簡易檢索 / 詳目顯示

研究生: Shewaye Lakew Mekuria
Shewaye - Lakew Mekuria
論文名稱: PAMAM Dendrimer Based Targeted Nano-Carrier for Bio-Imaging and Therapeutic agents: synthesis, characterization and application in vitro and in vivo.
PAMAM Dendrimer Based Targeted Nano-Carrier for Bio-Imaging and Therapeutic agents: synthesis, characterization and application in vitro and in vivo.
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 廖愛禾
Ai-Ho Liao
朱一民
I-Ming Chu
朱智謙
Chih-Chien Chu
賴瑞陽
Jui-Yang Lai
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 182
中文關鍵詞: PAMAM dendrimerIL6RGD peptideDOXHeLa cellsEndocytosisDrug deliveryBioimaging agentGadolinium oxide (Gd2O3)slongitudinal relaxationRAW 264.7 cellsin vivoMR imaging
外文關鍵詞: PAMAM dendrimer, IL6, RGD peptide, DOX, HeLa cells, Endocytosis, Drug delivery, Bioimaging agent, Gadolinium oxide (Gd2O3), slongitudinal relaxation, RAW 264.7 cells, in vivo, MR imaging
相關次數: 點閱:238下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

過去數十年裡,設計適合藥物傳遞系統已成為治療癌症的主流。奈米科技領域中,樹枝狀高分子為新型奈米藥物載體,擁有球型及高分枝結構且具備固定分子量,內核可包覆抗癌藥物;外部分支可經改質接上其它功能性分子或藥物,應用於生醫領域中,如藥物標的性載體、顯影劑,可用來增加藥物及顯影劑之傳遞效率。而PAMAM Dendrimer表面接上配體(ligand)可和癌細胞特有的受體配對,達到主動標的、高傳遞效率和不會傷害到正常細胞。
本篇論文提到三個主題:第一部分為白細胞介素(IL-6)藉由EDC/NHS和陰離子G4.5鍵結並探討它的光學特性,再由傅立葉紅外線光譜儀(FT-IR)、二維核磁共振(2D-NMR)、穿透式電子顯微鏡(TEM)和廣角X射線散射(WAXS)鑑定。此外G4.5經過IL6改質後,增加G4.5螢光特性,且在UV-Vis下產生blue shift。由細胞吞噬、共軛焦顯微鏡和流式細胞儀,觀察高分子和子宮頸癌細胞(Hela cell)的生物特性,結果顯示改質後的G4.5細胞吞噬能力較佳,並且具有體外生醫影像探針功能。
第二部分為G4.5由IL-6抗體和RGD胜肽兩種配體修飾,再以物理性包覆抗癌藥物Doxorubicin,由共軛焦顯微鏡和流式細胞儀觀察Hela cell吞噬能力。IC50值證明G4.5/IL6不僅是藥物包覆率較高,且藥物釋放率也較佳,表示G4.5/IL6毒性高於G4.5/RGD,此外細胞毒性也可從晚期細胞凋亡(late apoptosis)和壞死(necrosis)觀察,由上述現象可知G4.5/IL6更適合做為藥物釋放標的載體。
第三部分為多功能G4.5-Gd2O3-PEG NPS作為顯影劑,觀察於磁振造影(MRI)下T1 (positive)和T2 (negative)。G4.5-Gd2O3-PEG相較於含有Gd奈米粒子(Gd-DTPA或Gd-DOTA),顯示T1縱向的弛緩時間。此外由小鼠巨噬細胞(RAW Cell)做毒性測試,可知G4.5-Gd2O3-PEG NPS生物相容性較佳。G4.5-Gd2O3-PEG相較於Gd-DTPA在7T具有較佳縱向弛緩率53.9mS1M1,大約4.75倍。且G4.5-Gd2O3-PEG在體內大腸、小腸、肝、脾、腎和膀胱T1顯示訊號較強;相對地,T2於腎沒有顯影。上述實驗證實本研究所設計之PAMAM 樹狀高分子可成功應用於藥物傳遞標的及核磁共振之顯影劑。


In the last several decades, researchers have focused on developing suitable drug carrier systems for delivery to carcinogenic cells. Therefore, they primarily highlight the contributions of PAMAM dendrimers to the field of nanotechnology with the intent to aid in exploring dendrimers for targeted drug delivery and bio-imaging agents. PAMAM dendrimers have been studied as potential delivery systems to targeting, imaging, and/or deliver therapeutic agents specifically to diseased tissues because of their globular shape, multiple functionalities at the periphery or in the cavity. Anti-cancer agents may be incorporated into the interior void space or conjugated to the surface of PAMAM to enhance the delivery of cytotoxic drugs. In addition, targeting ligands can also be attached to the dendrimer service to allow active targeting and minimize harm to normal cells.
This dissertation is organized based on three independent sections: the first section investigates that interleukin-6 (IL-6) was conjugated with anionic generation 4.5 (G4.5) poly (amidoamine) (PAMAM) through EDC/NHS coupling chemistry and evaluated for its optical properties in vitro. Conjugation was confirmed using Fourier-transformed infrared spectroscopy (FT-IR) and 2-dimensional nuclear magnetic resonance (2D-NMR), transmission electron microscopy (TEM), and wide-angle X-ray scattering (WAXS). Most interestingly, the intrinsic fluorescence of G4.5 significantly increased after IL-6 conjugation and underwent a blue shift as a result of H-aggregation. Furthermore, the cellular uptake of the conjugates by HeLa cells was significantly enhanced in comparison to free G4.5, as demonstrated by confocal microscopy and flow cytometry. These results indicated that the described system may be a potential bioimaging probe in vitro.
The second section explored that PAMAM dendrimer (G4.5) was conjugated with two targeting moieties, IL-6 and RGD peptide (G4.5-IL6 and G4.5-RGD) followed by doxorubicin anticancer drug was physically loaded to form G4.5-IL6/DOX and G4.5-RGD/DOX complexes, respectively. The cellular internalization and uptake efficiency of was observed and compared by confocal microscopy and flow cytometry using HeLa cells. The lower IC50 value of G4.5-IL6/DOX in comparison to G4.5-RGD/DOX is indication that higher drug loading and faster drug release rate corresponded with greater cytotoxicity. The cytotoxic effect was further verified by increment in late apoptotic/necrotic cells due to delivery of drug through receptor-mediated endocytosis. Based on these results, G4.5-IL6 is a better suited carrier for targeted drug delivery of DOX to cervical cancer cells.
The third section, we report a simple and facile strategy to fabricate a multifunctional G4.5-Gd2O3-PEG NPs and have been investigated as a novel T1 positive contrast and T2 negative contrast agent for magnetic resonance imaging (MRI). G4.5-Gd2O3-PEG nanoparticles shows induced longitudinal relaxation time T1 compared with the related Gd-containing nanoparticles and the clinically using Gd-DTPA or Gd-DOTA. The cytotoxicity study showed that the G4.5-Gd2O3-PEG NPs exhibited better biocompatibility to the RAW 264.7 cells (normal mice cells). G4.5-Gd2O3-PEG nanoparticles showed with improved longitudinal relaxivity r1 of 53.9 mS-1M-1 at 7T, which is around 4.75 times enhancement as that of commercial Gd-DTPA contrasting agent. The in vivo T1 weighted MR imaging study of G4.5-Gd2O3-PEG nanoparticles demonstrated that a considerable signal enhancement in the large and small intestine, liver, spleen, kidney and bladder. In addition, the in vivo T2 weighted MR imaging study showed that the negative contrast in the kidney implies that G4.5-Gd2O3-PEG nanoparticles serve as a dual-modal contrasting agent.
Generally, these research finding provides an alternative way for conniving multifunctional PAMAM dendrimer with targeting ligand as a bio-probe, drug delivery and gadolinium based contrasting agents for MRI.

Contents 中文摘要 i Abstract iii Acknowledgments vii List of Figures xiii List of Tables xviii List of Schemes xix List of abbreviations xx 1. Backgrounds 1 Chapter Two: Introduction 2 2.1. Dendrimer 2 2.1.1. Synthesis 4 2.1.2.1. Monodispersity 5 2.1.2.2. Surface charge/Interior chemistry 5 2.1.2.3. Size and shape 6 2.1.2.4. Biocompatibility 8 2.1.3. Dendrimers as drug carrier 10 2.1.3.1. Dendrimer-drug conjugates 10 2.1.3.2. Dendrimer-drug encapsulation 11 2.1.4. Dendrimers for targeted drug delivery 12 2.1.4.1. Peptide targeted drug delivery 15 2.1.4.2. Monoclonal antibody-targeted delivery system 15 2.1.4.3. FA-targeted delivery system 16 2.1.4.4. Glycoprotein targeted drug delivery 17 2.1.4.5. Biotinylated targeted drug delivery 17 2.1.5. Dendrimers for Biomedical imaging 18 2.1.5.1. Dendrimers for optical imaging 19 2.1.5.2. Dendrimers for magnetic resonance imaging (MRI) 20 Chapter Three: Research Objectives 23 Chapter Four: Preparation of Self-Assembled Core-Shell Nano Structure of Conjugated Generation 4.5 Poly (amidoamine) Dendrimer and Monoclonal Anti-IL-6 Antibody as Bioimaging Probe 24 4.1. Introduction 24 4.2.1. Materials 26 4.2.2. Synthesis of G4.5/IL-6 conjugate 26 4.2.3. Structural characterizations 27 4.2.4. Cell culture and in vitro cell-binding experiments 28 4.2.5. Competitive assay 29 4.3.2. Particle morphology and characterization of G4.5/IL-6 conjugate 36 4.3.3. Wide-angle X-ray scattering (WAXS) of G4.5/IL-6 conjugate 38 4.3.4. Optical properties of G4.5/IL-6 conjugate 40 4.3.5. Internalization of G4.5/IL-6 conjugates by HeLa cells 43 4.4. Summary 48 Chapter Five: IL-6 Antibody and RGD Peptide Conjugated Poly (amidoamine) Dendrimer for Targeted Drug Delivery of HeLa Cells 49 5.1. Introduction 49 5.2. Experimental section 51 5.2.1. Materials 51 5.2.2. Synthesis of G4.5-RGD and G4.5-IL6 Conjugates 51 5.2.3. DOX Loading into G4.5-IL6 and G4.5-RGD Complexes 52 5.2.4. Characterization Methods 53 5.2.5. In Vitro Drug Release Kinetics 53 5.2.6. Toxicity toward HeLa Cells 54 5.2.7. In Vitro Cellular Uptake 54 5.2.8. Flow Cytometry Analysis 55 5.2.9. Cell Apoptosis/Necrosis Analysis 55 5.2.10. Statistical Analysis 56 5.3. Results and discussion 56 5.3.1. Loading of Doxorubicin into Modified Dendrimer Carriers 57 5.3.2. In Vitro DOX Release from Dendrimer Complexes 62 5.3.3. Cell Uptake of G4.5-RGD/DOX and G4.5-IL6/DOX Conjugates 63 5.3.4. In Vitro Cytotoxicity 68 5.4. Summary 71 Chapter Six: Gadolinium Oxide Nanoparticles (Gd2O3) Contrasting Agent Encapsulated in PAMAM Dendrimer Template for Enhancing Magnetic Resonance Imaging in Vivo 72 6.1. Introduction 72 6.2. Materials and Methods 75 6.2.1. Materials 75 6.2.2. Characterization 75 6.2.3. Synthesis of G4.5-Gd2O3 nanoparticles (NPs) 76 6.2.4. Preparation of G4.5-PEG conjugates 77 6.2.5. Conjugation of G4.5-Gd2O3 NPs with PEG 77 6.2.6. MRI In vitro relaxivity studies 77 6.2.7. In vitro cytotoxicity assay 78 6.2.8. Cell Apoptosis/Necrosis Analysis 78 6.2.9. Spectrophotometric determination of free gadolinium ions by Xylenol Orange disodium salt 79 6.2.11. In Vivo MR Imaging 79 6.2.12. Animal Model 80 6.2.13. In vivo biodistribution studies 80 6.3. Results and discussion 81 6.3.1. Synthesis and Characterization of G4.5-Gd2O3 nanoparticles 81 6.3.2. PEGylation of G4.5-Gd2O3 nanoparticle 89 6.3.3. Biocompatibility studies of nanoparticles 92 6.3.4. Phantom MR imaging and Relaxometric analysis 98 6.3.5. In vivo results: T1-T2 weighted MR images 101 Chapter Seven: Conclusions and Recommendations 109 7.1. Conclusions 109 7.2. Recommendations 111 Chapter Eight: Supporting Information 112

[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA: A Cancer Journal for Clinicians 2015;65:5-29.
[2] Singh Y, Palombo M, Sinko PJ. Recent Trends in Targeted Anticancer Prodrug and Conjugate Design. Current medicinal chemistry 2008;15:1802-26.
[3] Soliman GM, Sharma A, Maysinger D, Kakkar A. Dendrimers and miktoarm polymers based multivalent nanocarriers for efficient and targeted drug delivery. Chem Commun (Camb) 2011;47:9572-87.
[4] Mekuria SL, Debele TA, Chou H-Y, Tsai H-C. IL-6 Antibody and RGD Peptide Conjugated Poly(amidoamine) Dendrimer for Targeted Drug Delivery of HeLa Cells. The Journal of Physical Chemistry B 2016;120:123-30.
[5] Karolewicz B. A review of polymers as multifunctional excipients in drug dosage form technology. Saudi Pharmaceutical Journal.
[6] Morachis JM, Mahmoud EA, Almutairi A. Physical and Chemical Strategies for Therapeutic Delivery by Using Polymeric Nanoparticles. Pharmacological Reviews 2012;64:505-19.
[7] Zhu J, Shi X. Dendrimer-based nanodevices for targeted drug delivery applications. Journal of Materials Chemistry B 2013;1:4199.
[8] Lee CC, MacKay JA, Frechet JMJ, Szoka FC. Designing dendrimers for biological applications. Nat Biotech 2005;23:1517-26.
[9] Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Progress in Polymer Science 2014;39:268-307.
[10] Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. Journal of Pharmacy & Bioallied Sciences 2014;6:139-50.
[11] He H, Wang Y, Wen H, Jia X. Dendrimer-based multilayer nanocarrier for potential synergistic paclitaxel-doxorubicin combination drug delivery. RSC Advances 2014;4:3643-52.
[12] Shi C, Guo D, Xiao K, Wang X, Wang L, Luo J. A drug-specific nanocarrier design for efficient anticancer therapy. Nat Commun 2015;6.
[13] Gillies E, Frechet J. Dendrimers and dendritic polymers in drug delivery. Drug Discovery Today 2005;10:35-43.
[14] Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discovery Today 2001;6:427-36.
[15] Zhang M, Guo R, Kéri M, Bányai I, Zheng Y, Cao M, et al. Impact of Dendrimer Surface Functional Groups on the Release of Doxorubicin from Dendrimer Carriers. The Journal of Physical Chemistry B 2014;118:1696-706.
[16] Lo S-T, Kumar A, Hsieh J-T, Sun X. Dendrimer Nanoscaffolds for Potential Theranostics of Prostate Cancer with a Focus on Radiochemistry. Molecular pharmaceutics 2013;10:793-812.
[17] Bae YH, Park K. Targeted drug delivery to tumors: Myths, reality and possibility. Journal of Controlled Release 2011;153:198-205.
[18] Lee SC, Huh KM, Lee J, Cho YW, Galinsky RE, Park K. Hydrotropic Polymeric Micelles for Enhanced Paclitaxel Solubility: In Vitro and In Vivo Characterization. Biomacromolecules 2007;8:202-8.
[19] Tsai H-C, Chang W-H, Lo C-L, Tsai C-H, Chang C-H, Ou T-W, et al. Graft and diblock copolymer multifunctional micelles for cancer chemotherapy and imaging. Biomaterials 2010;31:2293-301.
[20] Mekuria SL, Tsai H-C. Preparation of self-assembled core–shell nano structure of conjugated generation 4.5 poly (amidoamine) dendrimer and monoclonal Anti-IL-6 antibody as bioimaging probe. Colloids and Surfaces B: Biointerfaces 2015;135:253-60.
[21] Tomalia DA. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Progress in Polymer Science 2005;30:294-324.
[22] Mekelburger H-B, Vögtle F, Jaworek W. Dendrimers, Arborols, and Cascade Molecules: Breakthrough into Generations of New Materials. Angewandte Chemie International Edition in English 1992;31:1571-6.
[23] Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym J 1985;17:117-32.
[24] Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules 1986;19:2466-8.
[25] Tomalia DA, Fréchet JMJ. Discovery of dendrimers and dendritic polymers: A brief historical perspective*. Journal of Polymer Science Part A: Polymer Chemistry 2002;40:2719-28.
[26] Esfand R, Tomalia DA. Laboratory Synthesis of Poly(amidoamine)(PAMAM) Dendrimers. Dendrimers and Other Dendritic Polymers: John Wiley & Sons, Ltd; 2002. p. 587-604.
[27] Bosman AW, Janssen HM, Meijer EW. About Dendrimers:  Structure, Physical Properties, and Applications. Chemical Reviews 1999;99:1665-88.
[28] Svenson S, Tomalia DA. Dendrimers in biomedical applications—reflections on the field. Advanced drug delivery reviews 2012;64, Supplement:102-15.
[29] Elsner K, Boysen MMK, Lindhorst TK. Synthesis of new polyether glycodendrons as oligosaccharide mimetics. Carbohydrate Research 2007;342:1715-25.
[30] Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition 2001;40:2004-21.
[31] Baleg AAA, Jahed NM, Arotiba OA, Mailu SN, Hendricks NR, Baker PG, et al. Synthesis and characterization of poly(propylene imine) dendrimer – Polypyrrole conducting star copolymer. Journal of Electroanalytical Chemistry 2011;652:18-25.
[32] Caminade A-M, Fruchon S, Turrin C-O, Poupot M, Ouali A, Maraval A, et al. The key role of the scaffold on the efficiency of dendrimer nanodrugs. Nat Commun 2015;6.
[33] Tomalia DA, Naylor AM, Goddard WA. Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter. Angewandte Chemie International Edition in English 1990;29:138-75.
[34] Ciolkowski M, Rozanek M, Bryszewska M, Klajnert B. The influence of PAMAM dendrimers surface groups on their interaction with porcine pepsin. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2013;1834:1982-7.
[35] Dobrovolskaia MA, Patri AK, Simak J, Hall JB, Semberova J, De Paoli Lacerda SH, et al. Nanoparticle Size and Surface Charge Determine Effects of PAMAM Dendrimers on Human Platelets in Vitro. Molecular pharmaceutics 2012;9:382-93.
[36] Wei T, Chen C, Liu J, Liu C, Posocco P, Liu X, et al. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proceedings of the National Academy of Sciences 2015;112:2978-83.
[37] Noriega-Luna B, God, #xed, nez LA, Rodr, guez FJ, et al. Applications of Dendrimers in Drug Delivery Agents, Diagnosis, Therapy, and Detection. Journal of Nanomaterials 2014;2014:19.
[38] Topp A, Bauer BJ, Tomalia DA, Amis EJ. Effect of Solvent Quality on the Molecular Dimensions of PAMAM Dendrimers. Macromolecules 1999;32:7232-7.
[39] Maiti PK, Çaǧın T, Lin S-T, Goddard WA. Effect of Solvent and pH on the Structure of PAMAM Dendrimers. Macromolecules 2005;38:979-91.
[40] Maiti PK, Goddard WA. Solvent Quality Changes the Structure of G8 PAMAM Dendrimer, a Disagreement with Some Experimental Interpretations. The Journal of Physical Chemistry B 2006;110:25628-32.
[41] Maiti PK, Çaǧın T, Wang G, Goddard WA. Structure of PAMAM Dendrimers:  Generations 1 through 11. Macromolecules 2004;37:6236-54.
[42] Jensen LB, Mortensen K, Pavan GM, Kasimova MR, Jensen DK, Gadzhyeva V, et al. Molecular Characterization of the Interaction between siRNA and PAMAM G7 Dendrimers by SAXS, ITC, and Molecular Dynamics Simulations. Biomacromolecules 2010;11:3571-7.
[43] Jackson CL, Chanzy HD, Booy FP, Drake BJ, Tomalia DA, Bauer BJ, et al. Visualization of Dendrimer Molecules by Transmission Electron Microscopy (TEM):  Staining Methods and Cryo-TEM of Vitrified Solutions. Macromolecules 1998;31:6259-65.
[44] Wang X, Guerrand L, Wu B, Li X, Boldon L, Chen W-R, et al. Characterizations of Polyamidoamine Dendrimers with Scattering Techniques. Polymers 2012;4:600.
[45] Pryor JB, Harper BJ, Harper SL. Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish. International journal of nanomedicine 2014;9:1947-56.
[46] Albertazzi L, Gherardini L, Brondi M, Sulis Sato S, Bifone A, Pizzorusso T, et al. In Vivo Distribution and Toxicity of PAMAM Dendrimers in the Central Nervous System Depend on Their Surface Chemistry. Molecular pharmaceutics 2013;10:249-60.
[47] Sadekar S, Ghandehari H. TRANSEPITHELIAL TRANSPORT AND TOXICITY OF PAMAM DENDRIMERS: IMPLICATIONS FOR ORAL DRUG DELIVERY. Advanced drug delivery reviews 2012;64:571-88.
[48] Geitner NK, Wang B, Andorfer RE, Ladner DA, Ke PC, Ding F. Structure–Function Relationship of PAMAM Dendrimers as Robust Oil Dispersants. Environmental Science & Technology 2014;48:12868-75.
[49] Geitner NK, Powell RR, Bruce T, Ladner DA, Ke PC. Effects of dendrimer oil dispersants on Dictyostelium discoideum. RSC Advances 2013;3:25930-6.
[50] Thomas TP, Majoros I, Kotlyar A, Mullen D, Banaszak Holl MM, Baker JR. Cationic Poly(amidoamine) Dendrimer Induces Lysosomal Apoptotic Pathway at Therapeutically Relevant Concentrations. Biomacromolecules 2009;10:3207-14.
[51] Lewis T, Ganesan V. Interactions between Grafted Cationic Dendrimers and Anionic Bilayer Membranes. The Journal of Physical Chemistry B 2013;117:9806-20.
[52] Jones CF, Campbell RA, Brooks AE, Assemi S, Tadjiki S, Thiagarajan G, et al. Cationic PAMAM Dendrimers Aggressively Initiate Blood Clot Formation. ACS Nano 2012;6:9900-10.
[53] Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’Emanuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. International journal of pharmaceutics 2003;252:263-6.
[54] Kolhatkar RB, Kitchens KM, Swaan PW, Ghandehari H. Surface Acetylation of Polyamidoamine (PAMAM) Dendrimers Decreases Cytotoxicity while Maintaining Membrane Permeability. Bioconjugate chemistry 2007;18:2054-60.
[55] Hubbard D, Enda M, Bond T, Moghaddam SPH, Conarton J, Scaife C, et al. Transepithelial Transport of PAMAM Dendrimers Across Isolated Human Intestinal Tissue. Molecular pharmaceutics 2015;12:4099-107.
[56] Sadekar S, Ghandehari H. TRANSEPITHELIAL TRANSPORT AND TOXICITY OF PAMAM DENDRIMERS: IMPLICATIONS FOR ORAL DRUG DELIVERY. Advanced drug delivery reviews 2012;64:571-88.
[57] Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 2010;15:171-85.
[58] Du JZ, Du XJ, Mao CQ, Wang J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. Journal of the American Chemical Society 2011;133:17560-3.
[59] Winchester B. Lysosomal metabolism of glycoproteins. Glycobiology 2005;15:1R-15R.
[60] Navath RS, Wang B, Kannan S, Romero R, Kannan RM. Stimuli-responsive star poly(ethylene glycol) drug conjugates for improved intracellular delivery of the drug in neuroinflammation. Journal of Controlled Release 2010;142:447-56.
[61] Navath RS, Kurtoglu YE, Wang B, Kannan S, Romero R, Kannan RM. Dendrimer−Drug Conjugates for Tailored Intracellular Drug Release Based on Glutathione Levels. Bioconjugate chemistry 2008;19:2446-55.
[62] Twyman LJ, Beezer AE, Esfand R, Hardy MJ, Mitchell JC. The synthesis of water soluble dendrimers, and their application as possible drug delivery systems. Tetrahedron Letters 1999;40:1743-6.
[63] Hawker CJ, Wooley KL, Frechet JMJ. Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. Journal of the Chemical Society, Perkin Transactions 1 1993:1287-97.
[64] Jansen JFGA, de Brabander-van den Berg EMM, Meijer EW. Encapsulation of Guest Molecules into a Dendritic Box. Science 1994;266:1226-9.
[65] Kitajyo Y, Nawa Y, Tamaki M, Tani H, Takahashi K, Kaga H, et al. A unimolecular nanocapsule: Encapsulation property of amphiphilic polymer based on hyperbranched polythreitol. Polymer 2007;48:4683-90.
[66] Taghavi Pourianazar N, Mutlu P, Gunduz U. Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine. Journal of Nanoparticle Research 2014;16:1-38.
[67] Li J-M, Wang Y-Y, Zhao M-X, Tan C-P, Li Y-Q, Le X-Y, et al. Multifunctional QD-based co-delivery of siRNA and doxorubicin to HeLa cells for reversal of multidrug resistance and real-time tracking. Biomaterials 2012;33:2780-90.
[68] Liu Y, Ng Y, Toh MR, Chiu GNC. Lipid-dendrimer hybrid nanosystem as a novel delivery system for paclitaxel to treat ovarian cancer. Journal of Controlled Release 2015;220, Part A:438-46.
[69] Cho K, Wang X, Nie S, Chen Z, Shin DM. Therapeutic Nanoparticles for Drug Delivery in Cancer. Clinical Cancer Research 2008;14:1310-6.
[70] Soo Choi H, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, et al. Renal clearance of quantum dots. Nat Biotech 2007;25:1165-70.
[71] Mignani S, Kazzouli SE, Bousmina M, Majoral J-P. Dendrimer space concept for innovative nanomedicine: A futuristic vision for medicinal chemistry. Progress in Polymer Science 2013;38:993-1008.
[72] Svenson S. Dendrimers as versatile platform in drug delivery applications. European Journal of Pharmaceutics and Biopharmaceutics 2009;71:445-62.
[73] Cloninger MJ. Biological applications of dendrimers. Current Opinion in Chemical Biology 2002;6:742-8.
[74] Patri AK, Majoros IJ, Baker Jr JR. Dendritic polymer macromolecular carriers for drug delivery. Current Opinion in Chemical Biology 2002;6:466-71.
[75] Bagalkot V, Farokhzad OC, Langer R, Jon S. An Aptamer–Doxorubicin Physical Conjugate as a Novel Targeted Drug-Delivery Platform. Angewandte Chemie International Edition 2006;45:8149-52.
[76] Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends in Molecular Medicine;21:223-32.
[77] Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu T, et al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine 2012;7:1253-71.
[78] Cole AJ, Yang VC, David AE. Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends in Biotechnology 2011;29:323-32.
[79] Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release 2010;148:135-46.
[80] Bhadra D, Yadav AK, Bhadra S, Jain NK. Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. International journal of pharmaceutics 2005;295:221-33.
[81] Thomas TP, Huang B, Choi SK, Silpe JE, Kotlyar A, Desai AM, et al. Polyvalent Dendrimer-Methotrexate as a Folate Receptor-Targeted Cancer Therapeutic. Molecular pharmaceutics 2012;9:2669-76.
[82] Singh P, Gupta U, Asthana A, Jain NK. Folate and Folate−PEG−PAMAM Dendrimers: Synthesis, Characterization, and Targeted Anticancer Drug Delivery Potential in Tumor Bearing Mice. Bioconjugate chemistry 2008;19:2239-52.
[83] Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR. PAMAM Dendrimer-Based Multifunctional Conjugate for Cancer Therapy:  Synthesis, Characterization, and Functionality. Biomacromolecules 2006;7:572-9.
[84] Thomas TP, Patri AK, Myc A, Myaing MT, Ye JY, Norris TB, et al. In Vitro Targeting of Synthesized Antibody-Conjugated Dendrimer Nanoparticles†. Biomacromolecules 2004;5:2269-74.
[85] Shukla R, Thomas TP, Peters JL, Desai AM, Kukowska-Latallo J, Patri AK, et al. HER2 Specific Tumor Targeting with Dendrimer Conjugated Anti-HER2 mAb. Bioconjugate chemistry 2006;17:1109-15.
[86] Shukla R, Thomas TP, Peters J, Kotlyar A, Myc A, Baker JJR. Tumor angiogenic vasculature targeting with PAMAM dendrimer-RGD conjugates. Chemical Communications 2005:5739-41.
[87] Liu J, Gray WD, Davis ME, Luo Y. Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review. Interface Focus 2012;2:307-24.
[88] Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, et al. RGD-Conjugated Dendrimer-Modified Gold Nanorods for in Vivo Tumor Targeting and Photothermal Therapy. Molecular pharmaceutics 2010;7:94-104.
[89] Miura Y, Takenaka T, Toh K, Wu S, Nishihara H, Kano MR, et al. Cyclic RGD-Linked Polymeric Micelles for Targeted Delivery of Platinum Anticancer Drugs to Glioblastoma through the Blood–Brain Tumor Barrier. ACS Nano 2013;7:8583-92.
[90] Wang F, Li Y, Shen Y, Wang A, Wang S, Xie T. The Functions and Applications of RGD in Tumor Therapy and Tissue Engineering. International Journal of Molecular Sciences 2013;14:13447-62.
[91] Waite CL, Roth CM. PAMAM-RGD Conjugates Enhance siRNA Delivery Through a Multicellular Spheroid Model of Malignant Glioma. Bioconjugate chemistry 2009;20:1908-16.
[92] Patri AK, Myc A, Beals J, Thomas TP, Bander NH, Baker JR. Synthesis and in Vitro Testing of J591 Antibody−Dendrimer Conjugates for Targeted Prostate Cancer Therapy. Bioconjugate chemistry 2004;15:1174-81.
[93] Xu L, Zhang H, Wu Y. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics. ACS chemical neuroscience 2014;5:2-13.
[94] Shi X, Wang SH, Swanson SD, Ge S, Cao Z, Van Antwerp ME, et al. Dendrimer-Functionalized Shell-crosslinked Iron Oxide Nanoparticles for In-Vivo Magnetic Resonance Imaging of Tumors. Advanced Materials 2008;20:1671-8.
[95] Zhao Y, Liu S, Li Y, Jiang W, Chang Y, Pan S, et al. Synthesis and grafting of folate–PEG–PAMAM conjugates onto quantum dots for selective targeting of folate-receptor-positive tumor cells. Journal of colloid and interface science 2010;350:44-50.
[96] Gupta U, Dwivedi SKD, Bid HK, Konwar R, Jain NK. Ligand anchored dendrimers based nanoconstructs for effective targeting to cancer cells. International journal of pharmaceutics 2010;393:185-96.
[97] Ki Choi S, Thomas T, Li M-H, Kotlyar A, Desai A, Baker JJR. Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAMdendrimer nanoconjugate. Chemical Communications 2010;46:2632-4.
[98] Wang Y, Guo R, Cao X, Shen M, Shi X. Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy. Biomaterials 2011;32:3322-9.
[99] Medina SH, Tekumalla V, Chevliakov MV, Shewach DS, Ensminger WD, El-Sayed MEH. N-acetylgalactosamine-functionalized dendrimers as hepatic cancer cell-targeted carriers. Biomaterials 2011;32:4118-29.
[100] Huang J, Gao F, Tang X, Yu J, Wang D, Liu S, et al. Liver-targeting doxorubicin-conjugated polymeric prodrug with pH-triggered drug release profile. Polymer international 2010;59:1390-6.
[101] YELLEPEDDI VK, KUMAR A, PALAKURTHI S. Biotinylated Poly(amido)amine (PAMAM) Dendrimers as Carriers for Drug Delivery to Ovarian Cancer Cells In Vitro. Anticancer Research 2009;29:2933-43.
[102] Yang W, Cheng Y, Xu T, Wang X, Wen L-p. Targeting cancer cells with biotin–dendrimer conjugates. European Journal of Medicinal Chemistry 2009;44:862-8.
[103] Bullen HA, Hemmer R, Haskamp A, Cason C, Wall S, Spaulding R, et al. Evaluation of Biotinylated PAMAM Dendrimer Toxicity in Models of the Blood Brain Barrier: A Biophysical and Cellular Approach. Journal of Biomaterials and Nanobiotechnology 2011;Vol.02No.05:9.
[104] YELLEPEDDI VK, KUMAR A, MAHER DM, CHAUHAN SC, VANGARA KK, PALAKURTHI S. Biotinylated PAMAM Dendrimers for Intracellular Delivery of Cisplatin to Ovarian Cancer: Role of SMVT. Anticancer Research 2011;31:897-906.
[105] Luo S, Kansara VS, Zhu X, Pal D, Mitra AK. Functional Characterization of Sodium-dependent Multivitamin Transporter (SMVT) in MDCK-MDR1 cells and its Utilization as a Target for Drug Delivery. Molecular pharmaceutics 2006;3:329-39.
[106] Vadlapudi AD, Vadlapatla RK, Mitra AK. Sodium Dependent Multivitamin Transporter (SMVT): A Potential Target for Drug Delivery. Current drug targets 2012;13:994-1003.
[107] Janoria KG, Hariharan S, Paturi D, Pal D, Mitra AK. Biotin Uptake by Rabbit Corneal Epithelial Cells: Role of Sodium-Dependent Multivitamin Transporter (SMVT). Current Eye Research 2006;31:797-809.
[108] Accardo A, Tesauro D, Morelli G. Peptide-based targeting strategies for simultaneous imaging and therapy with nanovectors. Polym J 2013;45:481-93.
[109] Tsai Y-J, Hu C-C, Chu C-C, Imae T. Intrinsically Fluorescent PAMAM Dendrimer as Gene Carrier and Nanoprobe for Nucleic Acids Delivery: Bioimaging and Transfection Study. Biomacromolecules 2011;12:4283-90.
[110] Larson CL, Tucker SA. Intrinsic Fluorescence of Carboxylate-Terminated Polyamido Amine Dendrimers. Appl Spectrosc 2001;55:679-83.
[111] Lee WI, Bae Y, Bard AJ. Strong Blue Photoluminescence and ECL from OH-Terminated PAMAM Dendrimers in the Absence of Gold Nanoparticles. Journal of the American Chemical Society 2004;126:8358-9.
[112] Wang D, Imae T, Miki M. Fluorescence emission from PAMAM and PPI dendrimers. Journal of colloid and interface science 2007;306:222-7.
[113] Na HB, Hyeon T. Nanostructured T1 MRI contrast agents. Journal of Materials Chemistry 2009;19:6267-73.
[114] Brasch RC. Rationale and applications for macromolecular Gd-based contrast agents. Magnetic Resonance in Medicine 1991;22:282-7.
[115] Lauffer RB. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chemical Reviews 1987;87:901-27.
[116] Xu H, Regino CAS, Koyama Y, Hama Y, Gunn AJ, Bernardo M, et al. Preparation and Preliminary Evaluation of a Biotin-Targeted, Lectin-Targeted Dendrimer-Based Probe for Dual-Modality Magnetic Resonance and Fluorescence Imaging. Bioconjugate chemistry 2007;18:1474-82.
[117] Kobayashi H, Brechbiel MW. Nano-sized MRI contrast agents with dendrimer cores. Advanced drug delivery reviews 2005;57:2271-86.
[118] Wiener E, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA, et al. Dendrimer-based metal chelates: A new class of magnetic resonance imaging contrast agents. Magnetic Resonance in Medicine 1994;31:1-8.
[119] Konda SD, Aref M, Wang S, Brechbiel M, Wiener EC. Specific targeting of folate–dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. Magnetic Resonance Materials in Physics, Biology and Medicine;12:104-13.
[120] Cheng Z, Thorek DLJ, Tsourkas A. Gadolinium-Conjugated Dendrimer Nanoclusters as a Tumor-Targeted T1 Magnetic Resonance Imaging Contrast Agent. Angewandte Chemie International Edition 2010;49:346-50.
[121] Kattel K, Park JY, Xu W, Kim HG, Lee EJ, Bony BA, et al. A Facile Synthesis, In vitro and In vivo MR Studies of d-Glucuronic Acid-Coated Ultrasmall Ln2O3 (Ln = Eu, Gd, Dy, Ho, and Er) Nanoparticles as a New Potential MRI Contrast Agent. ACS applied materials & interfaces 2011;3:3325-34.
[122] Luo N, Tian X, Yang C, Xiao J, Hu W, Chen D, et al. Ligand-free gadolinium oxide for in vivo T1-weighted magnetic resonance imaging. Physical Chemistry Chemical Physics 2013;15:12235-40.
[123] Sun S-K, Dong L-X, Cao Y, Sun H-R, Yan X-P. Fabrication of Multifunctional Gd2O3/Au Hybrid Nanoprobe via a One-Step Approach for Near-Infrared Fluorescence and Magnetic Resonance Multimodal Imaging in Vivo. Analytical chemistry 2013;85:8436-41.
[124] Bridot J-L, Faure A-C, Laurent S, Rivière C, Billotey C, Hiba B, et al. Hybrid Gadolinium Oxide Nanoparticles:  Multimodal Contrast Agents for in Vivo Imaging. Journal of the American Chemical Society 2007;129:5076-84.
[125] Faucher L, Guay-Bégin A-A, Lagueux J, Côté M-F, Petitclerc É, Fortin M-A. Ultra-small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI. Contrast Media & Molecular Imaging 2011;6:209-18.
[126] Ni K, Zhao Z, Zhang Z, Zhou Z, Yang L, Wang L, et al. Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T1 contrast ability. Nanoscale 2016;8:3768-74.
[127] Ahmad MW, Xu W, Kim SJ, Baeck JS, Chang Y, Bae JE, et al. Potential dual imaging nanoparticle: Gd2O3 nanoparticle. Scientific reports 2015;5:8549.
[128] Aime S, Botta M, Fasano M, Terreno E. Lanthanide(III) chelates for NMR biomedical applications. Chemical Society reviews 1998;27:19-29.
[129] Sieber MA, Steger-Hartmann T, Lengsfeld P, Pietsch H. Gadolinium-based contrast agents and NSF: Evidence from animal experience. Journal of Magnetic Resonance Imaging 2009;30:1268-76.
[130] Idée J-M, Fretellier N, Robic C, Corot C. The role of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: A critical update. Critical Reviews in Toxicology 2014;44:895-913.
[131] Thomsen HS. Nephrogenic Systemic Fibrosis: History and Epidemiology. Radiologic Clinics of North America 2009;47:827-31.
[132] Zhen Z, Xie J. Development of Manganese-Based Nanoparticles as Contrast Probes for Magnetic Resonance Imaging. Theranostics 2012;2:45-54.
[133] Xiao J, Tian XM, Yang C, Liu P, Luo NQ, Liang Y, et al. Ultrahigh relaxivity and safe probes of manganese oxide nanoparticles for in vivo imaging. Scientific reports 2013;3:3424.
[134] Huang C-C, Khu N-H, Yeh C-S. The characteristics of sub 10 nm manganese oxide T1 contrast agents of different nanostructured morphologies. Biomaterials 2010;31:4073-8.
[135] Haribabu V, Farook AS, Goswami N, Murugesan R, Girigoswami A. Optimized Mn-doped iron oxide nanoparticles entrapped in dendrimer for dual contrasting role in MRI. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2015:n/a-n/a.
[136] Wang Y, Cao X, Guo R, Shen M, Zhang M, Zhu M, et al. Targeted delivery of doxorubicin into cancer cells using a folic acid-dendrimer conjugate. Polymer Chemistry 2011;2:1754-60.
[137] Li X, Imae T, Leisner D, López-Quintela MA. Lamellar Structures of Anionic Poly(amido amine) Dendrimers with Oppositely Charged Didodecyldimethylammonium Bromide. The Journal of Physical Chemistry B 2002;106:12170-7.
[138] Chen Y, Ambade AV, Vutukuri DR, Thayumanavan S. Self-Assembly of Facially Amphiphilic Dendrimers on Surfaces. Journal of the American Chemical Society 2006;128:14760-1.
[139] Lombardo D. Modeling Dendrimers Charge Interaction in Solution: Relevance in Biosystems. Biochemistry Research International 2014;2014:837651.
[140] Giri J, Diallo MS, Simpson AJ, Liu Y, Goddard WA, Kumar R, et al. Interactions of Poly(amidoamine) Dendrimers with Human Serum Albumin: Binding Constants and Mechanisms. ACS Nano 2011;5:3456-68.
[141] Tomalia DA, Brothers HM, Piehler LT, Durst HD, Swanson DR. Partial shell-filled core-shell tecto(dendrimers): A strategy to surface differentiated nano-clefts and cusps. Proceedings of the National Academy of Sciences 2002;99:5081-7.
[142] Willerich I, Ritter H, Gröhn F. Structure and Thermodynamics of Ionic Dendrimer−Dye Assemblies. The Journal of Physical Chemistry B 2009;113:3339-54.
[143] Tsai H-C, Tsai C-H, Lin S-Y, Jhang C-R, Chiang Y-S, Hsiue G-H. Stimulated release of photosensitizers from graft and diblock micelles for photodynamic therapy. Biomaterials 2012;33:1827-37.
[144] Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J. Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. Journal of Controlled Release 2007;120:18-26.
[145] Miyano T, Wijagkanalan W, Kawakami S, Yamashita F, Hashida M. Anionic Amino Acid Dendrimer−Trastuzumab Conjugates for Specific Internalization in HER2-Positive Cancer Cells. Molecular pharmaceutics 2010;7:1318-27.
[146] Shukla R, Thomas TP, Peters JL, Desai AM, Kukowska-Latallo J, Patri AK, et al. HER2 Specific Tumor Targeting with Dendrimer Conjugated Anti-HER2 mAb. Bioconjugate chemistry 2006;17:1109-15.
[147] Prieto MJ, del Rio Zabala NE, Marotta CH, Carreño Gutierrez H, Arévalo Arévalo R, Chiaramoni NS, et al. Optimization and <italic>In Vivo</italic> Toxicity Evaluation of G4.5 Pamam Dendrimer-Risperidone Complexes. PLoS ONE 2014;9:e90393.
[148] Yuan Q, Fu Y, Kao WJ, Janigro D, Yang H. Transbuccal Delivery of CNS Therapeutic Nanoparticles: Synthesis, Characterization, and In Vitro Permeation Studies. ACS chemical neuroscience 2011;2:676-83.
[149] Prieto MJ, Bacigalupe D, Pardini O, Amalvy JI, Venturini C, Morilla MJ, et al. Nanomolar cationic dendrimeric sulfadiazine as potential antitoxoplasmic agent. International journal of pharmaceutics 2006;326:160-8.
[150] Endo T, Yoshimura T, Esumi K. Synthesis and catalytic activity of gold-silver binary nanoparticles stabilized by PAMAM dendrimer. Journal of colloid and interface science 2005;286:602-9.
[151] Jia D, Cao L, Wang D, Guo X, Liang H, Zhao F, et al. Uncovering a broad class of fluorescent amine-containing compounds by heat treatment. Chemical Communications 2014;50:11488-91.
[152] Antharjanam PKS, Jaseer M, Ragi KN, Prasad E. Intrinsic luminescence properties of ionic liquid crystals based on PAMAM and PPI dendrimers. Journal of Photochemistry and Photobiology A: Chemistry 2009;203:50-5.
[153] Eisfeld A, Briggs JS. The J- and H-bands of organic dye aggregates. Chemical Physics 2006;324:376-84.
[154] Peterson J, Allikmaa V, Subbi J, Pehk T, Lopp M. Structural deviations in poly(amidoamine) dendrimers: a MALDI-TOF MS analysis. European Polymer Journal 2003;39:33-42.
[155] Prieto MJ, Bacigalupe D, Pardini O, Amalvy JI, Venturini C, Morilla MJ, et al. Nanomolar cationic dendrimeric sulfadiazine as potential antitoxoplasmic agent. International journal of pharmaceutics 2006;326:160-8.
[156] Shcharbin D, Mazur J, Szwedzka M, Wasiak M, Palecz B, Przybyszewska M, et al. Interaction between PAMAM 4.5 dendrimer, cadmium and bovine serum albumin: a study using equilibrium dialysis, isothermal titration calorimetry, zeta-potential and fluorescence. Colloids and surfaces B, Biointerfaces 2007;58:286-9.
[157] Sweet DM, Kolhatkar RB, Ray A, Swaan P, Ghandehari H. Transepithelial transport of PEGylated anionic poly(amidoamine) dendrimers: Implications for oral drug delivery. Journal of Controlled Release 2009;138:78-85.
[158] Berényi S, Mihály J, Wacha A, Tőke O, Bóta A. A mechanistic view of lipid membrane disrupting effect of PAMAM dendrimers. Colloids and Surfaces B: Biointerfaces 2014;118:164-71.
[159] Hu J, Cheng Y, Wu Q, Zhao L, Xu T. Host−Guest Chemistry of Dendrimer-Drug Complexes. 2. Effects of Molecular Properties of Guests and Surface Functionalities of Dendrimers. The Journal of Physical Chemistry B 2009;113:10650-9.
[160] Markowicz M, Szymański P, Ciszewski M, Kłys A, Mikiciuk-Olasik E. Evaluation of poly(amidoamine) dendrimers as potential carriers of iminodiacetic derivatives using solubility studies and 2D-NOESY NMR spectroscopy. Journal of Biological Physics 2012;38:637-56.
[161] Triulzi RC, Micic M, Orbulescu J, Giordani S, Mueller B, Leblanc RM. Antibody-gold quantum dot-PAMAM dendrimer complex as an immunoglobulin immunoassay. Analyst 2008;133:667-72.
[162] Pande S, Crooks RM. Analysis of Poly(amidoamine) Dendrimer Structure by UV–Vis Spectroscopy. Langmuir : the ACS journal of surfaces and colloids 2011;27:9609-13.
[163] Zheng J, Dickson RM. Individual Water-Soluble Dendrimer-Encapsulated Silver Nanodot Fluorescence. Journal of the American Chemical Society 2002;124:13982-3.
[164] Lorenz K, Frey H, Stühn B, Mülhaupt R. Carbosilane Dendrimers with Perfluoroalkyl End Groups. Core−Shell Macromolecules with Generation-Dependent Order. Macromolecules 1997;30:6860-8.
[165] Zhang J, Hu J, Feng X, Li Y, Zhao L, Xu T, et al. Interactions between oppositely charged dendrimers. Soft Matter 2012;8:9800-6.
[166] Cheng Y, Li Y, Wu Q, Xu T. New Insights into the Interactions between Dendrimers and Surfactants by Two Dimensional NOE NMR Spectroscopy. The Journal of Physical Chemistry B 2008;112:12674-80.
[167] Xie J, Wang J, Chen H, Shen W, Sinko PJ, Dong H, et al. Multivalent conjugation of antibody to dendrimers for the enhanced capture and regulation on colon cancer cells. Scientific reports2015. p. 9445.
[168] Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotech 2007;25:84-90.
[169] Chen N-T, Wu C-Y, Chung C-Y, Hwu Y, Cheng S-H, Mou C-Y, et al. Probing the Dynamics of Doxorubicin-DNA Intercalation during the Initial Activation of Apoptosis by Fluorescence Lifetime Imaging Microscopy (FLIM). PLoS ONE 2012;7:e44947.
[170] Bassi L, Palitti F. Anti-topoisomerase drugs as potent inducers of chromosomal aberrations. Genetics and Molecular Biology 2000;23:1065-9.
[171] ZHANG J, LAN CQ, POST M, SIMARD B, DESLANDES Y, HSIEH TH. Design of Nanoparticles as Drug Carriers for Cancer Therapy. Cancer Genomics - Proteomics 2006;3:147-57.
[172] Muvaffak A, Gurhan I, Gunduz U, Hasirci N. Preparation and characterization of a biodegradable drug targeting system for anticancer drug delivery: Microsphere-antibody conjugate. Journal of Drug Targeting 2005;13:151-9.
[173] Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Advanced drug delivery reviews 2012;64, Supplement:206-12.
[174] Dosio F, Brusa P, Cattel L. Immunotoxins and Anticancer Drug Conjugate Assemblies: The Role of the Linkage between Components. Toxins 2011;3:848-83.
[175] Yin H-Q, Mai D-S, Gan F, Chen X-J. One-step synthesis of linear and cyclic RGD conjugated gold nanoparticles for tumour targeting and imaging. RSC Advances 2014;4:9078.
[176] Tan T-W, Yang W-H, Lin Y-T, Hsu S-F, Li T-M, Kao S-T, et al. Cyr61 increases migration and MMP-13 expression via αvβ3 integrin, FAK, ERK and AP-1-dependent pathway in human chondrosarcoma cells. Carcinogenesis 2009;30:258-68.
[177] Caswell P, Norman J. Endocytic transport of integrins during cell migration and invasion. Trends in Cell Biology 2008;18:257-63.
[178] Aguzzi MS, Fortugno P, Giampietri C, Ragone G, Capogrossi MC, Facchiano A. Intracellular targets of RGDS peptide in melanoma cells. Molecular Cancer 2010;9:84-.
[179] Lucie S, Elisabeth G, Stéphanie F, Guy S, Amandine H, Corinne A-R, et al. Clustering and Internalization of Integrin α(v)β(3) With a Tetrameric RGD-synthetic Peptide. Molecular Therapy: the Journal of the American Society of Gene Therapy 2009;17:837-43.
[180] Bareford LM, Swaan PW. ENDOCYTIC MECHANISMS FOR TARGETED DRUG DELIVERY. Advanced drug delivery reviews 2007;59:748-58.
[181] Galien R, Garcia T. Estrogen receptor impairs interleukin-6 expression by preventing protein binding on the NF-kappaB site. Nucleic Acids Research 1997;25:2424-9.
[182] Narazaki M, Yasukawa K, Saito T, Ohsugi Y, Fukui H, Koishihara Y, et al. Soluble forms of the interleukin-6 signal-transducing receptor component gp130 in human serum possessing a potential to inhibit signals through membrane-anchored gp130. Blood 1993;82:1120-6.
[183] Pietrzak M, Wieczorek Z, Stachelska A, Darzynkiewicz Z. Interactions of chlorophyllin with acridine orange, quinacrine mustard and doxorubicin analyzed by light absorption and fluorescence spectroscopy. Biophysical Chemistry 2003;104:305-13.
[184] Liu Z, Sun X, Nakayama-Ratchford N, Dai H. Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery. ACS Nano 2007;1:50-6.
[185] de la Escosura A, Martínez-Díaz MV, Guldi DM, Torres T. Stabilization of Charge-Separated States in Phthalocyanine−Fullerene Ensembles through Supramolecular Donor−Acceptor Interactions. Journal of the American Chemical Society 2006;128:4112-8.
[186] King HD, Dubowchik GM, Mastalerz H, Willner D, Hofstead SJ, Firestone RA, et al. Monoclonal Antibody Conjugates of Doxorubicin Prepared with Branched Peptide Linkers:  Inhibition of Aggregation by Methoxytriethyleneglycol Chains. Journal of Medicinal Chemistry 2002;45:4336-43.
[187] Chandra S, Dietrich S, Lang H, Bahadur D. Dendrimer–Doxorubicin conjugate for enhanced therapeutic effects for cancer. Journal of Materials Chemistry 2011;21:5729.
[188] Chandra S, Noronha G, Dietrich S, Lang H, Bahadur D. Dendrimer-magnetic nanoparticles as multiple stimuli responsive and enzymatic drug delivery vehicle. Journal of Magnetism and Magnetic Materials 2015;380:7-12.
[189] Fu F, Wu Y, Zhu J, Wen S, Shen M, Shi X. Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: investigating the role played by PEG spacer. ACS applied materials & interfaces 2014;6:16416-25.
[190] Muro S, Gajewski C, Koval M, Muzykantov VR. ICAM-1 recycling in endothelial cells: a novel pathway for sustained intracellular delivery and prolonged effects of drugs. Blood 2005;105:650-8.
[191] Jones DE, Ghandehari H, Facelli JC. Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors. Beilstein Journal of Nanotechnology 2015;6:1886-96.
[192] Higgins CB, Byrd BF, Farmer DW, Osaki L, Silverman NH, Cheitlin MD. Magnetic resonance imaging in patients with congenital heart disease. Circulation 1984;70:851-60.
[193] Edelman RR, Warach S. Magnetic Resonance Imaging. New England Journal of Medicine 1993;328:708-16.
[194] Groman EV, Josephson L, Lewis JM. Biologically degradable superparamagnetic materials for use in clinical applications. Google Patents; 1989.
[195] James ML, Gambhir SS. A Molecular Imaging Primer: Modalities, Imaging Agents, and Applications. Physiological Reviews 2012;92:897-965.
[196] Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(III) Chelates as MRI Contrast Agents:  Structure, Dynamics, and Applications. Chemical Reviews 1999;99:2293-352.
[197] Kim J, Piao Y, Hyeon T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chemical Society reviews 2009;38:372-90.
[198] Gong N, Wang H, Li S, Deng Y, Chen Xa, Ye L, et al. Microwave-Assisted Polyol Synthesis of Gadolinium-Doped Green Luminescent Carbon Dots as a Bimodal Nanoprobe. Langmuir : the ACS journal of surfaces and colloids 2014;30:10933-9.
[199] Zhou Z, Lu Z-R. Gadolinium-Based Contrast Agents for MR Cancer Imaging. Wiley interdisciplinary reviews Nanomedicine and nanobiotechnology 2013;5:1-18.
[200] Huang C-H, Tsourkas A. Gd-based macromolecules and nanoparticles as magnetic resonance contrast agents for molecular imaging. Current topics in medicinal chemistry 2013;13:411-21.
[201] Turner JL, Pan D, Plummer R, Chen Z, Whittaker AK, Wooley KL. Synthesis of Gadolinium-Labeled Shell-Crosslinked Nanoparticles for Magnetic Resonance Imaging Applications. Advanced Functional Materials 2005;15:1248-54.
[202] Frias JC, Ma Y, Williams KJ, Fayad ZA, Fisher EA. Properties of a Versatile Nanoparticle Platform Contrast Agent To Image and Characterize Atherosclerotic Plaques by Magnetic Resonance Imaging. Nano Letters 2006;6:2220-4.
[203] Langereis S, de Lussanet QG, van Genderen MHP, Meijer EW, Beets-Tan RGH, Griffioen AW, et al. Evaluation of Gd(III)DTPA-terminated poly(propylene imine) dendrimers as contrast agents for MR imaging. NMR in Biomedicine 2006;19:133-41.
[204] Parac-Vogt Tatjana N, Kimpe K, Laurent S, Piérart C, Elst Luce V, Muller Robert N, et al. Gadolinium DTPA-Monoamide Complexes Incorporated into Mixed Micelles as Possible MRI Contrast Agents. European Journal of Inorganic Chemistry 2004;2004:3538-43.
[205] Wang F, Peng E, Zheng B, Li SFY, Xue JM. Synthesis of Water-Dispersible Gd2O3/GO Nanocomposites with Enhanced MRI T1 Relaxivity. The Journal of Physical Chemistry C 2015;119:23735-42.
[206] Park JY, Baek MJ, Choi ES, Woo S, Kim JH, Kim TJ, et al. Paramagnetic Ultrasmall Gadolinium Oxide Nanoparticles as Advanced T1 MRI Contrast Agent: Account for Large Longitudinal Relaxivity, Optimal Particle Diameter, and In Vivo T1 MR Images. ACS Nano 2009;3:3663-9.
[207] Tian X, Shao Y, He H, Liu H, Shen Y, Huang W, et al. Nanoamplifiers synthesized from gadolinium and gold nanocomposites for magnetic resonance imaging. Nanoscale 2013;5:3322-9.
[208] Shao Y-Z, Liu L-Z, Song S-q, Cao R-h, Liu H, Cui C-y, et al. A novel one-step synthesis of Gd3+-incorporated mesoporous SiO2 nanoparticles for use as an efficient MRI contrast agent. Contrast Media & Molecular Imaging 2011;6:110-8.
[209] Bridot J-L, Faure A-C, Laurent S, Rivière C, Billotey C, Hiba B, et al. Hybrid Gadolinium Oxide Nanoparticles:  Multimodal Contrast Agents for in Vivo Imaging. Journal of the American Chemical Society 2007;129:5076-84.
[210] Kamaly N, Miller AD. Paramagnetic Liposome Nanoparticles for Cellular and Tumour Imaging. International Journal of Molecular Sciences 2010;11:1759-76.
[211] Fang J, Chandrasekharan P, Liu X-L, Yang Y, Lv Y-B, Yang C-T, et al. Manipulating the surface coating of ultra-small Gd2O3 nanoparticles for improved T1-weighted MR imaging. Biomaterials 2014;35:1636-42.
[212] Li IF, Su C-H, Sheu H-S, Chiu H-C, Lo Y-W, Lin W-T, et al. Gd2O(CO3)2 • H2O Particles and the Corresponding Gd2O3: Synthesis and Applications of Magnetic Resonance Contrast Agents and Template Particles for Hollow Spheres and Hybrid Composites. Advanced Functional Materials 2008;18:766-76.
[213] Terreno E, Castelli DD, Viale A, Aime S. Challenges for Molecular Magnetic Resonance Imaging. Chemical Reviews 2010;110:3019-42.
[214] Yang L, Zhou Z, Liu H, Wu C, Zhang H, Huang G, et al. Europium-engineered iron oxide nanocubes with high T1 and T2 contrast abilities for MRI in living subjects. Nanoscale 2015;7:6843-50.
[215] Tirusew T, Wenlong X, Md Wasi A, Jong Su B, Yongmin C, Ji Eun B, et al. Dual-mode T 1 and T 2 magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: synthesis, characterization, and in vivo application. Nanotechnology 2015;26:365102.
[216] Szpak A, Fiejdasz S, Prendota W, Strączek T, Kapusta C, Szmyd J, et al. T(1)–T(2) Dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes. Journal of Nanoparticle Research 2014;16:2678.
[217] Yang M, Gao L, Liu K, Luo C, Wang Y, Yu L, et al. Characterization of Fe3O4/SiO2/Gd2O(CO3)2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent. Talanta 2015;131:661-5.
[218] Shin T-H, Choi J-s, Yun S, Kim I-S, Song H-T, Kim Y, et al. T1 and T2 Dual-Mode MRI Contrast Agent for Enhancing Accuracy by Engineered Nanomaterials. ACS Nano 2014;8:3393-401.
[219] Kojima C, Turkbey B, Ogawa M, Bernardo M, Regino CAS, Bryant LH, et al. Dendrimer-Based MRI Contrast Agents: The Effects of PEGylation on Relaxivity and Pharmacokinetics. Nanomedicine : nanotechnology, biology, and medicine 2011;7:1001-8.
[220] Sun W, Li J, Shen M, Shi X. Dendrimer-Based Nanodevices as Contrast Agents for MR Imaging Applications. In: Dai Z, editor. Advances in Nanotheranostics I: Design and Fabrication of Theranosic Nanoparticles. Berlin, Heidelberg: Springer Berlin Heidelberg; 2016. p. 249-70.
[221] Barge A, Cravotto G, Gianolio E, Fedeli F. How to determine free Gd and free ligand in solution of Gd chelates. A technical note. Contrast Media & Molecular Imaging 2006;1:184-8.
[222] Zhang B, Jin H, Li Y, Chen B, Liu S, Shi D. Bioinspired synthesis of gadolinium-based hybrid nanoparticles as MRI blood pool contrast agents with high relaxivity. Journal of Materials Chemistry 2012;22:14494-501.
[223] Ding Z, Grimmond BJ, Luttrell M, Rubinsztajn S, DeMoulpied DC, Blohm ML. Chelator-functionalized nanoparticles. Google Patents; 2012.
[224] Khan SA, Gambhir S, Ahmad A. Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol. Beilstein Journal of Nanotechnology 2014;5:249-57.
[225] Huang S, Cheng Z, Chen Y, Liu B, Deng X, Ma Pa, et al. Multifunctional polyelectrolyte multilayers coated onto Gd2O3:Yb3+,Er3+@MSNs can be used as drug carriers and imaging agents. RSC Advances 2015;5:41985-93.
[226] Nikolić MG, Al-Juboori AZ, Đorđević V, Dramićanin MD. Temperature luminescence properties of Eu 3+ -doped Gd 2 O 3 phosphors. Physica Scripta 2013;2013:014056.
[227] Söderlind F, Pedersen H, Petoral Jr RM, Käll P-O, Uvdal K. Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. Journal of colloid and interface science 2005;288:140-8.
[228] Raiser D, Deville JP. Study of XPS photoemission of some gadolinium compounds. Journal of Electron Spectroscopy and Related Phenomena 1991;57:91-7.
[229] Xu W, Bony BA, Kim CR, Baeck JS, Chang Y, Bae JE, et al. Mixed lanthanide oxide nanoparticles as dual imaging agent in biomedicine. Scientific reports 2013;3:3210.
[230] Yuan Q, Yeudall WA, Yang H. PEGylated Polyamidoamine Dendrimers with Bis-Aryl Hydrazone Linkages for Enhanced Gene Delivery. Biomacromolecules 2010;11:1940-7.
[231] Banerjee SS, Aher N, Patil R, Khandare J. Poly(ethylene glycol)-Prodrug Conjugates: Concept, Design, and Applications. Journal of Drug Delivery 2012;2012:17.
[232] Chaudhary S, Kumar S, Mehta SK. Glycol modified gadolinium oxide nanoparticles as a potential template for selective and sensitive detection of 4-nitrophenol. Journal of Materials Chemistry C 2015;3:8824-33.
[233] Zolotarskaya OY, Xu L, Valerie K, Yang H. Click synthesis of a polyamidoamine dendrimer-based camptothecin prodrug. RSC Advances 2015;5:58600-8.
[234] Glander H-J, J.Schaller. Binding of annexin V to plasma membranes of human spermatozoa: a rapid assay for detection of membrane changes after cryostorage. Molecular Human Reproduction 1999;5:109-15.
[235] Rieger AM, Nelson KL, Konowalchuk JD, Barreda DR. Modified Annexin V/Propidium Iodide Apoptosis Assay For Accurate Assessment of Cell Death. Journal of Visualized Experiments : JoVE 2011:2597.
[236] Zhu D, Liu F, Ma L, Liu D, Wang Z. Nanoparticle-Based Systems for T(1)-Weighted Magnetic Resonance Imaging Contrast Agents. International Journal of Molecular Sciences 2013;14:10591-607.
[237] Ahmad MW, Xu W, Kim SJ, Baeck JS, Chang Y, Bae JE, et al. Potential dual imaging nanoparticle: Gd(2)O(3) nanoparticle. Scientific reports 2015;5:8549.
[238] Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotech 2015;33:941-51.

無法下載圖示 全文公開日期 2021/07/19 (校內網路)
全文公開日期 2036/07/19 (校外網路)
全文公開日期 2036/07/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE