簡易檢索 / 詳目顯示

研究生: 彭泉閔
Cyuan-Min Peng
論文名稱: 應用於低溫電漿製程之陣列式電漿電源系統設計與實現
Design and implementation of Array Plasma Power Supply System for Low Temperature Plasma Process
指導教授: 林長華
Chang-Hua Lin
口試委員: 劉添華
Tian-Hua Liu
王見銘
Chien-Ming Wang
陳偉倫
Woei-Luen Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 169
中文關鍵詞: 低溫電漿高壓脈衝電源多級馬克斯電路可飽和變壓器鞋材改質
外文關鍵詞: Cold Plasma, Short Pulse Power Supply, Multilevel Marx Generator, Saturable Transformer, Shoe Modification
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研發一陣列式電漿電源系統,系統主電路包含三級架構:數位功率因數修正器、新共地拓樸馬克斯電路與磁脈衝壓縮電路。首先,本文結合改良之正脈衝馬克斯電路與負脈衝馬克斯電路,形成新型共地拓樸馬克斯電路,相較於傳統正脈衝馬克斯電路架構,所提電路不僅節省了50%之功率開關數量,並使得電路之開關驅動電源之隔離電壓規格可以減少50%,大幅減少電路設計成本。其次,磁脈衝壓縮電路利用飽和變壓器作為開關,當變壓器飽和時,使變壓器兩側電路產生解耦現象,亦即形成動作相互獨立的狀態,此時利用二次側等效電感與二極體之接面電容產生諧振,得以降低輸出電壓脈寬至奈秒等級。此外,本文利用MATLAB Simulink建立磁脈衝壓縮電路之可飽和變壓器模型,並提出變壓器之設計準則,根據理論推導之系統參數進行電腦模擬,以驗證所設計系統之可行性。最後,整合主電路、數位控制器、人機介面與通訊模組,並驅動陣列式電漿管及進行鞋材黏合與剝離測試,以驗證所提系統之有效性。


    This thesis aims to develop an array-based plasma power system with a three-level architecture: digital power factor corrector, new common-ground topology Marx circuit, and magnetic pulse compression circuit. Firstly, this thesis combines the improved positive pulse Marx circuit with the negative pulse Marx circuit, referred to as the new common-ground topology Marx circuit. Compared to the traditional positive pulse Marx circuit structure, the proposed circuit not only saves 50% of the power switch count but also reduces the isolation voltage specification for driving the circuit switches by 50%, significantly reducing circuit design costs. Secondly, the magnetic pulse compression circuit utilizes a saturated transformer as a switch. When the transformer saturates, the secondary side circuit of the transformer becomes decoupled, meaning it operates in a mutually independent state. At this time, resonance is generated using the equivalent secondary side inductance and the junction capacitance of the diode, allowing for a reduction in the output voltage pulse width to the nanosecond level. Furthermore, this thesis uses MATLAB Simulink to establish a saturable transformer model for the magnetic pulse compression circuit and proposes design criteria for the transformer. Computer simulations are performed based on the theoretically derived system parameters to verify the feasibility of the designed system. Finally, the main circuit, digital controller, human-machine interface, and communication module are integrated to drive the array-based plasma tubes and conduct adhesive and peeling tests on footwear materials to validate the effectiveness of the proposed system.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 3 1.2.1 電漿產生之方式 3 1.2.2 電漿電源之種類與探討 4 1.3 論文架構 6 第二章 陣列式電漿電源系統之架構與分析 8 2.1 系統架構 8 2.2 高壓脈衝電源之分析與設計 9 2.2.1 脈衝寬度之定義 9 2.2.2 正脈衝馬克斯電路之工作模式與數學分析 11 2.2.3 負脈衝馬克斯電路之工作模式與數學分析 17 2.2.4 新共地拓樸馬克斯電路之工作模式與數學分析 24 2.2.5 磁脈衝壓縮電路之工作模式與數學分析 31 2.2.6 新共地拓樸馬克斯磁脈衝壓縮電路之工作模式與數學分析 45 2.3 電漿管之電氣特性與其等效模型 54 2.4 功率因數修正器之工作模式與數學分析 58 2.4.1 功率因數與諧波之定義 58 2.4.2 功率因數修正器之架構 62 2.4.3 主動式功率因數修正器之控制法 64 2.4.4 升壓型功率因數修正器之工作模式與數學分析 65 第三章 系統規格與設計考量 71 3.1 可飽和變壓器設計 71 3.2 輸出電壓脈寬諧振元件設計 73 3.3 馬克斯電路元件設計 78 3.4 功率因數修正器設計 80 3.5 高速PWM驅動電路設計 84 第四章 輔助系統與數位控制器之設計與分析 86 4.1 數位控制器之設計 86 4.1.2 數位控制器dsPIC33FJ64GS606之介紹 88 4.1.3 數位控制器與週邊元件之連結 92 4.1.4 系統之控制流程 95 4.2 人機介面之設計與實現 97 4.2.2 無線通訊模組簡介 100 4.3 高壓電路之絕緣考量 102 4.3.1 空間直線距離與爬電距離之安全考量 103 4.3.2 新共地拓樸馬克斯電路架構絕緣考量 108 4.3.3 系統絕緣距離考量 110 4.3.4 輔助電源之說明 111 第五章 電路模擬與實測結果 113 5.1 系統實測之環境建置 113 5.2 MATLAB Simulink模擬環境之建置 115 5.2.1 磁脈衝壓縮電路之可飽和變壓器建模 117 5.3 未加電漿負載下不同重複率之模擬與實測 120 5.3.1 系統模擬結果 120 5.3.2 系統實測結果 123 5.4 加入電漿負載下不同重複率之模擬與實測 127 5.4.1 系統模擬結果 127 5.4.2 系統實測結果 130 5.5 電漿表面處理溫度量測 135 5.6 對鞋材進行電漿表面處理驗證膠水黏著度提升 137 5.6.2 電漿管之結構改良 137 5.6.3 模擬鞋材剝離測試 139 第六章 結論與未來展望 142 6.1 結論 142 6.2 未來展望 143 參考文獻 144

    [1] 生策會, "施吉生技開創亞洲首例低溫電漿慢性傷口治療技術," [Online].Available: https://innoaward.taiwan-healthcare.org/faq_detail.php?REFDOCTYPID=&REFDOCID=0r3u7ds3lwrs38k2.
    [2] N. Eswaramoorthy and D. R. Mckenzie, "Plasma treatments of dressings for wound healing: a review," Biophysical Reviews, vol. 9, pp. 895-917, 2017.
    [3] "Overview of Cold Atmospheric Plasma in Wounds Treatment," Medical & Clinical Research, vol. 5, pp. 280-289 2020.
    [4] M. Rezanejad, A. Sheikholeslami, and J. Adabi, "High-Voltage Pulsed Power Supply to Generate Wide Pulses Combined With Narrow Pulses," IEEE Transactions on Plasma Science, vol. 42, no. 7, pp. 1894-1901, 2014.
    [5] 施吉生技應材股份有限公司, "創新可攜式電漿防疫殺菌醫護裝置," [Online].Available:. https://expo.taiwan-healthcare.org/zh/news_detail.php?REFDOCID=0qj9r9zfug28eqmb.
    [6] 徐逸明, "電漿表面處理技術應用於觸控螢幕與平面顯示器產業," 馗鼎奈米科技股份有限公司, 國立成功大學化工系.
    [7] A. Ogden, "Air quality: A tale of three cities," ed. NASA's Goddard Space Flight Center, 2015. [Online].Available: https://climate.nasa.gov/news/2263/air-quality-a-tale-of-three-cities/
    [8] 張加強, "大氣壓電漿技術在高分子產業的應用Atmospheric Pressure Plasma Technology Applications for the Polymer Industry," [Online].Available: https://www.tiri.narl.org.tw/Publication/InstTdy_Full/12484?PubId=227
    [9] F. Clement, P. Svarnas, L. Marlin, S. Paquet, A. Gkelios, and B. Held, "Atmospheric Pressure Argon Plasma Jet in Pulsed Monopolar High Voltage Excitation Conditions," IEEE Transactions on Plasma Science, vol. 39, no. 11, pp. 2362-2363, 2011.
    [10] V. Gladkov, I. Magda, P. Mel’nikov, and V. Rudakov, "A Megavolt Frequency Generator Pulses with an FWHM Duration of 30 ns," Instruments and Experimental Techniques - INSTRUM EXP TECH-ENGL TR, vol. 52, pp. 360-365, 05/01 2009.
    [11] E. Jang, H. M. Ahn, and B. K. Lee, "Variable DC-Link Voltage Control Algorithm of Power Converter for Plasma Generators," Journal of Electrical Engineering & Technology, vol. 15, no. 2, pp. 713-720, 2020/03/01 2020.
    [12] J. G. Kang, H. S. Kim, S.-W. Ahn, and H. S. Uhm, "Development of the RF Plasma Source at Atmospheric Pressure," Surface & Coatings Technology, vol. 171, pp. 144-148, 2003.
    [13] J. Mankowski and M. Kristiansen, "A review of short pulse generator technology," IEEE Transactions on Plasma Science, vol. 28, no. 1, pp. 102-108, 2000.
    [14] F. Scholze, M. Tartz, and H. Neumann, "Inductive Coupled Radio Frequency Plasma Bridge Neutralizer," The Review of scientific instruments, vol. 79 2 Pt 2, p. 02B724, 2008.
    [15] L. Seung-Yo, G. Jae-Seok, K. Byoung-Hee, and C. Jun-Seok, "Analysis of pulse power converter for plasma application," in 2008 34th Annual Conference of IEEE Industrial Electronics, 10-13 Nov. 2008, pp. 556-560,.
    [16] A. V. Surov, S. D. Popov, E. O. Serba1, A. V. Pavlov1, Gh. V. Nakonechny1, V. A. Spodobin1, A. V. Nikonov1, D. I. Subbotin1 and A. M. Borovskoy, "High voltage AC plasma torches with long electric arcs for plasma-chemical applications," Journal of Physics: Conference Series, vol. 825, no. 1, p. 012016, March 2017.
    [17] B. C. Zhang and R. C. Cross, "A high power radio frequency transformer for plasma production in a toroidal plasma source," Review of Scientific Instruments, vol. 69, no. 1, pp. 101-108, 1998.
    [18] H. m. Ahn, E. Jang, S.-H. Ryu, C. S. Lim, and B.-K. Lee, "Control Strategy for Power Conversion Systems in Plasma Generators with High Power Quality and Efficiency Considering Entire Load Conditions," Energies,vol .12, pp. 1723, 2019.
    [19] B. Ju Won, Y. Dong Wook, G. H. Rim, and L. J. Sheng, "Solid state Marx Generator using series-connected IGBTs," IEEE Transactions on Plasma Science, vol. 33, no. 4, pp. 1198-1204, 2005.
    [20] J. Rao, K. Liu, and J. Qiu, "All solid-state nanosecond pulsed generators based on Marx and magnetic switches," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 20, no. 4, pp. 1123-1128, 2013.
    [21] L. M. Redondo, M. Zahyka, and A. Kandratsyeu, "Solid-State Generation of High-Frequency Burst of Bipolar Pulses for Medical Applications," IEEE Transactions on Plasma Science, vol. PP, pp. 1-5, 07/01 2019.
    [22] C. Yao, X. Zhang, F. Guo, S. Dong, Y. Mi, and C. Sun, "FPGA-Controlled All-Solid-State Nanosecond Pulse Generator for Biological Applications," IEEE Transactions on Plasma Science, vol. 40, no. 10, pp. 2366-2372, 2012.
    [23] K. Masugata, H. Saitoh, H. Maekawa, K. Yatsui, K. Shibata, and M. Shigeta, "Development of high voltage step-up transformer as a substitute for a Marx generator," Review of Scientific Instruments, vol. 68, no. 5, pp. 2214-2220, 1997.
    [24] J. Choi, "Introduction of the Magnetic Pulse Compressor (MPC) - Fundamental Review and Practical Application," The Korean Institute of Electrical Engineers, vol. 5, no. 3, pp. 484-492, 2010.
    [25] X. Fan, "A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer," The Review of scientific instrument, vol 85, pp. 024708 2014.
    [26] E. M. Lassiter, "High-Power Pulse Generation Using Semiconductors and Magnetic Cores," Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, vol 79, pp 511-517, 1960.
    [27] J. S. Oliver, "Timing Variations in a Magnetic Pulse Compression Circuit,", 2012.
    [28] G. Liu et al., "Analysis and realization of magnetic switch in pulsed power conditioning system," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, pp 1143-1150, 2011.
    [29] S. Mumtaz, J. N. Rana, J. S. Lim, R. Javed, E. H. Choi, and I. Han, "Effect of Plasma On-Time with a Fixed Duty Ratio on Reactive Species in Plasma-Treated Medium and Its Significance in Biological Applications," International Journal of Molecular Sciences, vol. 24, no. 6, p. 5289, 2023.
    [30] M. Glickman, P. Tseng, J. Harrison, T. Niblock, I. B. Goldberg, and J. W. Judy, "High-Performance Lateral-Actuating Magnetic MEMS Switch," Journal of Microelectromechanical Systems, vol. 20, pp. 842-851, 2011.
    [31] Y. Zhang and J. Liu, "A new kind of low-inductance transformer type magnetic switch (TTMS) with coaxial cylindrical conductors," Rev Sci Instrum, vol. 84, no. 2, p. 023306, Feb 2013.
    [32] K. Yambe, S. Muraoka, T. Nihei, and S. Abe, "Estimation of excitation temperature by duty ratio of observed period in non-equilibrium plasma," Physics of Plasmas, vol. 24, p. 063512, 2017.
    [33] F. Attmann, M. Sack, and G. Müller, "Spark gap erosion in Marx generators for electroporation," in 2010 12th International Conference on Optimization of Electrical and Electronic Equipment, pp. 202-207, 2010.
    [34] 陳威任, "應用於電漿負載具數位控制器之全橋諧振換流器," 大同大學電機工程研究所碩士論文, 2016.
    [35] J. M. Alonso, J. Garcia, A. J. Calleja, J. Ribas, and J. Cardesin, "Analysis, design, and experimentation of a high-voltage power supply for ozone generation based on current-fed parallel-resonant push-pull inverter," IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1364-1372, 2005.
    [36] K. B. Abraham, I. Pressman and T. Morey, "Switching Power Supply (Third Edition)," 2009.
    [37] 宋自恆, "功率因數修正電路之原理與常用元件規格," 2004.
    [38] J. J. Cheng, "Implementation of A Flyback Converter with Single-Stage Power Factor Correction," Department of Electrical Engineering, National Sun Yat-Sen University Kaohsiung, Taiwan, Republic of China, 1997.
    [39] 巫翔凱, "具有功率因數修正功能之CC-CC/CC-CV可選擇兩段式充電器," 國立台北科技大學電機工程系碩士學位論文, 2008.
    [40] 謝尚伯, "結合循環式數位調光技術之多管冷陰極螢光燈電子安定器," 大同大學電機工程學系碩士學位論文, 2010.
    [41] J. Sha, J. Hu, and H. Wei, "A Discrete Average Current Mode Control CCM Boost PFC Converter With Hybrid Pulse Train Modulation and Dual Edge Modulation," IEEE Transactions on Industrial Electronics, vol. 70, no. 10, pp. 10003-10013, 2023.
    [42] "Ferrites and accessories Toroids (ring cores) R 50.0  30.0  20.0," 2023.
    [43] "Ferrites and accessories SIFERRIT material N30," 2023.
    [44] A. L. Keet, "Magnetic Switching Techniques for High Power Pulse Generation," Electrical Engineering, Technische Universiteit Eindhoven, 1992.
    [45] "UF5400 THRU UF5408," Micro Commercial Components, 2013.
    [46] I. Technologies, "SPW35N60CFD," 2005.
    [47] Microchip, "16-Bit Digital Signal Controllers with High-Speed PWM, ADC and Comparators," 2009-2012.
    [48] "MPASM™ Assembler, MPLINK™ Object Linker, MPLIB™ Object Librarian User’s Guide," 2005.
    [49] A. S. Kamath, "High-voltage reinforced isolation: definitions and test methodologies," Texas Instruments.
    [50] I. Technologies, "Electrical safety and isolation in high voltage discrete component applications and design hints," Application Note AN 2012-10 V1.0, October 2012.
    [51] "IEC 60950 safety specific standards datasheet."
    [52] M. P. Solution, "5.2kVDC Isolated 2W Gate Drive DC-DC Converters."
    [53] S. Van Vrekhem, K. Vloebergh, M. Asadian, C. Vercruysse, H. Declercq, A. Van Tongel, L. De Wilde, N. DeGeyter and R. Morent, "Improving the surface properties of an UHMWPE shoulder implant with an atmospheric pressure plasma jet," Scientific Reports, vol. 8, no. 1, p. 4720, 2018/03/16 2018.
    [54] A. Schutze, J. Y. Jeong, S. E. Babayan, P. Jaeyoung, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," IEEE Transactions on Plasma Science, vol. 26, no. 6, pp. 1685-1694, 1998.
    [55] L. Ran, H. Luo, C. Zhao, X. Zhang, H.-m. Hu, and Z. Wang, "A Study on the Correlation of Foot Data with Body Height and Weight of Chinese Adults," International Conference on Applied Human Factors and Ergonomics,pp 197-203, 2019.

    無法下載圖示 全文公開日期 2033/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE