簡易檢索 / 詳目顯示

研究生: 莊帛縈
Po-Ying Chuang
論文名稱: 選擇性成長自組裝單分子薄膜修飾薄膜電晶體元件線路之效應研究
Study on the Effect of Site‐Selective Growth of Self‐Assembled Monolayer on Thin-Film Transistors
指導教授: 何郡軒
Jinn-Hsuan Ho
戴龑
Yian Tai
口試委員: 劉舜維
Shun-Wei Liu
何郡軒
Jinn-Hsuan Ho
戴龑
Yian Tai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 116
中文關鍵詞: 選擇性成長自組裝單分子薄膜薄膜電晶體
外文關鍵詞: Site‐Selective Growth, SAM, TFT
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

此研究利用接觸角量測儀以及X光電子能譜儀驗證阻擋層對於圖案化ITO玻璃基板具有良好選擇性,從而有效阻止矽烷基團與ITO表面進行鍵結,而利用移除試劑移除後,電極功函數與原先之差異並不大。並探討兩種相反偶極方向之自組裝單分子薄膜,修飾在頂部閘極底部接觸式元件基板線路部分對薄膜電晶體造成的影響,並利用阻擋層在ITO電極上方覆蓋住以防止矽烷基鍵結在ITO汲/源電極上,造成電極功函數之改變而形成多餘的變異參數,而將拉電子基團與推電子基團分別應用於玻璃基板上,實驗結果發現其分別能增進不同種元件上的電洞與電子傳輸,進而達到優化元件的效果。


It remains a challenge to utilize silane based self-assembled monolayers (SAMs) to site‐selective growth to modify channel part of the top gate bottom contact (TGBC) configuration of organic thin film transistor (OTFT). As we know, if we want to modify the surface between the active layer and the substrate, the silane based SAMs will anchor onto the entire substrate, causing work function modulation of source and drain electrodes. Here we use blocking layer (SAM1) due to good selectivity between glass and ITO electrodes which only passivated on the ITO region, in this study we used SAM1 to avoid the silane group anchored onto ITO electrodes which would cause above problem. We utilize 3-cyanopropyltriethoxysilane (CN-silane) and (3-Aminopropyl)triethoxysilane (NH2-silane) to modified the channel part of patterned substrate. This research shows modified substrates were applied on p-type material, Poly(3-hexylthiophene) (P3HT), ambipolar polymer, diketopyrrolopyrrole (DPP) and oxide semiconductor, IGZO based transistors. Through our study, the performance of OTFT is correlated with the surface dipole moment of the interface which is between the substrate and active layer in the channel region, the electron withdrawing and donating groups in SAMs can improve the performance of the P-type and N-type semiconductor devices, respectively.

中文摘要 I ABSTRACT II 致謝 III 目錄 VI 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章 原理簡介與文獻回顧 5 2-1 有機半導體相關簡介 5 2-1-1 有機半導體發展概況 5 2-1-2 有機半導體傳導機制 8 2-2 無機半導體相關簡介 11 2-2-1 無機半導體發展概況 11 2-2-2 無機半導體傳導機制 13 2-3 薄膜電晶體概論 16 2-3-1薄膜電晶體基本原理原理與架構 16 2-3-2薄膜電晶體之重要參數 20 2-4自組裝單分子薄膜於薄膜電晶體上之應用 24 2-4-1 自組裝單分子薄膜基本介紹 24 2-4-2修飾電極表面以降低注入能障 25 2-4-3修飾介電層表面以改變介面結構與分子排列 28 2-4-4以自組裝單分子薄膜做為介電材料 33 第三章 有機元件製備與量測分析系統 36 3-1 儀器設備 36 3-2 實驗藥品與器材 37 3-3 實驗步驟 38 3-3-1 基板圖案化流程 38 3-3-2 成長自組裝單分子薄膜 42 3-3-3 薄膜電晶體元件之製備 44 3-4 元件電性測量與分析 47 3-4-1 半導體量測儀 (Semiconductor Device Parameter Analyzer) 47 3-4-2 原子力顯微鏡 (Atomic Force Microscope, AFM) 48 3-4-3 X射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 50 3-4-4 接觸角量測儀 (Contact Angle) 52 3-4-5 單點式功函數量測儀 (Kelvin Probe Measurement) 53 3-4-6電感電容阻抗量測儀 (PRECISION LCR METER) 53 第四章 實驗結果與討論 54 4-1圖案化基板之自組裝單分子薄膜改質 57 4-1-1 阻擋層SAM1之選擇性 57 4-1-2 阻擋層SAM1之阻擋效應 58 4-1-3 矽烷SAM於玻璃基板上之成長 62 4-1-4 阻擋層之去除 65 4-1-5 ITO電極之功函數分析 72 4-1-6 初步探討移除試劑對元件造成之影響 73 4-2 改質基板應用於薄膜電晶體元件 75 4-2-1 改質基板應用於P3HT主動層元件 76 4-2-2 改質基板應用於低能隙主動層元件 81 4-2-3 改質基板應用於無機金屬氧化物主動層元件 88 4-2-4 未使用阻擋層之元件表現探討 91 第五章 結論與未來展望 94 參考文獻 95

[1] Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, et al. Electrical-Conductivity in Doped Polyacetylene. Physical Review Letters. 1977;39(17):1098-101.
[2] Myny K, Steudel S, Vicca P, Beenhakkers MJ, van Aerle NAJM, Gelinck GH, et al. Plastic circuits and tags for 13.56 MHz radio-frequency communication. Solid State Electron. 2009;53(12):1220-6.
[3] Baude PF, Ender DA, Haase MA, Kelley TW, Muyres DV, Theiss SD. Pentacene-based radio-frequency identification circuitry. Appl Phys Lett. 2003;82(22):3964-6.
[4] Crone B, Dodabalapur A, Gelperin A, Torsi L, Katz HE, Lovinger AJ, et al. Electronic sensing of vapors with organic transistors. Appl Phys Lett. 2001;78(15):2229-31.
[5] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature. 2004;432(7016):488-92.
[6] Di CA, Liu Y, Yu G, Zhu D. Interface engineering: an effective approach toward high-performance organic field-effect transistors. Acc Chem Res. 2009;42(10):1573-83.
[7] Hong JP, Park AY, Lee S, Kang J, Shin N, Yoon DY. Tuning of Ag work functions by self-assembled monolayers of aromatic thiols for an efficient hole injection for solution processed triisopropylsilylethynyl pentacene organic thin film transistors. Appl Phys Lett. 2008;92(14):131.
[8] Park J, Lee WH, Huh S, Sim SH, Kim SB, Cho K, et al. Work-Function Engineering of Graphene Electrodes by Self-Assembled Monolayers for High-Performance Organic Field-Effect Transistors. J Phys Chem Lett. 2011;2(8):841-5.
[9] Orgiu E, Crivillers N, Rotzler J, Mayor M, Samori P. Tuning the charge injection of P3HT-based organic thin-film transistors through electrode functionalization with oligophenylene SAMs. J Mater Chem. 2010;20(48):10798-800.
[10] DiBenedetto SA, Facchetti A, Ratner MA, Marks TJJAm. Molecular self‐assembled monolayers and multilayers for organic and unconventional inorganic thin‐film transistor applications. 2009;21(14‐15):1407-33.
[11] Mühlenen Av, Castellani M, Schaer M, Zuppiroli LJpss. Controlling charge‐transfer at the gate interface of organic field‐effect transistors. 2008;245(6):1170-4.
[12] Pope M, Magnante P, Kallmann HP. Electroluminescence in Organic Crystals. J Chem Phys. 1963;38(8):2042-&.
[13] Tsumura A, Koezuka H, Ando TJAPL. Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Appl Phys Lett. 1986;49(18):1210-2.
[14] Barbe DF, Westgate CR. Surface State Parameters of Metal-Free Phthalocyanine Single Crystals. J Phys Chem Solids. 1970;31(12):2679-&.
[15] Wang CH, Hwang JC, Hsieh CY. Flexible organic thin‐film transistors with silk fibroin as the gate dielectric. Advanced Materials. 2011;23(14):1630-4.
[16] Kumar B, Kaushik BK, Negi YS. Perspectives and challenges for organic thin film transistors: materials, devices, processes and applications. J Mater Sci-Mater El. 2014;25(1):1-30.
[17] Brown AR, Jarrett CP, deLeeuw DM, Matters M. Field-effect transistors made from solution-processed organic semiconductors. Synthetic Met. 1997;88(1):37-55.
[18] Le Comber P, Spear W. Electronic transport in amorphous silicon films. Physical Review Letters. 1970;25(8):509.
[19] Horowitz G, Delannoy P. An analytical model for organic‐based thin‐film transistors. Journal of Applied Physics. 1991;70(1):469-75.
[20] Horowitz G, Hajlaoui R, Delannoy P. Temperature-Dependence of the Field-Effect Mobility of Sexithiophene - Determination of the Density of Traps. J Phys Iii. 1995;5(4):355-71.
[21] Brown AR, Deleeuw DM, Havinga EE, Pomp A. A Universal Relation between Conductivity and Field-Effect Mobility in Doped Amorphous Organic Semiconductors. Synthetic Met. 1994;68(1):65-70.
[22] Vissenberg M, Matters M. Theory of the field-effect mobility in amorphous organic transistors. Phys Rev B. 1998;57(20):12964-7.
[23] Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater. 2012;24(22):2945-86.
[24] Kim SJ, Yoon S, Kim HJ. Review of solution-processed oxide thin-film transistors. Jpn J Appl Phys. 2014;53(2):02BA.
[25] Campbell IH, Rubin S, Zawodzinski TA, Kress JD, Martin RL, Smith DL, et al. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Phys Rev B. 1996;54(20):14321-4.
[26] Kim SH, Lee J, Park N, Min H, Park HW, Kim DH, et al. Impact of Energetically Engineered Dielectrics on Charge Transport in Vacuum-Deposited Bis(triisopropylsilylethynyl)pentacene. J Phys Chem C. 2015;119(52):28819-27.
[27] Fukuda K, Hamamoto T, Yokota T, Sekitani T, Zschieschang U, Klauk H, et al. Effects of the alkyl chain length in phosphonic acid self-assembled monolayer gate dielectrics on the performance and stability of low-voltage organic thin-film transistors. Appl Phys Lett. 2009;95(20):296.
[28] Spori DM, Venkataraman NV, Tosatti SG, Durmaz F, Spencer ND, Zurcher S. Influence of alkyl chain length on phosphate self-assembled monolayers. Langmuir. 2007;23(15):8053-60.
[29] Tao YT. Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum. Journal of the American Chemical Society. 1993;115(10):4350-8.
[30] Halik M, Klauk H, Zschieschang U, Schmid G, Dehm C, Schutz M, et al. Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature. 2004;431(7011):963-6.
[31] Collet J, Tharaud O, Chapoton A, Vuillaume D. Low-voltage, 30 nm channel length, organic transistors with a self-assembled monolayer as gate insulating films. Appl Phys Lett. 2000;76(14):1941-3.
[32] Bramowicz M, Kulesza S, Rychlik K. A Comparison between Contact and Tapping AFM Mode in Surface Morphology Studies. Technical Sciences. 2012:307-18.
[33] Hofmann S. Practical Surface-Analysis - State-of-the-Art and Recent Developments in Aes, Xps, Iss and Sims. Surf Interface Anal. 1986;9(1-6):3-20.
[34] Bohacek J, editor Reference resistors for calibration of wideband LCR meters. Proc 18th IMEKO World Congress on Metrology for a Sustainable Development (Rio de Janeiro, Brazil, 17–22 September 2006); 2006.
[35] Kyaw HH, Al-Harthi SH, Sellai A, Dutta J. Self-organization of gold nanoparticles on silanated surfaces. Beilstein J Nanotechnol. 2015;6(1):2345-53.
[36] Vo TTT, Mahesh KPO, Lin PH, Tai Y. Impact of self-assembled monolayer assisted surface dipole modulation of PET substrate on the quality of RF-sputtered AZO film. Appl Surf Sci. 2017;403:356-61.
[37] P. S, Wenz G, Schunk P, Schimmel T. An improved method for the assembly of amino-terminated monolayers on SiO2 and the vapor deposition of gold layers. Langmuir. 1999;15(13):4520-3.
[38] Williams EH, Schreifels JA, Rao MV, Davydov AV, Oleshko VP, Lin NJ, et al. Selective streptavidin bioconjugation on silicon and silicon carbide nanowires for biosensor applications. J Mater Res. 2013;28(1):68-77.
[39] Yan XB, Xu T, Chen G, Yang SR, Liu HW, Xue QJ. Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. J Phys D Appl Phys. 2004;37(6):907-13.
[40] Awsiuk K, Psarouli A, Petrou P, Budkowski A, Kakabakos S, Bernasik A, et al. Spectroscopic and microscopic examination of protein adsorption and blocking of non-specific binding to silicon surfaces modified with APTES and GOPS. Procedia Engineering. 2011;25:334-7.
[41] Nakano M, Osaka I, Takimiya K. Control of Major Carriers in an Ambipolar Polymer Semiconductor by Self-Assembled Monolayers. Adv Mater. 2017;29(1):1602893.
[42] Natan A, Zidon Y, Shapira Y, Kronik L. Cooperative effects and dipole formation at semiconductor and self-assembled-monolayer interfaces. Phys Rev B. 2006;73(19):193310.
[43] Dong H, Jiang L, Hu W. Interface engineering for high-performance organic field-effect transistors. Phys Chem Chem Phys. 2012;14(41):14165-80.
[44] D. L, Q. M. Recent progress in interface engineering of organic thin film transistors with self-assembled monolayers. Materials Chemistry Frontiers. 2018;2(1):11-21.

無法下載圖示 全文公開日期 2024/08/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE