簡易檢索 / 詳目顯示

研究生: 胡育政
Yu-Jheng Hu
論文名稱: 應用偏移循環加工法切削單晶矽梯形凹槽之切削力及溫度分佈模擬分析
Simulative analysis of cutting force and temperature distribution when using offset cycle cutting method for cutting a trapezium groove on single-crystal silicon
指導教授: 林榮慶
Zone-ching Lin
口試委員: 傅光華
Guang-hua Fu
許覺良
Chaug-liang Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 151
中文關鍵詞: 分子靜力學奈米級切削單晶矽溫度AFM探針
外文關鍵詞: molecular statics, nanoscale cutting, single-crystal silicon, temperature, AFM probe
相關次數: 點閱:357下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文發展出分子靜力學三維準穩態奈米切削模式,進行模擬AFM探針切削單晶矽奈米流道梯形凹槽的偏移循環加工,其除可計算切削力、等效應力與等效應變外,亦可計算被切削單晶矽工件所提升之溫度;進而可進行被切削單晶矽工件的溫度分佈分析。本文假設切削模式,被切削單晶矽工件溫度的提升是由塑性變形熱與摩擦熱兩種熱源產生。本文以固定下壓力之偏移循環加工方法,加工單晶矽基板奈米流道梯形凹槽,其為設定每切削層在固定下壓力下切削一道次,然後將探針向右偏移再切削一道次,再將探針向左往回偏移至前述兩道次中間位置切削加工,做為一個偏移循環加工。本文先應用比下壓能理論公式計算出切削深度,以及估算各道次偏移某一距離再加工之下壓力及切削力。並運用分子靜力學三維準穩態奈米切削模擬模式,模擬第一切削層偏移循環加工法所得第一切削道次到第三切削道次之下壓力及切削力,再將兩者所得之切削力進行比較。本文亦假設AFM探針切削單晶矽奈米梯形凹槽第一切削道次及第二切削道次為相似的模擬條件,因其第一切削道次及偏移循環第二切削道次切削模擬過程皆為單一溝槽切削模擬。本文塑性變形熱可由被切削工件單晶矽,其等效應力與等效應變之乘積計算出。另發展出針對奈米切削單晶矽刀面上產生摩擦熱的方法,並計算因摩擦熱源產生的溫度提升之方法。本文再將兩種熱源所產生之溫度提升加總計算後,得到被切削單晶矽工件各原子提升之總溫度,再進行溫度場分析。此外本文亦進一步將前述所得被切削單晶矽工件各原子提升之總溫度帶入有限差分熱傳方程式,利用此方法計算出每一步階奈米級梯形凹槽偏移循環加工切削,被切削單晶矽工件溫度場,再進行分析。最後並與前述未考慮有限差分熱傳遞所計算的被切削單晶矽工件各原子之溫度提升之數值做比較。


The paper develops a three-dimensional quasi-steady molecular statics nanocutting model to carry out simulation of offset cycle cutting method by cutting nanochannel of trapezium groove on single-crystal silicon by AFM probe. It can calculate not only cutting force, down force, equivalent stress and equivalent stress, but also temperature rise of the cut workpiece, and furthermore, analyze the temperature distribution of the cut silicon workpiece. The paper supposes that in the cutting model, the temperature rise of the cut single-crystal silicon workpiece is caused by two heat sources: plastic deformation heat and friction heat. The paper uses an offset cycle cutting method under a fixed down force to cut a nanochannel of trapezium groove single-crystal silicon substrate. It is set that each cutting layer is cut for one pass under a fixed down force. After that, let the probe be offset rightwards to carry out cutting for one pass, and then leftwards to the middle position between the above two cutting passes to carry out cutting, completing one offset cycle cutting. First of all, the paper applies specific down force energy (SDFE) theoretical equation to calculate the cutting depth and estimate the down force and cutting force for each cutting pass of the offset cycle cutting. The paper also uses three-dimensional quasi-steady molecular statics nanocutting simulation model to simulate the down force and cutting force of the 1st to 3rd cutting passes acquired from implementation of offset cycle cutting method on the 1st cutting layer. And the two results of cutting force obtained by SDFE equation and the three-dimensional quasi-steady molecular statics nanocutting model are compared. The paper also supposes that the 1st and 2nd cutting passes during nanpcutting of trapezium groove on single-crystal silicon by AFM probe have similar simulation conditions since the simulated cutting process of the 1st cutting pass and the 2nd cutting pass with offset cycle are both simulated cutting of single groove. In the paper the plastic deformation heat can be calculated by multiplying the equivalent stress by equivalent strain of the cut single-crystal silicon workpiece. Besides, the paper develops a method for producing the friction heat between the silicon workpiece and tool face for nanocutting of single-crystal silicon, and develops a method for calculation of temperature rise caused by the friction heat on flank. The paper also adds up the temperature rise produced from two heat sources, acquiring the total temperature rise in each atom of the cut single-crystal silicon workpiece, and then carries out analysis of temperature field. Besides, the paper further substitutes the total temperature rise in each atom of the cut single-crystal silicon workpiece, as acquired above, in finite difference heat transfer equation. Using this finite difference method, the paper calculates the temperature field of the cut single-crystal silicon workpiece during each step of offset cycle cutting for cutting a nanoscale trapezium groove, and then carries out analysis. Finally, the result is compared with the numerical value of temperature rise in each atom of the cut single-crystal silicon workpiece previously calculated without consideration of finite difference heat transfer.

摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 XI 表目錄 XVIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 2 1.3 文獻回顧 5 1.3.1 奈米級切削加工實驗之相關文獻 5 1.3.2 分子力學之文獻 7 1.3.3 奈米級模擬切削及切削工件溫度場的文獻 10 1.4 本文架構 14 第二章 分子靜力學三維準穩態奈米級切削模式及溫度提升計算 17 2.1 分子靜力學之基本原理 17 2.1.1 分子作用力及勢能函數 18 2.1.2 截斷半徑法 20 2.1.3 物理參數 22 2.1.4 虎克 吉夫斯(Hooke-Jeeves)搜尋法 22 2.1.5 奈米級切削力之計算 24 2.2 等效應變及等效應力計算方法 28 2.2.1 等效應變之計算 28 2.2.2 等效應力之計算 34 2.3 被切削工件之提升溫度計算 35 2.3.1 塑性變形熱之提升溫度計算方法 36 2.3.2 摩擦熱之提升溫度計算方法 36 2.3.3 有限差分熱傳方程式 38 2.3.4 內部控制體積 39 2.3.5 邊界控制體積 40 第三章 不同軸向比下壓能之理論模式之切削力與下壓力預測和固定下壓力偏移循環加工法加工梯形凹槽 44 3.1 建立不同軸向比下壓能理論模式及計算比下壓能方法 44 3.2 比下壓能理論模式計算切削力與下壓力 48 3.3 偏移循環加工法加工梯形凹槽 50 第四章 模擬模型的建構 56 4.1 等應變四面體(constant strain tetrahedron,CST)元素 56 4.2 奈米切削模擬條件的設定 70 第五章 結果與討論 74 5.1 偏移循環加工方法及比下壓能公式預估加工奈米流道梯形凹槽各道次之下壓力與切削力 77 5.1.1 奈米流道偏移循環加工梯形凹槽之比下壓能理論實驗結果 77 5.1.2 比下壓能理論模式之第一切削道次及第三切削道次預估下壓力及切削力 80 5.2 分子靜力學三維準穩態奈米級切削模擬模式模擬偏移循環法切削單晶矽第一切削道次之切削力及下壓力 82 5.2.1 奈米級切削單晶矽梯形凹槽第一切削道次之模擬結果 82 5.2.2 奈米級切削單晶矽梯形凹槽第一切削道次之下壓力與切削力模擬結果與應用不同軸向比下壓能理論計算結果之驗證 87 5.3 分子靜力學三維準穩態奈米級切削模擬模式模擬偏移循環法切削單晶矽第三切削道次之切削力及下壓力 89 5.3.1 奈米級切削單晶矽梯形凹槽第三切削道次之模擬結果 89 5.3.2 奈米級切削單晶矽梯形凹槽第三切削道次之下壓力與切削力模擬結果與應用不同軸向比下壓能理論計算結果之驗證 94 5.4 分子靜力學三維準穩態奈米級切削模擬模式模擬切削單晶矽的等效應變與等效應力之分析 96 5.4.1 奈米級切削第一切削道次單晶矽梯形凹槽之等效應力與等效應變分析 96 5.4.2 奈米級切削單晶矽梯形凹槽第三切削道次之等效應力與等效應變分析 100 5.5 分子靜力學三維準穩態奈米級切削模擬模式模擬切削單晶矽之切削溫度計算與探討 103 5.5.1 奈米級切削單晶矽梯形凹槽第一切削道次之不同熱源提升的溫度及最後溫佈分佈分析 104 5.5.2 奈米級切削單晶矽梯形凹槽第三切削道次之不同熱源提升的溫度及最後溫佈分佈分析 115 5.6 奈米級切削單晶矽梯形凹槽用有限差分法計算熱傳後之溫度分佈分析 126 5.6.1 奈米級切削單晶矽梯形凹槽第一切削道次之用有限差分法計算熱傳後之溫度分佈分析 126 5.6.2 奈米級切削單晶矽梯形凹槽第三切削道次之用有限差分法計算熱傳後之溫佈分佈分析 133 第六章 結論與建議 142 6.1 結論 142 6.2 建議 144 參考文獻 145

[1].Lin, Z. C. and Hsu, Y. C., “Analysis on Simulation of Quasi-steady Molecular Statics Nanocutting Model and Calculation of Temperature Rise During Orthogonal Cutting of Single-crystal Copper”, CMC: Computers, Materials, & Continua, Vol.27, No.2, pp. 143-178 (2012).
[2].Cheng, M. S., Ho, J. S., Tan, C. H., Wong J. P., Ng L. C., and Toh, C. S., “Development of an electrochemical membrane-based nanobiosensor for ultrasensitive detection of dengue virus”, Analytica Chimica Acta, Vol.725, pp.74-80 (2012).
[3].Wang, Z., Wang, D., Jiao, N., Tung, S., and Dong, Z., “A Nanochannel System Fabricated by MEMS Microfabrication and Atomic Force Microscopy”, Nano/Micro Engineered and Molecular Systems, pp.372-376 (2011).
[4].Salieb-Beugelaar, G. B., Teapal, J., van Nieuwkasteele, J., Wijnperle, D., Tegenfeldt, J. O., Lisdat, F., van den Berg, A., Eijkel, and J. C. T., “Field-Dependent DNA Mobility in 20nm High Nanoslits”, Nano Letters, Vol.8, No.7, pp.1785-1790 (2008).
[5].Fologea, D., Gershow, M., Ledden, B., McNabb, D. S., Golovchenko, J. A., and Li, J., “Detecting Single Stranded DNA with a Solid State Nanopore”, Nano Letters, Vol.5, No.10, pp.1905-1909 (2005).
[6].Maleki, T., Mohammadi, S., and Ziaie, B., “A nanofluidic channel with embedded transverse nanoelectrodes”, Nanotechnology, Vol.20, No.10 (2009).
[7].Lubben, J. F. and D. Johannsmann, “Nanoscale High-frequency Contact Mechanics Using an AFM Tip and a Quartz Crystal Resonator”, Langmuir,Vol.20, No.9, pp. 3698-3703 (2004).
[8].Fang, T. H., Weng, C. I., and Chang, J. G., “Machining Characterization of Nano-lithography Process by Using Atomic Force Microscopy”, Nanotechnology, Vol.11, No.5, pp.181-187 (2000).
[9].Z.Q. Wang, Jiaoa, N. D., Tungc, S., and Donga, Z. L., “Atomic force microscopy-based repeated machining theory for nanochannels on silicon oxide surfaces”, Applied Surface Science, Vol.257, pp.3627-3631 (2011).
[10].Tseng, A.A., “A Comparison Study of Scratch and Wear Properties Using Atomic Force Microscopy”, Applied Surface Science, Vol. 256, No.13, pp. 4246- 4252 (2010).
[11].林建廷,「應用比下壓能及改變下壓力之單晶矽奈米流道凹槽加工模擬模式建立與實驗研究」,碩士論文,國立台灣科技大學大學機械工程研究所,民國102年
[12].Irving, J. H. and Kirkwood, J. G., “The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics”, J. Chem. Phys., Vol.19, Issue 9, pp. 817-829 (1950).
[13].Kwon, Y. W. and Jung, S. H., “Atomic model and coupling with continuum model for static equilibrium problems,” Computers and Structures, Computational Structures Technology, Vol.82, Issues 23-26, pp. 1993-2000 (2004).
[14].IGOR Ye. Telitchev, and OLEG Vinogradov, “A method for quasi-static analysis of topologically variable lattice structures,” International Journal of Computational Methods, Vol.3, Issue 1, pp. 71-81 (2006).
[15].Jeng, Y. R., and Tan, C. M., “Study of Nanoindentation Using FEM Atomic Model,” Journal of Tribology, Vol.126, Issue 4, pp. 767-774 (2004).
[16].Hu, S. Y., Ludwig, M., Kizler, P., and Schmauder, S., “Atomistic simulations of deformation and fracture of α-Fe,” Modelling Simul. Mater. Sci. Eng., Vol.6, No.5, pp. 567–586 (1998).
[17].Saraev, D., Kizler, P., and Schmauder, S., “The influence of Frenkel defects on the deformation and fracture of alpha-Fe single crystals,” Modelling Simul. Mater. Sci., Eng., Vol.7, No.6, pp.1013–1023 (1999).
[18].陳雨樵,「以分子模擬方法研究奈米線之機械性質」,國立中正大學機械工程研究所,碩士論文,民國九十五年。
[19].James, S. and Sundaram, M. M., “A molecular dynamics study of the effect of impact velocity, particle size and angle of impact of abrasive grain in the Vibration Assisted Nano Impact-machining by Loose Abrasives”, Wear,Vol.303, Issue 1-2, pp. 510-518 (2013).
[20].黃維富,「銅鎳面心立方晶體之奈米切削能及切削力模式研究」,博士論文,國立台灣科技大學大學機械工程研究所,民國九十五年。
[21].林榮慶,簡辰學, 林孟樺,「具空孔缺陷之單晶矽材料之三維分子靜力學奈米級正交切削研究」, SME,論文編號:B9,p.20 (2010).
[22].Shimada, S., “Molecular Dynamics Analysis as Compared with Experimental Results of Micromachining”, CIRP Annals, Vol.41, Issue 1, pp.117-120 (1990).
[23].Childs, T. H. C. and Maewaka, K., “Computer-aided Simulation and Experimental Studies of Chip Flow and Tool Wear in the Turning of Flow Alloy Steels by Cemented Carbide Tools” ,Wear, Vol.139, Issue2, pp. 235-250 (1990).
[24].Belak, J. and Stowers, I. F., “A Molecular Dynamics Model of the Orthogonal Cutting Process”, Proc. Am. Soc., Precision Eng., pp.76-79 (1990).
[25].Kim, J. D. and Moon, C. H., “A study on microcutting for the configuration of tools using molecular dynamics”, Journal of Materials Processing Technology, Vol.59, No.4, pp. 309-314 (1995).
[26].Fang, F. Z., Wu, H., Zhou, W., and Hu, X. T., “A study on mechanism of nano-cutting single crystal silicon”, Journal of Materials Processing Technology, Vol.184, No.1-3, pp. 407-410 (2007).
[27].Pei, Q. X., Lu, C., Fang, F. Z., and Wu, H., “Nanometric cutting of copper: A molecular dynamics study”, Computational Materials Science, Vol.37, No.4, pp.434-441 (2006).
[28].Inamura, T. and Takezawa, N., “Cutting Experiments in a Computer Using Atomic Models of a Copper Crystal and a Diamond Tool”, Int. J. Japan Soc. Prec. Eng., Vol.25, No. 4, pp. 259-266 (1991).
[29].Inamura, T. and Takezawa, N., “Atomic-Scale Cutting in a Computer Using Crystal Models of Copper and Diamond”, CIRP Annals, Vol.41, No. 1, pp. 121-124 (1992).
[30].Inamura, T., Takezawa, N., and, Kumaki, Y., “Mechanics and energy dissipation in nanoscale cutting”, CIRP Annals, Vol.42, No.1, pp.79-82 (1993).
[31].Cai, M. B., Li, X. P., and Rahman, M., “Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation”, International Journal of Machine Tool & Manufacture, Vol.47, Issue 1, pp.75–80 (2007).
[32].Cai, M. B., Li, X. P., and Rahman, M., “Characteristics of dynamic hard particles in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear”, Wear, Vol.263, Issue7-12, pp.1459-1466 (2007).
[33].Cai, M. B., Li, X. P., and Rahman, M., “Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation”, Journal of Materials Processing Technology, Vol.192-193, No.1, pp. 607-612 (2007).
[34].Tanaka, H. and Shimada, S., “Requirements for Ductile-mode Machining Based on Deformation Analysis of Mono-crystalline Silicon by Molecular Dynamics Simulation”, CIRP Annals, Vol.56, Issue 1, pp.53-56 (2007).
[35].Tang, Q. H., “MD simulation of dislocation mobility during cutting with diamond tip on silicon”, Materials Science in Semiconductor Processing, Vol.10, Issue 6, pp.270-275 (2007).
[36].Shimada, S., “Molecular dynamics analysis of nanometric cutting process”, CIRP Annals, Vol.29, No.4, pp.283-289 (1995).
[37].Goel, S., Luo, X., Reuben, R. L., and Pen, H., “Influence of temperature and crystal orientation on tool wear during single point diamond turning of silicon”, Wear, Vol.284-285, No.25, pp.65-72 (2012).
[38].Lin, Z. C. and Huang, J. C., “A nano-orthogonal Cutting Model Based on a Modified Molecular Dynamics Technique”, Nanotechnology, Vol.15, No.5, pp.510-519 (2004).
[39].Rahman, A., “Correlations in motions of atoms in liquid argon”, Physical Review, Vol.136, No.2A, pp.405-411 (1964).
[40].Lin, Z. C. and Hsu, Y. C., “Simalation Analysis and Experiment Study of Nanocutting with AFM Probe on the Surface of Sapphire Substrate by Using Three Dimensional Quasi-Steady Molecular statics Nanocutting Madel”, CMC: Computers, Materials, & Continua, Vol.25, No.1, pp.75-106 (2011).
[41].Girifalco, L. A. and Weizer, V. G., “Application of the Morse Potential Function to Cubic Metals”, Physics review, Vol.114, pp. 687-690 (1959).
[42].David, L. M., Donald, L. T., and Lionel, M. R., “Theoretical Studies of Termolecular Thermal Recombination of Silicon Atoms”, Journal of Chemical Physics, Vol.84, Issue 8, pp.4426-4428 (1986).
[43].沈鈺恆,「奈米級正交切削單晶矽三維溫升模式與分析」,碩士論文,國立台灣科技大學大學機械工程研究所,民國101年。
[44].Rentsch, R. and Inasaki, I., “Effects of Fluids on the Surface Generation in Material Removal Processes-Molecular Dynamics Simulation”, CIRP Annals, Vol.55, Issue 1, pp 601-604 (2006).
[45].Reklaitis, G. V., Engineering Optimization: Methods and Application, Wiley; 2 Edition, USA (2006).
[46].Aly, M. F., Ng, E., Veldhuis, S. C., and Elbestawi, M. A., “Prediction of Cutting Forces in the Micro-machining of Silicon Using a Hybrid Molecular Dynamic-finite Element Analysis Force Model”, International Journal of Machine Tools and Manufacture, Vol.46, Issue 14, pp.1727–1739 (2006).
[47].王建鈞,「AFM探針切削單晶矽V型溝槽之下壓力和切削力及塑性熱源產生溫度分佈模擬分析」,碩士論文,國立台灣科技大學大學機械工程研究所,民國102年

無法下載圖示 全文公開日期 2019/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE