analysis of novel biomimetic lattice structure designed for additive manufacturing and post-processing, Mater. Des. 224 (2022) 111375. https://doi.org/10.1016/j.matdes.2022.111375.
    [164] A. Nazir, J.-Y. Jeng, Buckling behavior of additively manufactured cellular columns: Experimental and simulation validation, Mater. Des. 186 (2020) 108349. https://doi.org/10.1016/j.matdes.2019.108349.
    [165] R.S. Ambekar, B. Kushwaha, P. Sharma, F. Bosia, M. Fraldi, N.M. Pugno, C.S. Tiwary, Topologically engineered 3D printed architectures with superior mechanical strength, Mater. Today. 48 (2021) 72–94. https://doi.org/10.1016/j.mattod.2021.03.014.
    [166] G.B. Bang, W.R. Kim, H.K. Kim, H.-K. Park, G.H. Kim, S.-K. Hyun, O. Kwon, H.G. Kim, Effect of process parameters for selective laser melting with SUS316L on mechanical and microstructural properties with variation in chemical composition, Mater. Des. 197 (2021) 109221. https://doi.org/10.1016/j.matdes.2020.109221.
    [167] M. Santorinaios, W. Brooks, C.J. Sutcliffe, R.A.W. Mines, Crush behaviour of open cellular lattice structures manufactured using selective laser melting, in: High Perform. Struct. Mater. III, WIT Press, Southampton, UK, 2006: pp. 481–490. https://doi.org/10.2495/HPSM06047.
    [168] H.J. O’Connor, A.N. Dickson, D.P. Dowling, Evaluation of the mechanical performance of polymer parts fabricated using a production scale multi jet fusion printing process, Addit. Manuf. 22 (2018) 381–387. https://doi.org/10.1016/j.addma.2018.05.035.
    [169] F. Sillani, R.G. Kleijnen, M. Vetterli, M. Schmid, K. Wegener, Selective laser sintering and multi jet fusion: Process-induced modification of the raw materials and analyses of parts performance, Addit. Manuf. 27 (2019) 32–41. https://doi.org/10.1016/j.addma.2019.02.004.
    [170] F. Calignano, F. Giuffrida, M. Galati, Effect of the build orientation on the mechanical performance of polymeric parts produced by multi jet fusion and selective laser sintering, J. Manuf. Process. 65 (2021) 271–282. https://doi.org/10.1016/j.jmapro.2021.03.018.
    [171] Additive Manufacturing moves TUfast, (n.d.). https://additivenews.com/additive-manufacturing-moves-tufast/.
    [172] University of Nottingham PhD student wins Additive World Design Challenge award, (2016). https://exchange.nottingham.ac.uk/blog/phd-student-wins-additive-world-design-challenge-award/.
    [173] F. Leonardi, Liquid-cooled cold plate for automotive power electronics, NTopology. (2021). https://www.ntop.com/resources/case-studies/cold-plate-automotive-power-electronics/.

    無法下載圖示 全文公開日期 2025/06/14 (校內網路)
    全文公開日期 2028/06/14 (校外網路)
    全文公開日期 2028/06/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE