研究生: |
廖御順 Yu-Shun Liao |
---|---|
論文名稱: |
InGaN 發光二極體成長於 石墨烯/圖案化藍寶石基板 之光電與熱特性研究 Growth and characterizations of InGaN based light-emitting diodes on graphene/patterned sapphire substrate |
指導教授: |
柯文政
Wen-Cheng Ke |
口試委員: |
陳衛國
Wei-Kuo Chen 郭東昊 Dong-Hau Kuo 黃柏仁 Bohr-Ran Huang 柯文政 Wen-Cheng Ke |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 材料科學與工程系 Department of Materials Science and Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | InGaN LED 、石墨烯界面層 |
外文關鍵詞: | InGaN-LEDs, Graphene interlayer |
相關次數: | 點閱:240 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
圖案化藍寶石基板(patterned sapphire substrate, PSS)具有降低氮化鎵磊晶薄膜貫穿型差排缺陷密度之效用,然而無圖案區域差排缺陷密度仍高。本研究在圖案化藍寶石基板上嵌入石墨烯界面層,由於石墨烯晶格常數與氮化鎵相近,且有較高的熱傳導率,將可實質改善InGaN LED磊晶材料品質並改善在高功率工作時的熱堆積問題。穿透式電子顯微鏡分析結果指出InGaN LED成長於石墨烯/PSS基板之樣品(Gr-LED),貫穿型差排可有效被LED磊晶層中AlGaN 應力釋放層消除。從空間解析拉曼光譜儀分析結果發現在傳統PSS基板磊晶之樣品(Ref-LED)GaN E2(high)特徵峰的位置從PSS到表面時有1 cm-1的變化,然而Gr-LED有2.3 cm-1,說明石墨烯減少貫穿型差排外還可以快速釋放GaN的壓縮應變。從EL光譜的量測結果發現Ref-LED 的波長藍移量為1 nm而Gr-LED 只有0.2 nm。經由模擬求出,Ref-LED和Gr-LED的壓電場分別為1.62 和1.22 MV/cm。使用真空腔體隔絕空氣進行晶粒溫度量測,在室溫下注入電流為100 mA時Ref-LED上升了37 K,但Gr-LED 僅上升13 K。從功率對晶粒溫度的曲線圖可以得到Ref-LED 與Gr-LED 的熱阻分別為108.7 和42.7 ºC/W,推測石墨烯界面層對晶粒熱傳導有所改善。從晶粒溫度熱傳導模型可以進一步計算出Gr-LED 的有效散熱面積約為Ref-LED 的2.2倍,可以說明石墨烯界面層能優化LED整體的熱傳導路徑,使LED 的工作溫度降低。石墨烯界面層/PSS 基板能改善氮化鎵在藍寶石基板上晶格不匹配與熱堆積的問題,於高功率的半導體元件具備發展潛力。
The patterned sapphire substrate (PSS) is used for decreasing threading dislocations (TDs) density of InGaN based light-emitting diodes (InGaN LEDs). However, the TDs density is high on the c-plane region (i.e. without pattern region). In this study, a graphene interlayer was grown on the PSS. The InGaN LEDs was grown on graphene interlayer/PSS (Gr-LED) by a metal organic chemical vapor deposition system. The experimental results of spatially-resolved micro-Raman spectra and transmission electron microscope indicated that the strain and TDs density of GaN template can be decreased significantly which compared to InGaN LEDs grown on PSS (Ref-LED). The optimized fitting results show that the piezoelectric field for Ref-LED and Gr-LED are 1.62 and 1.22 MV/cm, respectively. The diminish piezoelectric field of Gr-LED resulted a stable emitting wavelength of electroluminescence spectra in the injection current of 10-100 mA. In addition, the chip temperature of Ref-LED increased from room temperature to 334K (i.e. increasing 37K) at 100-mA injection current. In contrast, the increasing of chip temperature for Gr-LED is 13K. The thermal resistance of Ref-LED and Gr-LED were calculated to be 108.7 and 42.7 ºC/W, respectively. The simulation results indicated that the effective heat transfer area of Gr-LED is ~2.2-folds larger than Ref-LED. Thus, the experimental results also demonstrate that graphene interlayer/PSS is a promising substrate for improving waste heat accumulation in the high-power operation of InGaN LEDs.
[1] https://www.grandviewresearch.com/.
[2] http://www.yole.fr/,
[3] Z.-M. Chen, Z.-Y. Zheng, Y.-D. Chen, H.-L. Wu, C.-S. Tong, G. Wang, Z.-S. Wu, and H. J. J. o. c. g. Jiang, Threading edge dislocation arrays in epitaxial GaN: Formation, model and thermodynamics, J. Cryst. Growth. (2014).387, p.48.
[4] R. Dagher, P. de Mierry, B. Alloing, V. Brändli, M. Portail, B. Damilano, N. Mante, N. Bernier, P. Gergaud, and M. J. J. o. C. G. Cottat, Pendeo-epitaxy of GaN on SOI nano-pillars: Freestanding and relaxed GaN platelets on silicon with a reduced dislocation density, J. Cryst. Growth. (2019).526, p.125235.
[5] A. Roskowski, P. Miraglia, E. Preble, S. Einfeldt, and R. J. J. o. c. g. Davis, Surface instability and associated roughness during conventional and pendeo-epitaxial growth of GaN (0 0 0 1) films via MOVPE, J. Cryst. Growth. (2002).241, p.141.
[6] T. Jiang, S.-r. Xu, J.-c. Zhang, Y. Xie, and Y. J. S. r. Hao, Spatially resolved and orientation dependent Raman mapping of epitaxial lateral overgrowth nonpolar a-plane GaN on r-plane sapphire, Sci. Rep. (2016).6, p.1.
[7] T. Wei, H. Zong, S. Jiang, Y. Yang, H. Liao, Y. Xie, W. Wang, J. Li, J. Tang, X. J. S. Hu, and Microstructures, High-quality GaN epitaxially grown on Si substrate with serpentine channels, Superlattices Microstruct. (2018).118, p.284.
[8] Y. Chen, H. Zang, K. Jiang, J. Ben, S. Zhang, Z. Shi, Y. Jia, W. Lü, X. Sun, and D. J. A. P. L. Li, Improved nucleation of AlN on in situ nitrogen doped graphene for GaN quasi-van der Waals epitaxy, Appl. Phys. Lett. (2020).117, p.051601.
[9] J. Ning, C. Yan, Y. Jia, B. Wang, Y. Zeng, J. Zhang, D. Wang, and Y. J. A. A. N. M. Hao, GaN Films Deposited on Sapphire Substrates Sputter-Coated with AlN Followed by Monolayer Graphene for Solid-State Lighting, ACS Appl. Nano Mater. (2020).3, p.5061.
[10] Y. Chen, Z. Chen, J. Li, Y. Chen, C. Li, J. Zhan, T. Yu, X. Kang, F. Jiao, and S. J. C. Li, A study of GaN nucleation and coalescence in the initial growth stages on nanoscale patterned sapphire substrates via MOCVD, CrystEngComm. (2018).20, p.6811.
[11] S. Zhou, H. Hu, X. Liu, M. Liu, X. Ding, C. Gui, S. Liu, and L. J. J. J. J. o. A. P. Guo, Comparative study of GaN-based ultraviolet LEDs grown on different-sized patterned sapphire substrates with sputtered AlN nucleation layer, Jpn. J. Appl. Phys. (2017).56, p.111001.
[12] H.-Y. Shin, S. Kwon, Y. Chang, M. Cho, and K. J. J. o. C. G. Park, Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate, J. Cryst. Growth. (2009).311, p.4167.
[13] W.-C. Ke, F.-W. Lee, C.-Y. Chiang, Z.-Y. Liang, W.-K. Chen, T.-Y. J. A. A. M. Seong, and Interfaces, InGaN-based light-emitting diodes grown on a micro/nanoscale hybrid patterned sapphire substrate, Appl. Mater. Interfaces. (2016).8, p.34520.
[14] K. Cheng, M. Leys, S. Degroote, B. Van Daele, S. Boeykens, J. Derluyn, M. Germain, G. Van Tendeloo, J. Engelen, and G. J. J. o. E. M. Borghs, Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers, J. Electron. Mater. (2006).35, p.592.
[15] L. Zhe, W. Xiao-Liang, W. Jun-Xi, H. Guo-Xin, G. Lun-Chun, and L. J. C. P. Jin-Min, The influence of AlN/GaN superlattice intermediate layer on the properties of GaN grown on Si (111) substrates, Chinese Phys. (2007).16, p.1467.
[16] D. Marcon, Y. Saripalli, and S. Decoutere, 200mm GaN-on-Si epitaxy and e-mode device technology, IEDM. (2015).p.16.2. 1.
[17] S. Bo Lee, T.-W. Kwon, S.-H. Lee, J. Park, and W.-J. J. A. P. L. Choi, Threading-dislocation blocking by stacking faults formed in an undoped GaN layer on a patterned sapphire substrate, Appl. Phys. Lett. (2011).99, p.211901.
[18] Z. Chen, J. Zhang, S. Xu, J. Xue, T. Jiang, and Y. J. M. R. B. Hao, Influence of stacking faults on the quality of GaN films grown on sapphire substrate using a sputtered AlN nucleation layer, Mater. Res. Bull. (2017).89, p.193.
[19] Y. Zhang, K. Su, R. Guo, S. Xu, D. Chen, J. Zhu, W. Bao, J. Zhang, J. Ning, and Y. J. p. s. s. R. R. L. Hao, Investigation of GaN with Low Threading Dislocation Density Grown on Graphene/Sputtered AlN Composite Substrate, Phys. Status Solidi RRL. (2019).13, p.1900167.
[20] Y. Feng, H. Sun, X. Yang, K. Liu, J. Zhang, J. Shen, D. Liu, Z. Cai, F. Xu, and N. J. A. P. L. Tang, High quality GaN-on-SiC with low thermal boundary resistance by employing an ultrathin AlGaN buffer layer, Appl. Phys. Lett. (2021).118, p.052104.
[21] I. Susanto, C.-Y. Tsai, Y.-T. Ho, P.-Y. Tsai, S. J. S. Yu, and C. Technology, Enhancement of optical property and crystal structure for GaN films on 2D MoS2 buffer layer by nitridation treatment, Surf. Coat. Technol. (2022).434, p.128199.
[22] J. Yu, Z. Hao, J. Wang, J. Deng, W. Yu, L. Wang, Y. Luo, Y. Han, C. Sun, B. J. J. o. A. Xiong, and Compounds, Study on AlN buffer layer for GaN on graphene/copper sheet grown by MBE at low growth temperature, J. Alloys Compd. (2019).783, p.633.
[23] H. Zhou, Y. Xu, X. Chen, Y. Liu, B. Cao, W.-J. Yin, C. Wang, K. J. J. o. A. Xu, and Compounds, Direct van der Waals epitaxy of stress-free GaN films on PECVD grown graphene, J. Alloys Compd. (2020).844, p.155870.
[24] L. Xu, Y. Xu, A. Luo, H. Zhou, B. Cao, C. Wang, and K. J. J. J. o. A. P. Xu, Microstructural and optical properties of stress-free GaN films on graphene prepared by PECVD, Jpn. J. Appl. Phys. (2021).60, p.035502.
[25] Z. Chen, X. Zhang, Z. Dou, T. Wei, Z. Liu, Y. Qi, H. Ci, Y. Wang, Y. Li, and H. J. A. m. Chang, High‐brightness blue light‐emitting diodes enabled by a directly grown graphene buffer layer, Adv. Mater. (2018).30, p.1801608.
[26] N. Han, T. Viet Cuong, M. Han, B. Deul Ryu, S. Chandramohan, J. Bae Park, J. Hye Kang, Y.-J. Park, K. Bok Ko, and H. J. N. c. Yun Kim, Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern, Nat. Commun. (2013).4, p.1.
[27] D. Jariwala, A. Srivastava, P. M. J. J. o. n. Ajayan, and nanotechnology, Graphene synthesis and band gap opening, J. Nanosci. Nanotechnol. (2011).11, p.6621.
[28] X. Li, W. Cai, L. Colombo, and R. S. J. N. l. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling, Nano Lett. (2009).9, p.4268.
[29] R. Munoz and C. J. C. V. D. Gómez‐Aleixandre, Review of CVD synthesis of graphene, Chem. Vap. Deposition. (2013).19, p.297.
[30] M. Zheng, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Ko, Y.-L. Chueh, Y. Zhang, and R. J. A. P. L. Maboudian, Metal-catalyzed crystallization of amorphous carbon to graphene, Appl. Phys. Lett. (2010).96, p.063110.
[31] A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, and Y. J. N. l. Zhang, Direct chemical vapor deposition of graphene on dielectric surfaces, (2010).10, p.1542.
[32] C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong, and F.-R. J. N. l. Chen, Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition, Nano. (2011).11, p.3612.
[33] C. Y. Yang, Growth of Graphene on Silicon Substrate by Low-Pressure Chemical Vapor Deposition System, National Taiwan University of Science and Technology. (2020).
[34] Z. Tu, Z. Liu, Y. Li, F. Yang, L. Zhang, Z. Zhao, C. Xu, S. Wu, H. Liu, and H. J. C. Yang, Controllable growth of 1–7 layers of graphene by chemical vapour deposition, Carbon. (2014).73, p.252.
[35] Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, and J. T. J. s. Thong, Probing layer number and stacking order of few‐layer graphene by Raman spectroscopy, small. (2010).6, p.195.
[36] F. W. Lee, Improvements of the optoelectronic and structural properties of InGaN-based light-emitting diodes by employing nanostructures, National Chiao Tung University. (2016).
[37] https://commons.wikimedia.org/,
[38] S. J. A. M. Nakamura, InGaN‐based blue/green LEDs and laser diodes, Adv. Mater. (1996).8, p.689.
[39] J. Wu, W. Walukiewicz, K. M. Yu, J. Ager III, E. Haller, H. Lu, and W. J. J. A. P. L. Schaff, Small band gap bowing in In 1− x Ga x N alloys, Appl. Phys. Lett. (2002).80, p.4741.
[40] R. Kudrawiec, M. Siekacz, M. Kryśko, G. Cywiński, J. Misiewicz, and C. J. J. o. A. P. Skierbiszewski, Contactless electroreflectance of InGaN layers with indium content≤ 36%: The surface band bending, band gap bowing, and Stokes shift issues, J. Appl. Phys. (2009).106, p.113517.
[41] M. Moret, B. Gil, S. Ruffenach, O. Briot, C. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. J. J. o. C. G. Succi, Optical, structural investigations and band-gap bowing parameter of GaInN alloys, J. Cryst. Growth. (2009).311, p.2795.
[42] S. Kazazis, E. Papadomanolaki, M. Androulidaki, M. Kayambaki, and E. J. J. o. A. P. Iliopoulos, Optical properties of InGaN thin films in the entire composition range, J. Appl. Phys. (2018).123, p.125101.
[43] Y.-H. Cho, G. Gainer, A. Fischer, J. Song, S. Keller, U. Mishra, and S. J. A. P. L. DenBaars, “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells, Appl. Phys. Lett. (1998).73, p.1370.
[44] H. Jeong, H. J. Jeong, H. M. Oh, C.-H. Hong, E.-K. Suh, G. Lerondel, and M. S. J. S. r. Jeong, Carrier localization in In-rich InGaN/GaN multiple quantum wells for green light-emitting diodes, Sci. Rep. (2015).5, p.1.
[45] H. Schenk, M. Leroux, and P. J. J. o. A. P. De Mierry, Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck–Shockley relation, Applied Physics. (2000).88, p.1525.
[46] C. C. Li, The Absence and Presence of Quantum Confined Stark Effects in Single InGaN Nanodisks with Different Disk Thicknesses, National Tsing Hua University. (2017).
[47] H. Fu, Z. Lu, and Y. J. A. A. Zhao, Analysis of low efficiency droop of semipolar InGaN quantum well light-emitting diodes by modified rate equation with weak phase-space filling effect, (2016).6, p.065013.
[48] M. Aumer, S. LeBoeuf, S. Bedair, M. Smith, J. Lin, and H. J. A. P. L. Jiang, Effects of tensile and compressive strain on the luminescence properties of AlInGaN/InGaN quantum well structures, Appl. Phys. Lett. (2000).77, p.821.
[49] P. Chan, S. P. DenBaars, and S. J. A. P. L. Nakamura, Growth of highly relaxed InGaN pseudo-substrates over full 2-in. wafers, Appl. Phys. Lett. (2021).119, p.131106.
[50] P. Chan, V. Rienzi, N. Lim, H.-M. Chang, M. Gordon, S. P. DenBaars, and S. J. A. P. E. Nakamura, Demonstration of relaxed InGaN-based Red LEDs grown with high active region temperature, Appl. Phys. Express. (2021).14, p.101002.
[51] P. Li, H. Li, M. S. Wong, P. Chan, Y. Yang, H. Zhang, M. Iza, J. S. Speck, S. Nakamura, and S. P. J. C. Denbaars, Progress of InGaN-BasedA Red Micro-Light Emitting Diodes, Crystals. (2022).12, p.541.
[1] https://www.grandviewresearch.com/.
[2] http://www.yole.fr/,
[3] Z.-M. Chen, Z.-Y. Zheng, Y.-D. Chen, H.-L. Wu, C.-S. Tong, G. Wang, Z.-S. Wu, and H. J. J. o. c. g. Jiang, Threading edge dislocation arrays in epitaxial GaN: Formation, model and thermodynamics, J. Cryst. Growth. (2014).387, p.48.
[4] R. Dagher, P. de Mierry, B. Alloing, V. Brändli, M. Portail, B. Damilano, N. Mante, N. Bernier, P. Gergaud, and M. J. J. o. C. G. Cottat, Pendeo-epitaxy of GaN on SOI nano-pillars: Freestanding and relaxed GaN platelets on silicon with a reduced dislocation density, J. Cryst. Growth. (2019).526, p.125235.
[5] A. Roskowski, P. Miraglia, E. Preble, S. Einfeldt, and R. J. J. o. c. g. Davis, Surface instability and associated roughness during conventional and pendeo-epitaxial growth of GaN (0 0 0 1) films via MOVPE, J. Cryst. Growth. (2002).241, p.141.
[6] T. Jiang, S.-r. Xu, J.-c. Zhang, Y. Xie, and Y. J. S. r. Hao, Spatially resolved and orientation dependent Raman mapping of epitaxial lateral overgrowth nonpolar a-plane GaN on r-plane sapphire, Sci. Rep. (2016).6, p.1.
[7] T. Wei, H. Zong, S. Jiang, Y. Yang, H. Liao, Y. Xie, W. Wang, J. Li, J. Tang, X. J. S. Hu, and Microstructures, High-quality GaN epitaxially grown on Si substrate with serpentine channels, Superlattices Microstruct. (2018).118, p.284.
[8] Y. Chen, H. Zang, K. Jiang, J. Ben, S. Zhang, Z. Shi, Y. Jia, W. Lü, X. Sun, and D. J. A. P. L. Li, Improved nucleation of AlN on in situ nitrogen doped graphene for GaN quasi-van der Waals epitaxy, Appl. Phys. Lett. (2020).117, p.051601.
[9] J. Ning, C. Yan, Y. Jia, B. Wang, Y. Zeng, J. Zhang, D. Wang, and Y. J. A. A. N. M. Hao, GaN Films Deposited on Sapphire Substrates Sputter-Coated with AlN Followed by Monolayer Graphene for Solid-State Lighting, ACS Appl. Nano Mater. (2020).3, p.5061.
[10] Y. Chen, Z. Chen, J. Li, Y. Chen, C. Li, J. Zhan, T. Yu, X. Kang, F. Jiao, and S. J. C. Li, A study of GaN nucleation and coalescence in the initial growth stages on nanoscale patterned sapphire substrates via MOCVD, CrystEngComm. (2018).20, p.6811.
[11] S. Zhou, H. Hu, X. Liu, M. Liu, X. Ding, C. Gui, S. Liu, and L. J. J. J. J. o. A. P. Guo, Comparative study of GaN-based ultraviolet LEDs grown on different-sized patterned sapphire substrates with sputtered AlN nucleation layer, Jpn. J. Appl. Phys. (2017).56, p.111001.
[12] H.-Y. Shin, S. Kwon, Y. Chang, M. Cho, and K. J. J. o. C. G. Park, Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate, J. Cryst. Growth. (2009).311, p.4167.
[13] W.-C. Ke, F.-W. Lee, C.-Y. Chiang, Z.-Y. Liang, W.-K. Chen, T.-Y. J. A. A. M. Seong, and Interfaces, InGaN-based light-emitting diodes grown on a micro/nanoscale hybrid patterned sapphire substrate, Appl. Mater. Interfaces. (2016).8, p.34520.
[14] K. Cheng, M. Leys, S. Degroote, B. Van Daele, S. Boeykens, J. Derluyn, M. Germain, G. Van Tendeloo, J. Engelen, and G. J. J. o. E. M. Borghs, Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers, J. Electron. Mater. (2006).35, p.592.
[15] L. Zhe, W. Xiao-Liang, W. Jun-Xi, H. Guo-Xin, G. Lun-Chun, and L. J. C. P. Jin-Min, The influence of AlN/GaN superlattice intermediate layer on the properties of GaN grown on Si (111) substrates, Chinese Phys. (2007).16, p.1467.
[16] D. Marcon, Y. Saripalli, and S. Decoutere, 200mm GaN-on-Si epitaxy and e-mode device technology, IEDM. (2015).p.16.2. 1.
[17] S. Bo Lee, T.-W. Kwon, S.-H. Lee, J. Park, and W.-J. J. A. P. L. Choi, Threading-dislocation blocking by stacking faults formed in an undoped GaN layer on a patterned sapphire substrate, Appl. Phys. Lett. (2011).99, p.211901.
[18] Z. Chen, J. Zhang, S. Xu, J. Xue, T. Jiang, and Y. J. M. R. B. Hao, Influence of stacking faults on the quality of GaN films grown on sapphire substrate using a sputtered AlN nucleation layer, Mater. Res. Bull. (2017).89, p.193.
[19] Y. Zhang, K. Su, R. Guo, S. Xu, D. Chen, J. Zhu, W. Bao, J. Zhang, J. Ning, and Y. J. p. s. s. R. R. L. Hao, Investigation of GaN with Low Threading Dislocation Density Grown on Graphene/Sputtered AlN Composite Substrate, Phys. Status Solidi RRL. (2019).13, p.1900167.
[20] Y. Feng, H. Sun, X. Yang, K. Liu, J. Zhang, J. Shen, D. Liu, Z. Cai, F. Xu, and N. J. A. P. L. Tang, High quality GaN-on-SiC with low thermal boundary resistance by employing an ultrathin AlGaN buffer layer, Appl. Phys. Lett. (2021).118, p.052104.
[21] I. Susanto, C.-Y. Tsai, Y.-T. Ho, P.-Y. Tsai, S. J. S. Yu, and C. Technology, Enhancement of optical property and crystal structure for GaN films on 2D MoS2 buffer layer by nitridation treatment, Surf. Coat. Technol. (2022).434, p.128199.
[22] J. Yu, Z. Hao, J. Wang, J. Deng, W. Yu, L. Wang, Y. Luo, Y. Han, C. Sun, B. J. J. o. A. Xiong, and Compounds, Study on AlN buffer layer for GaN on graphene/copper sheet grown by MBE at low growth temperature, J. Alloys Compd. (2019).783, p.633.
[23] H. Zhou, Y. Xu, X. Chen, Y. Liu, B. Cao, W.-J. Yin, C. Wang, K. J. J. o. A. Xu, and Compounds, Direct van der Waals epitaxy of stress-free GaN films on PECVD grown graphene, J. Alloys Compd. (2020).844, p.155870.
[24] L. Xu, Y. Xu, A. Luo, H. Zhou, B. Cao, C. Wang, and K. J. J. J. o. A. P. Xu, Microstructural and optical properties of stress-free GaN films on graphene prepared by PECVD, Jpn. J. Appl. Phys. (2021).60, p.035502.
[25] Z. Chen, X. Zhang, Z. Dou, T. Wei, Z. Liu, Y. Qi, H. Ci, Y. Wang, Y. Li, and H. J. A. m. Chang, High‐brightness blue light‐emitting diodes enabled by a directly grown graphene buffer layer, Adv. Mater. (2018).30, p.1801608.
[26] N. Han, T. Viet Cuong, M. Han, B. Deul Ryu, S. Chandramohan, J. Bae Park, J. Hye Kang, Y.-J. Park, K. Bok Ko, and H. J. N. c. Yun Kim, Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern, Nat. Commun. (2013).4, p.1.
[27] D. Jariwala, A. Srivastava, P. M. J. J. o. n. Ajayan, and nanotechnology, Graphene synthesis and band gap opening, J. Nanosci. Nanotechnol. (2011).11, p.6621.
[28] X. Li, W. Cai, L. Colombo, and R. S. J. N. l. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling, Nano Lett. (2009).9, p.4268.
[29] R. Munoz and C. J. C. V. D. Gómez‐Aleixandre, Review of CVD synthesis of graphene, Chem. Vap. Deposition. (2013).19, p.297.
[30] M. Zheng, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Ko, Y.-L. Chueh, Y. Zhang, and R. J. A. P. L. Maboudian, Metal-catalyzed crystallization of amorphous carbon to graphene, Appl. Phys. Lett. (2010).96, p.063110.
[31] A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, and Y. J. N. l. Zhang, Direct chemical vapor deposition of graphene on dielectric surfaces, (2010).10, p.1542.
[32] C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong, and F.-R. J. N. l. Chen, Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition, Nano. (2011).11, p.3612.
[33] C. Y. Yang, Growth of Graphene on Silicon Substrate by Low-Pressure Chemical Vapor Deposition System, National Taiwan University of Science and Technology. (2020).
[34] Z. Tu, Z. Liu, Y. Li, F. Yang, L. Zhang, Z. Zhao, C. Xu, S. Wu, H. Liu, and H. J. C. Yang, Controllable growth of 1–7 layers of graphene by chemical vapour deposition, Carbon. (2014).73, p.252.
[35] Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, and J. T. J. s. Thong, Probing layer number and stacking order of few‐layer graphene by Raman spectroscopy, small. (2010).6, p.195.
[36] F. W. Lee, Improvements of the optoelectronic and structural properties of InGaN-based light-emitting diodes by employing nanostructures, National Chiao Tung University. (2016).
[37] https://commons.wikimedia.org/,
[38] S. J. A. M. Nakamura, InGaN‐based blue/green LEDs and laser diodes, Adv. Mater. (1996).8, p.689.
[39] J. Wu, W. Walukiewicz, K. M. Yu, J. Ager III, E. Haller, H. Lu, and W. J. J. A. P. L. Schaff, Small band gap bowing in In 1− x Ga x N alloys, Appl. Phys. Lett. (2002).80, p.4741.
[40] R. Kudrawiec, M. Siekacz, M. Kryśko, G. Cywiński, J. Misiewicz, and C. J. J. o. A. P. Skierbiszewski, Contactless electroreflectance of InGaN layers with indium content≤ 36%: The surface band bending, band gap bowing, and Stokes shift issues, J. Appl. Phys. (2009).106, p.113517.
[41] M. Moret, B. Gil, S. Ruffenach, O. Briot, C. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. J. J. o. C. G. Succi, Optical, structural investigations and band-gap bowing parameter of GaInN alloys, J. Cryst. Growth. (2009).311, p.2795.
[42] S. Kazazis, E. Papadomanolaki, M. Androulidaki, M. Kayambaki, and E. J. J. o. A. P. Iliopoulos, Optical properties of InGaN thin films in the entire composition range, J. Appl. Phys. (2018).123, p.125101.
[43] Y.-H. Cho, G. Gainer, A. Fischer, J. Song, S. Keller, U. Mishra, and S. J. A. P. L. DenBaars, “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells, Appl. Phys. Lett. (1998).73, p.1370.
[44] H. Jeong, H. J. Jeong, H. M. Oh, C.-H. Hong, E.-K. Suh, G. Lerondel, and M. S. J. S. r. Jeong, Carrier localization in In-rich InGaN/GaN multiple quantum wells for green light-emitting diodes, Sci. Rep. (2015).5, p.1.
[45] H. Schenk, M. Leroux, and P. J. J. o. A. P. De Mierry, Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck–Shockley relation, Applied Physics. (2000).88, p.1525.
[46] C. C. Li, The Absence and Presence of Quantum Confined Stark Effects in Single InGaN Nanodisks with Different Disk Thicknesses, National Tsing Hua University. (2017).
[47] H. Fu, Z. Lu, and Y. J. A. A. Zhao, Analysis of low efficiency droop of semipolar InGaN quantum well light-emitting diodes by modified rate equation with weak phase-space filling effect, (2016).6, p.065013.
[48] M. Aumer, S. LeBoeuf, S. Bedair, M. Smith, J. Lin, and H. J. A. P. L. Jiang, Effects of tensile and compressive strain on the luminescence properties of AlInGaN/InGaN quantum well structures, Appl. Phys. Lett. (2000).77, p.821.
[49] P. Chan, S. P. DenBaars, and S. J. A. P. L. Nakamura, Growth of highly relaxed InGaN pseudo-substrates over full 2-in. wafers, Appl. Phys. Lett. (2021).119, p.131106.
[50] P. Chan, V. Rienzi, N. Lim, H.-M. Chang, M. Gordon, S. P. DenBaars, and S. J. A. P. E. Nakamura, Demonstration of relaxed InGaN-based Red LEDs grown with high active region temperature, Appl. Phys. Express. (2021).14, p.101002.
[51] P. Li, H. Li, M. S. Wong, P. Chan, Y. Yang, H. Zhang, M. Iza, J. S. Speck, S. Nakamura, and S. P. J. C. Denbaars, Progress of InGaN-BasedA Red Micro-Light Emitting Diodes, Crystals. (2022).12, p.541.