簡易檢索 / 詳目顯示

研究生: 黃羽笛
Yu-ti Huang
論文名稱: 微型分光結構之分析與研究
Design and Analysis of Micro Wavelength Dispersion Device
指導教授: 柯正浩
Cheng-hao Ko
口試委員: 徐勝均
Sendren Sheng-Dong Xu
沈志霖
Ji-lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 86
中文關鍵詞: 分光微結構平行波導擬合分光解析度
外文關鍵詞: dispersion, micro device, slab waveguide, fitting, dispersion resolution
相關次數: 點閱:362下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本研究中,我們利用光跡模擬研究羅倫圓光柵的分光晶片。為了使繞射光線易與影像感測器耦合,我們在基板上加入一個將45度的反射面,使光束由垂直方向轉為水平方向。在光跡模擬中,於各波長主光軸上設置了一系列的偵測面,藉由偵測面之斑點圖的分析,得到各別波長的聚焦縱深。
此系統波長範圍由380nm到980nm,波長解析度可達1.4nm。波長準確度可達每像素0.05nm (pixel size 1.75μm)及0.1nm (pixel size 4.2μm)。影像感測器對分光晶片的組裝容忍度,可由全波段的聚焦縱深得到,約為1mm。羅倫圓光柵系統嵌入高反射率的平行波導,以防止光通量流失。模擬結果顯示,在100%的繞射效率及完美反射平面波導的條件下,可達到70%的光通量。波長範圍由380nm到980nm的影像區域為5mm×1.5mm,剛好落在CMOS感測器的範圍內。
本系統將分光晶片微縮至1.5cm×3.3cm×0.12cm,且在380nm到980nm範圍內可維持接收端的高光學訊號品質。本論文設計的晶片,可經由先進的光蝕刻技術達到量產,長聚焦縱深的設計可使分光晶片與CMOS感測器達到快速組裝的目的。


In this study, we realized a wavelength dispersion chip base on the design of Rowland circle grating geometry through a ray tracing simulation. A slanted slop is added on the wafer to redirect the diffraction beam to the upward direction for the easy coupling with an image sensor, which is used to acquire the spectrum. In the ray tracing, a series of detectors are positioned along the diffracted primary beam axis for the designed wavelength. The spot diagram of each detector is analyzed to obtain the beam waist. By analyzing the beam waist distribution along the primary optical axis, we are able to calculate the Depth of Focus (DoF) for each wavelength.
The designed wavelength range of this system is from 380nm to 980nm with a spectral resolution of 1.4nm. The wavelength accuracy reaches 0.05nm per pixel for a pixel size of 1.75μm and 0.1nm per pixel for a pixel size of 4.2μm. The DoF for the entire wavelength range is about 1mm. This also indicated a tolerance of 1mm for the assembly of the image sensor to the chip.
The Rowland circle grating system is embedded inside a slab waveguide with high reflectivity surface to preserve the photon flux. The simulation result showed that 70% of the incoming photon flux is collected by the image sensor based on a 100% diffraction efficiency and a perfect reflector slab waveguide. The image area for the 380nm to 980nm wavelength range is 5mm×1.5mm, which is about the dimensions of a CMOS image sensor.
The chip size is reduced to 1.5cm×3.3cm×0.12cm while maintaining a wide spectral range (380nm-980nm) with a reasonably good spectral resolution (1.4nm). With the use of a CMOS image sensor, the spectral accuracy is better than 0.1nm. The chip can be mass produced by modern advanced lithographic process and the design is also optimized for easy integration with the image sensor.

致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 XI 第一章 序論 1 1.1研究背景 1 1.2研究目的 2 1.3本文架構 2 第二章 原理探討 3 2.1反射式光柵相關原理 3 2.2光柵種類 6 2.3光柵方程式 8 2.4光程函數 9 2.5光柵之解析能力 10 2.6聚焦縱深 11 第三章系統參數設計與模擬流程 12 3.1系統參數設計 12 3.2模擬流程 16 第四章 模擬結果與分析 20 4.1模擬結果 20 4.2解析度分析 52 4.3系統規格匹配分析 56 4.4系統規格表 58 第五章 結論 69 參考文獻 70

[1] “維基百科”,
http://zh.wikipedia.org/wiki/%E5%85%89%E8%B0%B1%E4%BB%AA
[2] J. R. Meyer-Arendt, Introduction to classical and Modern Optics, Addison Wesley (1995).
[3] O. I. a. L. D. P. Schiopu, "Electromagnetic theory of concave blazed diffraction grating efficiencies," Vol. 5227, pp. 139-146 (2003).
[4] M. C. Hutley, Diffraction Grating, National Physical Laboratory (1982).
[5] 張阜權,孫榮山,唐偉國,光學,亞東書局 (1989)。
[6] 林敬二,林宗義,儀器分析上冊,美亞書版 (1994)。
[7] W. B. Peatman, Gratings, Mirrors, and Slits, Gordon and Breach Science (1997).
[8] “ENOPHLIA”, http://www.xenophilia.com/zb/zb0012a.htm.
[9] B. E. A. S. a. M. C. Teich, Fundamentals of Photonics, Wiley (2007).
[10] 章立祐,「反射式微結構之平面聚焦特性分析與探討」,碩士論文,國立台灣科技大學,台北 (2010)。

無法下載圖示 全文公開日期 2018/07/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE