簡易檢索 / 詳目顯示

研究生: 芳安禮
Aulia Fajrin
論文名稱: 纖維層取向,層壓層和PLA含量對碳纖維複合材料力學和熱性能的影響
The Effect of Fiber Ply Orientation, Laminate Layer, and PLA content on Mechanical and Thermal Properties of Carbon Fiber Reinforced PLA Composites
指導教授: 陳詩芸
Shih-Yun Chen
村上理一
Ri-ichi Murakami
口試委員: 村上理一
Ri-ichi Murakami
郭俊良
Chun-Liang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 101
中文關鍵詞: PLA碳纖維生物材料機械性能熱性能
外文關鍵詞: PLA, Carbon Fiber, Bio-material, Mechanical Properties, Thermal Properties
相關次數: 點閱:314下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在這項研究中,碳纖維被用來加强两種生物塑料材料PLA複合材料。第一種PLA由10%生物材料含量(80%的ecoflex和10%的CaCO3)和第二PLA由45%的生物材料含量(45%的ecoflex和10%的CaCO3)組成。最終的複合材料使用了一層和兩層碳纖維。進行拉伸,衝擊和疲勞測試以研究複合材料的機械性能。複合材料試樣受到單軸拉伸。掃描電子顯微鏡(SEM)評價纖維與基質的界面粘合。使用拉伸試驗儀器來揭示複合材料的拉伸強度行為。結果表明:兩層碳纖維45°取向PLA 10%的拉伸強度小於45°取向兩層碳纖維的PLA 45%。對於兩層碳纖維的0°取向的PLA 45%觀察到最大拉伸強度。對於具有兩層碳纖維的複合材料,0°取向顯示出比45°取向更高的抗拉強度。 0o取向的複合材料的衝擊阻力比45o取向的要高。由於每個方向的曲線幾乎重疊,所以這種抗衝擊性略有不同。複合材料的機械強度取決於碳纖維層的取向和層數。由於PLA的含量較高,熱穩定性和極限氧指數使PLA的複合材料比PLA 10%的複合材料穩定45%。本研究適用於減少不可生物降解複合材料的使用。


In this study, carbon fiber was used to reinforce with two kinds of bioplastic materials PLA composites. The first PLA consist of 10% bio material content (the ecoflex of 80% and CaCO3 10%) and the second PLA consist of 45 % bio material content (the ecoflex of 45% and CaCO3 10%) were used as a matrix. The final composites used one and two layers of carbon fiber. The tensile, impact, and fatigue test was performed to study the mechanical properties of the composites. Composites specimens were subjected to uniaxial tensile. The interfacial adhesion of the fibers to the matrix was evaluated by Scanning Electron Microscope (SEM). Tensile test instrument was used to reveal the tensile strength behavior of the composites. The results showed that the tensile strength of PLA 10% with 45° orientation of two layers carbon fiber is less than that of PLA 45% with 45° orientation of two layers carbon fiber. The maximum tensile strength was observed for PLA 45% with 0° orientation of two layers carbon fiber. For composite with two layers of carbon fiber, the 0° orientation showed higher the tensile strength than for 45° orientation. The impact resistance by drop impact test is higher for composite with 0o orientation than 45o orientation. This impact resistance is slightly different due to the curve for each direction is almost overlapped. The mechanical strength of the composite depends on the orientation of carbon fiber ply and the number of layers. The thermal stability and limiting oxygen index provides that composite with PLA 45% more stable than composite with PLA 10% due to the higher content of PLA. This study appropriates to reduce the using of the non-biodegradable composite.

Table of Content Abstract i Acknowledgement ii Table of Content iii List of Figures v List of Tables viii Chapter 1: Introduction 1 1.1 Research Background 1 1.2 Project Objective 2 1.3 Organization of Thesis 3 Chapter 2: Literature Review and Principle 4 2.1 Carbon Fiber 4 2.2 Ecoflex 6 2.3 Poly (lactic acid) (PLA) 10 2.4 The Fabricating Process of Thermoplastic Composites 14 2.5 The Tensile Properties of Composites 16 2.6 The Impact Properties of Composites 22 2.7 The Fatigue Properties of Composites 31 Chapter 3: Materials and Method 40 3.1 Materials 40 3.2 Experimental Flow Chart 43 3.3 The Preparation of Carbon Fiber – Bio Plastic Composite 44 3.4 Mechanical Properties Analysis 46 3.4.1 Scanning Electron Microscope (SEM) 46 3.4.2 Differential Scanning Calorimetry (DSC) 46 3.4.3 Thermogravimetric Analysis (TGA) 48 Chapter 4: Results and Discussion 56 4.1 Uniaxial Tensile Properties 56 4.2 Impact Properties 59 4.3 Fatigue Properties 62 4.4 Limiting Oxygen Index (LOI) 67 4.5 SEM Analysis 68 4.6 Thermal Stability 77 Chapter 5: Conclusions 80 References 82

References
1. Smith, M., New developments in carbon fiber. Reinforced Plastics, 2017.
2. Jia, W., R.H. Gong, and P.J. Hogg, Poly (lactic acid) fibre reinforced biodegradable composites. Composites Part B: Engineering, 2014. 62: p. 104-112.
3. MSc. Motonori Yamamoto, D.U.W., DI. Gabriel Skupin, and D.R.-J.M.l. Dr. Dieter Beimborn, Biodegradable Aliphatic-Aromatic Polyesters Ecoflex®. 2005: p. 7.
4. Okada, M., Chemical syntheses of biodegradable polymers. Progress in Polymer Science, 2002. 27(1): p. 87-133.
5. Ostafinska, A., et al., Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity. J Mech Behav Biomed Mater, 2017. 69: p. 229-241.
6. Jones, R.M., Mechanics of composite materials. Vol. 193. 1975: Scripta Book Company Washington, DC.
7. Mai, F., et al., Preparation and properties of self-reinforced poly(lactic acid) composites based on oriented tapes. Composites Part A: Applied Science and Manufacturing, 2015. 76: p. 145-153.
8. Mark, H., Encyclopedia of Polymer Science and Technology, 12 Volume Set. 2005: John Wiley & Sons, Inc.
9. Hussain, F., et al., Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. Journal of composite materials, 2006. 40(17): p. 1511-1575.
10. Li, W., et al., Preparation of PAN/phenolic-based carbon/carbon composites with flexible towpreg carbon fiber. Materials Science and Engineering: A, 2008. 485(1-2): p. 481-486.
11. Bai, Y., Z. Wang, and L. Feng, Interface properties of carbon fiber/epoxy resin composite improved by supercritical water and oxygen in supercritical water. Materials & Design, 2010. 31(3): p. 1613-1616.
12. Rezaei, F., R. Yunus, and N.A. Ibrahim, Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites. Materials & Design, 2009. 30(2): p. 260-263.
13. Karnik, S.R., et al., Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model. Materials & Design, 2008. 29(9): p. 1768-1776.
14. Jiang, D., et al., Enhanced mechanical properties and anti-hydrothermal ageing behaviors of unsaturated polyester composites by carbon fibers interfaced with POSS. Composites Science and Technology, 2015. 117: p. 168-175.
15. Jiang, D., et al., Reinforced unsaturated polyester composites by chemically grafting amino-POSS onto carbon fibers with active double spiral structural spiralphosphodicholor. Composites Science and Technology, 2014. 100: p. 158-165.
16. Ishifune, M., et al., Novel electrochemical surface modification method of carbon fiber and its utilization to the preparation of functional electrode. Electrochimica Acta, 2005. 51(1): p. 14-22.
17. Ma, K., et al., Plasma treatment of carbon fibers: Non-equilibrium dynamic adsorption and its effect on the mechanical properties of RTM fabricated composites. Applied Surface Science, 2011. 257(9): p. 3824-3830.
18. S, P., et al., Fiber Reinforced Composites - A Review. Journal of Material Science & Engineering, 2017. 06(03).
19. Ji, X., et al., Mechanical and Interfacial Properties Characterisation of Single Carbon Fibres for Composite Applications. Experimental Mechanics, 2015. 55(6): p. 1057-1065.
20. Rebouillat, S. and J. Hearle, High Performance Fibers. 2001, Woodhead Publishing, Cambridge, UK, pp23-61.
21. BASF, T.C.C., Brand ecoflex Product Data Sheet Ecoflex F Blend C1200 English. 2013. 1: p. 1-3.
22. SE, B., Ecoflex Certified Compostable Polymer. 2011: p. 6.
23. Diaz, A., R. Katsarava, and J. Puiggali, Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s. Int J Mol Sci, 2014. 15(5): p. 7064-123.
24. Uwe Witt, R.M., Wolf Dieter Deckwer, Studies on sequence distribution of aliphaticaromatic copolyesters by high-resolution 13C nuclear magnetic resonance spectroscopy for evaluation of biodegradability. Macrornol. Chem. Phys., 1996. 197: p. 10.
25. Hutníková, M. and O. Fričová, Solid-State NMR Study of Poly(3-Hydroxybutyrate) and Ecoflex reser Blends. Acta Physica Polonica A, 2016. 129(3): p. 388-393.
26. Bordes, P., E. Pollet, and L. Averous, Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science, 2009. 34(2): p. 125-155.
27. Avérous, L. and P.J. Halley, Biocomposites based on plasticized starch. Biofuels, bioproducts and biorefining, 2009. 3(3): p. 329-343.
28. Farrington, D.W., et al., 6 - Poly(lactic acid) fibers, in Biodegradable and Sustainable Fibres. 2005, Woodhead Publishing. p. 191-220.
29. Drumright, R.E., P.R. Gruber, and D.E. Henton, Polylactic acid technology. Advanced materials, 2000. 12(23): p. 1841-1846.
30. Auras, R., B. Harte, and S. Selke, An overview of polylactides as packaging materials. Macromolecular bioscience, 2004. 4(9): p. 835-864.
31. Ganster, J. and H.-P. Fink, Novel cellulose fibre reinforced thermoplastic materials. Cellulose, 2006. 13(3): p. 271-280.
32. Bajpai, P.K., I. Singh, and J. Madaan, Comparative studies of mechanical and morphological properties of polylactic acid and polypropylene based natural fiber composites. Journal of Reinforced Plastics and Composites, 2012. 31(24): p. 1712-1724.
33. Avérous, L., Biodegradable multiphase systems based on plasticized starch: a review. Journal of Macromolecular Science, Part C: Polymer Reviews, 2004. 44(3): p. 231-274.
34. Avérous, L. and E. Pollet, Biodegradable polymers, in Environmental silicate nano-biocomposites. 2012, Springer. p. 13-39.
35. Berglund, L.A. and T. Peijs, Cellulose Biocomposites—From Bulk Moldings to Nanostructured Systems. MRS Bulletin, 2011. 35(03): p. 201-207.
36. Hartmann, M., High molecular weight polylactic acid polymers, in Biopolymers from renewable resources. 1998, Springer. p. 367-411.
37. Corporation, G.G., Taiwan Eco ProductsDirectory 2011-2012. p. 162.
38. Kaplan, D.L., Introduction to biopolymers from renewable resources, in Biopolymers from renewable resources. 1998, Springer. p. 1-29.
39. Gironi, F. and V. Piemonte, Life cycle assessment of polylactic acid and polyethylene terephthalate bottles for drinking water. Environmental Progress & Sustainable Energy, 2011. 30(3): p. 459-468.
40. Becker, F. and H. Potente, A step towards understanding the heating phase of laser transmission welding in polymers. Polymer Engineering & Science, 2002. 42(2): p. 365-374.
41. Murr, L., et al., Intercalation vortices and related microstructural features in the friction-stir welding of dissimilar metals. Materials Research Innovations, 1998. 2(3): p. 150-163.
42. Susan C. Mantell, G.S.S., <Manufacturing Process Models for Thermoplastic Composites.pdf>. Journal of composite materials, 1991. 26(No. 16/1992): p. 30.
43. Barbero, E.J., Introduction to composite materials design. 2010: CRC press.
44. Bagherpour, S., Fibre Reinforced Polyester Composites. 2012.
45. Tungjitpornkull, S. and N. Sombatsompop, Processing technique and fiber orientation angle affecting the mechanical properties of E-glass fiber reinforced wood/PVC composites. Journal of Materials Processing Technology, 2009. 209(6): p. 3079-3088.
46. Craig, R.R. and A.J. Kurdila, Fundamentals of structural dynamics. 2006: John Wiley & Sons.
47. Wang, H.W., et al., Analysis of effect of fiber orientation on Young’s modulus for unidirectional fiber reinforced composites. Composites Part B: Engineering, 2014. 56: p. 733-739.
48. Ghamarian, N., et al., Effect of Fiber Orientation on the Mechanical Properties of Laminated Polymer Composites. 2016.
49. Abrate, S., Impact on Laminated Composites: Recent Advances. Applied Mechanics Reviews, 1994. 47(11): p. 517.
50. Chang, F., Damage in laminated composites due to low velocity impact. In National Research Council of Canada, Airframe Materials p 153 (SEE N93-23935 08-24), 1991.
51. Wu, J., et al., Fracture toughness and fracture mechanisms of PBT/PC/IM blends PART IV Impact toughness and failure mechanisms of PBT/PC blends without impact modifier. Journal of materials science, 2000. 35(2): p. 307-315.
52. Aktas, M., et al., An experimental investigation of the impact response of composite laminates. Composite Structures, 2009. 87(4): p. 307-313.
53. Romanowicz, M., Determination of the first ply failure load for a cross ply laminate subjected to uniaxial tension through computational micromechanics. International Journal of Solids and Structures, 2014. 51(13): p. 2549-2556.
54. Liu, D., Characterization of Impact Properties and Damage Process of Glass/Epoxy Composite Laminates. Journal of Composite Materials, 2016. 38(16): p. 1425-1442.
55. C. Soutis, P.T.C., Prediction of the post-impact compressive strength of cfrp laminated composites. Composites Science and Technology, 1996. 56: p. 677-684.
56. Z€uleyha Aslan , R.K., Buket Okutan, The response of laminated composite plates under low-velocity impact loading. Composite Structures, 2003. 59: p. 119–127.
57. W.J. CANTWELL, J.M., The impact resistance of composite materials - a review. Composites 1991. 22: p. 347-362.
58. Richardson, M.O.W., and Wisheart M.J., Review of low velocity impact properties of composite materials. Composite materials, 1996: p. 9.
59. Li, Y., Y.-W. Mai, and L. Ye, Effects of fibre surface treatment on fracture-mechanical properties of sisal-fibre composites. Composite Interfaces, 2005. 12(1-2): p. 141-163.
60. L. Iannucci, R.D., M. Willows, J. Degrieck, A failure model for the analysis of thin woven glass composite structures under impact loadings. Computers and Structures, 2001. 79: p. 785-799.
61. N. Razali, M.T.H.S., F. Mustapha, N. Yidris and M.R. Ishak, Impact Damage on Composite Structures – A Review. The International Journal Of Engineering And Science (IJES), 2014. 3(7): p. 08-20.
62. Davies, G. and R. Olsson, Impact on composite structures. The Aeronautical Journal, 2004. 108(1089): p. 541-563.
63. Zheng, D., Low velocity impact analysis of composite laminated plates. 2007, University of Akron.
64. Llobet, J., et al., A fatigue damage and residual strength model for unidirectional carbon/epoxy composites under on-axis tension-tension loadings. International Journal of Fatigue, 2017. 103: p. 508-515.
65. Uusitalo, K., Designing in carbon fibre composites. Chalmers university of technology. Gothenburg, Sweden, 2013.
66. Gassan, J., A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites. Composite, 2002. 33: p. 369-374.
67. Dick, T., P. Jar, and J. Cheng, Prediction of fatigue resistance of short-fibre-reinforced polymers. International Journal of Fatigue, 2009. 31(2): p. 284-291.
68. S. Subramanian, K.L.R.a.W.W.S., A cumulative damage model to predict the fatigue life of composite laminates including the effect of a fiber-matrix interphase. Fatigue, 1995. 17(5): p. 343-351.
69. Harris, B., Fatigue in composites: science and technology of the fatigue response of fibre-reinforced plastics. 2003: Woodhead Publishing.
70. Zhao, L., et al., A novel interpretation of fatigue delamination growth behavior in CFRP multidirectional laminates. Composites Science and Technology, 2016. 133: p. 79-88.
71. Pascoe, J.A., R.C. Alderliesten, and R. Benedictus, Methods for the prediction of fatigue delamination growth in composites and adhesive bonds – A critical review. Engineering Fracture Mechanics, 2013. 112-113: p. 72-96.
72. Bak, B.L., et al., Delamination under fatigue loads in composite laminates: a review on the observed phenomenology and computational methods. Applied Mechanics Reviews, 2014. 66(6): p. 060803.
73. Chen, V.L., H.-Y.T. Wu, and H.-Y. Yeh, A parametric study of residual strength and stiffness for impact damaged composites. Composite Structures, 1993. 25(1-4): p. 267-275.
74. Mortazavian, S. and A. Fatemi, Fatigue behavior and modeling of short fiber reinforced polymer composites: A literature review. International Journal of Fatigue, 2015. 70: p. 297-321.
75. Steinberger, R., et al., Infrared thermographic techniques for non-destructive damage characterization of carbon fibre reinforced polymers during tensile fatigue testing. International Journal of Fatigue, 2006. 28(10): p. 1340-1347.
76. Bourchak, M., et al., Acoustic emission energy as a fatigue damage parameter for CFRP composites. International Journal of Fatigue, 2007. 29(3): p. 457-470.
77. Tan, K.T., N. Watanabe, and Y. Iwahori, X-ray radiography and micro-computed tomography examination of damage characteristics in stitched composites subjected to impact loading. Composites Part B: Engineering, 2011. 42(4): p. 874-884.
78. de Vasconcellos, D.S., F. Touchard, and L. Chocinski-Arnault, Tension–tension fatigue behaviour of woven hemp fibre reinforced epoxy composite: a multi-instrumented damage analysis. International Journal of Fatigue, 2014. 59: p. 159-169.
79. Tate, J.S. and A.D. Kelkar, Stiffness degradation model for biaxial braided composites under fatigue loading. Composites Part B: Engineering, 2008. 39(3): p. 548-555.
80. International, A., ASTM D3479 for fatigue test composite. 2002.
81. La Rosa, G. and A. Risitano, Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. International journal of fatigue, 2000. 22(1): p. 65-73.
82. Vassilopoulos, A.P. and T. Keller, Fatigue of fiber-reinforced composites. 2011: Springer Science & Business Media.
83. Feng, Y., et al., Investigation on tension–tension fatigue performances and reliability fatigue life of T700/MTM46 composite laminates. Composite Structures, 2016. 136: p. 64-74.
84. Hu, Y., et al., Hygrothermal aging effects on fatigue of glass fiber/polydicyclopentadiene composites. Polymer Degradation and Stability, 2014. 110: p. 464-472.
85. Fatemi, A., S. Mortazavian, and A. Khosrovaneh, Fatigue Behavior and Predictive Modeling of Short Fiber Thermoplastic Composites. Procedia Engineering, 2015. 133: p. 5-20.
86. Jae-Won Lee, I.M.D., and Gershon Yaniv, Fatigue Life Prediction of Cross-Ply Composite Laminates. Composite Materials: Fatigue and Fracture, 1989. 2: p. 19-28.
87. Crossman, F., et al., Initiation and growth of transverse cracks and edge delamination in composite laminates Part 2. Experimental correlation. Journal of Composite Materials, 1980. 14(1): p. 88-108.
88. Li, L.B., P. Reynaud, and G. Fantozzi, Tension-tension fatigue behavior of unidirectional SiC/Si 3 N 4 composite with strong and weak interface bonding at room temperature. Ceramics International, 2017. 43(12): p. 8769-8777.
89. Stephens, R.I., et al., Metal fatigue in engineering. 2000: John Wiley & Sons.
90. El Kadi, H. and F. Ellyin, Effect of stress ratio on the fatigue of unidirectional glass fibre/epoxy composite laminae. Composites, 1994. 25(10): p. 917-924.
91. Luo, Z., et al., Tension-tension fatigue behavior of a PIP SiC/SiC composite at elevated temperature in air. Ceramics International, 2016. 42(2): p. 3250-3260.
92. Lavengood, R.E. and L. Gulbransen, The effect of aspect ratio on the fatigue life of short boron fiber reinforced composites. Polymer Engineering & Science, 1969. 9(5): p. 365-369.
93. Arif, M.F., et al., Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66. Composites Part B: Engineering, 2014. 61: p. 55-65.
94. Mortazavian, S. and A. Fatemi, Fatigue behavior and modeling of short fiber reinforced polymer composites including anisotropy and temperature effects. International Journal of Fatigue, 2015. 77: p. 12-27.
95. R.BRUCEPRIME, J.M.a., THERMAL ANALYSIS OF POLYMERS Fundamentals and Applications. 2009: p. 698.
96. International, A., ASTM D3039 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. 2005. D 3039/D 3039M – 00e2.
97. Anjang, A., A.P. Mouritz, and S. Feih, Influence of fibre orientation on the tensile performance of sandwich composites in fire. Composites Part A: Applied Science and Manufacturing, 2017. 100: p. 342-351.
98. Jang, B.Z., Advanced polymer composites: principles and applications. ASM International, Materials Park, OH 44073-0002, USA, 1994. 305, 1994.
99. Clara Leal Nogueira, J.M.F.d.P., Mirabel Cerqueira Rezende, Effect of the interfacial adhesion on the tensile and impact properties of carbon fiber reinforced polypropylene matrices. Materials Research, 2004. 8(No. 1): p. 81-89.
100. Xu, S. and P.H. Chen, Prediction of Low Velocity Impact Damage in carbon/epoxy Laminates. Procedia Engineering, 2013. 67: p. 489-496.
101. Selezneva, M., et al., Microscale experimental investigation of failure mechanisms in off-axis woven laminates at elevated temperatures. Composites Part A: Applied Science and Manufacturing, 2011. 42(11): p. 1756-1763.
102. Kawai, M. and T. Taniguchi, Off-axis fatigue behavior of plain weave carbon/epoxy fabric laminates at room and high temperatures and its mechanical modeling. Composites Part A: Applied Science and Manufacturing, 2006. 37(2): p. 243-256.
103. Donmez Cavdar, A., Effect of various wood preservatives on limiting oxygen index levels of fir wood. Measurement, 2014. 50: p. 279-284.
104. Kukfisz, B. and M. Półka, Analysis of Oxygen Index to Support Candle-like Combustion of Polyurethane. Procedia Engineering, 2017. 172: p. 604-611.
105. Tomak, E.D. and A.D. Cavdar, Limited oxygen index levels of impregnated Scots pine wood. Thermochimica Acta, 2013. 573: p. 181-185.
106. Xiong, W., et al., The effect of composite orientation on the mechanical properties of hybrid joints strengthened by surfi-sculpt. Composite Structures, 2015. 134: p. 587-592.

QR CODE