簡易檢索 / 詳目顯示

研究生: 李忠員
Chung-Yuang Lee
論文名稱: 以溶膠凝膠法製備TEOS/FAS疏水/疏油性薄膜於材料上之研究與應用
Using Sol-Gel Technology to Prepare TEOS/FAS Hydrophobic and Oleophobic Thin Film on Material Research and Application.
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 周宏隆
Hung-Lung Chou
蘇昱銘
Yu-Ming Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 88
中文關鍵詞: 溶膠凝膠法疏油疏水抗腐蝕薄膜AZ91D鎂合金
外文關鍵詞: anti-corrosion layers, sol-gel, hydrophobic, oleophobic, AZ91D.
相關次數: 點閱:515下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用溶膠凝膠法製備1H,1H,2H,2H-全氟辛基三乙氧基矽烷(triethoxy-1H,1H,2H,2H-tridecafluoro-n-octylsilane, FAS)改質四乙氧基矽烷(tetraethyl orthosilicate : TEOS)之無機/有機疏水性薄膜。其中矽烷、乙醇和水在酸、鹼性環境下進行水解反應後與1H,1H,2H,2H-全氟辛基三乙氧基矽烷(triethoxy-1H,1H,2H,2H-tridecafluoro-n-octylsilane)反應,利用氟-碳修飾二氧化矽奈米顆粒並以磁石攪拌器均勻反應形成凝膠,之後將凝膠以旋轉塗佈法(spin-coating)塗佈於玻璃基材上獲得一超疏水性薄膜。在添加氨水之鹼性環境下形成的薄膜帶有較大之顆粒,因此表面會變白,但其在玻璃上之水滴接觸角相較於中性與酸性環境下形成之薄膜高,其水滴接觸角高達151.65∘,二碘甲烷接觸角高達133.55∘而甘油接觸角高達155.51∘,在中性環境下水滴接觸角相較於鹼性要低一些,約為111.23∘,二碘甲烷接觸角為105.11∘,甘油接觸角為113.55∘,最後在添加鹽酸之環境下形成的薄膜幾乎接近於透明,但其水滴接觸角相較於鹼性與中性環境下之薄膜要來得低,水滴接觸角為109.83∘,二碘甲烷接觸角為92.32∘而甘油接觸角為113.24∘,在CCI與SEM的檢驗中,可以觀察不同酸鹼性的薄膜擁有不同的粗糙度,在FTIR的分析中,可以發現不僅只有物理結構的改變,也可以發現化學鍵結的變化,導致本實驗之薄膜有良好之疏水效果。
在實驗最後將不同酸鹼性的薄膜分別塗在磚頭、濾紙、A4紙上、玻璃,在這些材料上可以發現酸性藥劑在磚頭與玻璃上都能擁有良好之效果,而中性藥劑除了在上述材料中擁有良好效果以外,還發現其可以塗在鎂合金上以提升其抗腐蝕性,鹼性藥劑於上述材料中都能擁有良好之效果。


This paper describes a simple sol-gel technology to produce triethoxy-1H, 1H, 2H, 2H-tridecafluoro-n-octylsilane (FAS) modified tetraethoxysilane (TEOS) for fabricating both highly hydrophobic and oleophobic surface by coating thin fluoro-containing films. Desired surface roughness was obtained by tuning the microstructures of the sol–gels through precise control of hydrolysis, and condensation reactions of different pH solutions during sol–gel processing. The modification of surface chemistry was done by introducing a monolayer through surface condensation reaction. Changing the solution pH from acidic to alkaline, it becomes possible to form a superhydrophobic thin film on material surface. As NH4OH basic solution was used, the superhydrophobic film (>155°) was obtained, while a transparent thin film was produced by HCl acidic solution. The film formed in the neutral environment shows better corrosion resistance on AZ91D. The potential dynamic polarization tests and electrochemical impedance spectroscopy (EIS) measurement shows that neutral thin film coated on AZ91D alloys have more positive corrosion potential and lower corrosion current density than AZ91D substrates, indicating the corrosion resistance of AZ91D can be improved by depositing neutral thin film on its surface. A significant attention is paid to state of the anti-corrosion performance of superhydrophobic coatings. The microstructures of hydrophobic films were characterized by Scanning Electron Microscopy (SEM), which showed that nano-sized roughness increased by changing the solution pH from acidic to alkaline. Bonding force between the silica nanoparticles and FAS regent was analyzed by Fourier Transform Infrared (FT-IR) spectroscopy showed the presence of C-F and Si-O-Si bonds. Finally, we also evidently demonstrated superhydrophobic coatings on bricks, filter papers, A4 papers, and glasses.

中文摘要 Ⅰ Abstract Ⅲ 致謝 Ⅴ 目錄 Ⅶ 表目錄 Ⅹ 圖目錄 ⅩⅡ 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 文獻回顧 4 2.1 超疏水介紹 4 2.1.1 超疏水基礎 5 2.1.2 自然中的超疏水表面 8 2.2 製備超疏水表面的方法 10 2.2.1 微影製程 10 2.2.2 模板法 12 2.2.3 靜電紡絲 14 2.2.4 溶膠-凝膠法 16 2.2.5逐層法 18 2.2.6 蝕刻 19 2.2.7 化學氣相沉積 22 2.3 電漿簡介 24 2.4 溶膠-凝膠法簡介 26 第三章 實驗方法與實驗儀器 31 3.1 儀器設備 31 3.2 實驗藥品與耗材 32 3.3 實驗程序 33 3.3.1 磁石攪拌混合溶膠凝膠 33 3.4 薄膜鑑定與分析方法 34 3.4.1 水滴接觸角量測儀 34 3.4.2 綠光干涉儀 37 3.4.3 場發射掃描式電子顯微鏡 37 3.4.4 傅立葉紅外線光譜儀 38 3.4.5 百格刀測試 38 第四章 結果與討論 40 4.1 不同酸鹼值混合溶液之物理分析 40 4.1.1 接觸表面自由能 40 4.1.2 綠光干涉儀表面粗糙度之分析 41 4.1.3 SEM表面形貌觀察 41 4.1.4 百格刀測試 42 4.2薄膜之化學特性分析 46 4.2.1 傅立葉紅外線光譜儀 46 4.3 反應與機制 49 4.4 實驗應用與改良 50 4.4.1 電漿表面改質 50 4.4.2 動態滑移角 51 4.4.3 薄膜於鎂合金上腐蝕特性之研究 53 4.4.3.1 動電位極化曲線分析 53 4.4.3.2 阻抗頻譜分析 54 4.4.3.3 浸泡測試 55 4.4.4 不同溫度下疏水薄膜角度變化 59 4.4.5 應用範圍 59 第五章 結論與未來工作 64 5.1 結論 64 5.2 未來展望 65 第六章 參考文獻 66   表目錄 表3-1 實驗藥品與廠商。 32 表3-2 表面能計算公式適用表。 36 表3-3 典型量測液體之表面張力組成。 37 表4-1 不同酸鹼值水滴接觸角。 42 表4-2 不同酸鹼值薄膜與原始玻璃基材之CCI粗糙度。 44 表4-3 經過表面改質前後塗層之接觸角。 51 表4-4 以極化曲線所測得腐蝕電位、腐蝕電流密度與推算之腐蝕防護效率。 54 表4-5 原始鎂合金與塗佈中性膜試片之水滴接觸角。 56 表4-6 經過三天鹽酸浸泡測試後鎂合金與中性膜接觸角變化 56 表4-7 不同酸鹼性薄膜在不同溫度下之水滴接觸角。 59     圖目錄 圖1-1 蓮花效應示意圖。 2 圖2-1 顯示出一個液滴在固液氣三相接觸線的力。 4 圖2-2 液滴在粗糙面上不同的表現。 5 圖2-3 不同昆蟲在水面上特寫圖。 9 圖2-4 光刻示意與SEM圖。 11 圖2-5 疏水微圖案實際圖。 12 圖2-6 鉑奈米線陣列超疏水性表面的製備示意圖。 13 圖2-7 高密度聚乙烯FE-SEM與製備示意圖。 14 圖2-8 所製備對齊的PS奈米柱不同尖端的幾何形狀。 14 圖2-9 靜電紡絲SEM圖。 16 圖2-10 溶膠-凝膠法製備疏水薄膜實際與SEM圖。 18 圖2-11 表面經過電漿灰化30分鐘之後的SEM圖。 19 圖2-12 表面蝕刻AFM圖。 21 圖2-13 PDMS之SEM與水滴接觸角實際圖。 21 圖2-14 同晶片浸泡在CTAB蝕刻劑在不同超音波時間蝕刻處理SEM圖。 22 圖2-15 化學氣相沉積後SEM圖。 23 圖2-16 pH值對於反應速率圖。 28 圖2-17 pH值對於顆粒形成影響圖。 28 圖2-18 含水量3%~4%之薄膜側面SEM圖。 29 圖2-19 含水量0.3%~0.4%之薄膜側面SEM圖。 30 圖3-1 實驗流程圖。 33 圖3-2 表面濕潤示意圖。 35 圖4-1 不同酸鹼值薄膜於玻璃上之水滴接觸角實際圖。 43 圖4-2 不同酸鹼值薄膜與原始玻璃基材之CCI圖。 44 圖4-3 鍍膜後試片之SEM圖。 45 圖4-4 不同酸鹼值塗層於玻璃上之百格測試。 46 圖4-5 酸性薄膜之FTIR圖。 47 圖4-6 中性薄膜之FTIR圖。 48 圖4-7 鹼性薄膜之FTIR圖。 48 圖4-8 酸性環境下反應機制圖。 49 圖4-9 中性環境下反應機制圖。 49 圖4-10 鹼性環境下反應機制圖。 50 圖4-11 TEOS+ FAS混合溶液反應圖。 50 圖4-12 玻璃有/無經過表面改質鍍膜後SEM圖。 51 圖4-13 動態滑移角實際圖 52 圖4-14 原始鎂合金與鍍膜試片於3.5wt%NaCl水溶液中所測得極化曲線。 54 圖4-15鎂合金基材與鍍膜後試片之 EIS圖。 56 圖4-16 鎂合金基材試片之EIS圖。 56 圖4-17 有/無鍍膜鎂合金經過鹽酸浸泡三天後之SEM圖。 58 圖4-18 中性薄膜塗佈在鎂合金上,經過鹽酸浸泡三天後之水滴接觸角實際圖。 59 圖4-19 不同酸鹼值藥劑塗佈於玻璃上之實際圖。 61 圖4-20 不同酸鹼值藥劑塗佈於濾紙上之實際圖。 61 圖4-21 不同酸鹼值藥劑塗佈於濾紙並滴水實際圖。 62 圖4-22 不同酸鹼值藥劑塗佈於磚塊並滴水實際側面圖。 62 圖4-23 不同酸鹼值藥劑塗佈於磚塊並滴水實際俯視圖。 63 圖4-24 不同水溶液與甘油在A4紙上之實際圖。 63 圖4-25 不同液體在紙上之實驗。 64

[1] Z. Burton, B. Bhushan,” Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces,” Ultramicroscopy vol. 106, pp. 709-719, 2012.
[2] A. Poynor, L. Hong, I. K. Robinson, S. Granick, Z. Zhang, P. A. Fenter,” How water meets a hydrophobic surface,” Physical Review Letters vol. 97, pp. 266101 1-4, 2006.
[3] T. Onda, S. Shibuichi, N. Satoh, K. Tsujii,” Super-water-repellent fractal surfaces,” Langmuir vol. 12, pp. 9, 1996
[4] J. Bico, C. Marzolin, D. Quere,” Pearl drops,” Europhysics letters vol. 47, pp220-226, 1999.
[5] W. Chen, A. Y. Fadeev, M. C. Hsieh, D. Oner, J. Yoingblood, T. J. McCarthy,” Ultrahydrophobic and ultralyophobic surfaces: some comments and examples,” Langmuir vol. 15, pp. 3395-3399, 1999.
[6] Z. Yoshimitsu, A. Nakajima, T. Watanabe, K. Hashimoto,” Effects of surface structure on the hydrophobicity and sliding behavior of water droplets,” Langmuir vol. 18, pp. 5818-5822, 2002..
[7] J. Kijlstra, K. Reihs, A. Klamt,” Roughness and topology of ultra-hydrophobic surfaces,” Colloids and surfaces A: physicochemical and engineering aspects vol. 206, pp. 521-529, 2002
[8] N. A. Patankar,” Mimicking the lotus effect: influence of double roughness structures and slender pillars,” Langmuir vol. 20, pp. 8209-8213, 2004.
[9] W. Barthlott, C. Neinhuis,” Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta vol. 202, pp. 1-8, 1997.
[10] http://www.mse.fcu.edu.tw/wSite/publicfile/Attachment/f1348051531886.pdf.
[11] http://wthielicke.gmxhome.de/bionik/indexuk.htm.
[12] N. J. Shirtcliffe, G. McHale, M. I. Newton,” The superhydrophobicity of polymer surface: recent developments,” Journal of Polymer Science Part B: Polymer Physics vol. 49, pp. 1203-1217, 2011.
[13] R. J. Good,” A thermodynamic derivation of Wenzel’s modification of Young’s equation for cantact angles;together with a theory of hysteresis,” Journal of the American Chemical Society vol. 74, pp. 5041-5042, 1952.
[14] R. N. Wenzel,” Resistance of solid surfaces to wetting by water,” Journal of Industrial and Engineering Chemistry vol. 28, pp. 988-994, 1936.
[15] A. B. D. Cassie, S. Baxter,” Wettability of porous surfaces,” Transactions of the Faraday Society vol. 40, pp. 546-551, 1944.
[16] A. B. D. Cassie,” Contact angles,” Discussions of the Faraday Society vol. 3, pp. 11-16, 1948.
[17] L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu,” Superhydrophobic surfaces : from natural to artificial,” Advanced Materials vol. 24, pp. 1857-1860, 2002.
[18] L. Cao, T. P. Price, M. Weiss, D. Gao,” Super water and oil repellent surface on intrinsically hydrophilic and oleophilic porous silicon films,” Langmuir vol. 24, pp. 1640-1643, 2008.
[19] J. Wang, F. Liu, H. Chen, D. Chen,” Superhydrophobic behavior achieved from hydrophilic surfaces,” Applied physics letters vol. 95, pp. 84104 1-3, 2009.
[20] L. L. Liu, X. O. Feng, G. Wang, S. W. Yu,” Mechanisms of superhydrophobicity on hydrophilic substrates,” Journal of physics: Condensed Matter vol. 19, pp. 356002 1-12, 2007.
[21] A. Marmur,” From hydrophilic to superhydrophobic: Theoretical conditions for
making high-contact-angle surfaces from ;ow-contact-angle materials,” Langmuir vol. 24, pp. 7573-7579, 2008.
[22] H. H. Liu, H. Y. Zhang, W. Li,” Thermodynamic analysis on wetting behavior of hierarchical structured superhydrophobic surfaces,” Langmuir vol. 27, pp. 6260-6267, 2011.
[23] C. W. Extrand,” Model for contact angles and hysteresis on rough and ultraphobic surfaces,” Langmuir vol. 18, pp. 7991-7999, 2002.
[24] A. Tutwja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. Mckinley, R. E. Cohen,” Designing Superolelphobic Surfaces,” Science vol. 318, pp. 1618-1622, 2007.
[25] M. Nosonnvsky, B. Bhushan,” Biologically inspired surfaces: broadening the scope of roughness,” Advanced Functional Materials vol. 18, pp. 843-855, 2008.
[26] D. Quere, M. Reyssat,” Non-adhesive lotus and other hydrophobic materials,” Philosophical Transactions of The Royal Society A vol. 366, pp. 1539-1556, 2008.
[27] K. Koch, B. Bhushan, W. Barthlott,” Diversity of structure, morphology and wetting of plant surfaces,” Soft Matter vol. 4, pp. 1943-1963, 2008.
[28] Z. Guo, W. Liu,” Biomimic from the superhydrophobic plant leaves in nature:
Binary structure and unitary structure,” Plant Science vol. 172, pp. 1103-1112, 2007.
[29] W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Walheim, A. Weis, A. Kaltenmaier, A. Leder, H. F. Bohn,” The salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water,” Advanced Materials vol. 22, pp. 2325-328, 2010.
[30] K. Koch, W. Barthlott,” Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials,” Philosophical Transactions of The Royal Society A vol. 367, pp. 1487-1509, 2009.
[31] X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B.Yang, L. Jiang,” The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Advanced Materials vol. 19, pp. 2213-2217, 2007.
[32] W. Lee, M. K. Jin, W. C. Yoo, J. K. Lee,” Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability,” Langmuir vol. 20, pp. 7665-7669, 2004.
[33] Y. Zheng, X. Gao, L. Jiang,” Directional adhesion of superhydrophobic butterfly wings,” Soft Matter vol. 3, pp. 178-182, 2007.
[34] G. S. Watson, B. W Cribb, J. A. Watson,” How micro/nanoarchitecture facilitates
anti-wetting: an elegant hierarchical design on the termite wing,” ACS Nano vol. 4, pp. 129-136, 2010.
[35] R. P. Evershed, R. Berstan, F. Grew, M. S. Copley, A. J. H. Charmant, E. Barham, H. R. Mottram, G. Brown,” Water-repellent legs of water striders,” Nature vol. 432, pp. 36, 2004.
[36] D. L. Hu, J. W. M. Bush,” Meniscus-climbing insects,” Nature vol. 437, pp. 733-736, 2005.
[37] J. W. M. Bush, D. L. Hu, M. Prakash,” The integument of water-walking
arthropods: form and function,” Advances in Inset Physiology vol. 34, pp. 117-192, 2008.
[38] A. Balmert, H. F. Bohn, P. D. Kuru, W. Barthlott,” Dry under water: omparative morphology and functional aspects of air-retaining insect surfaces,” Journal of Morphology vol. 272, pp. 442-451, 2011.
[39] N. J. Shirtcliffe, G. McHale, M. I. Newton, C. C. Perry, F. B. Pyatt,” Plastron properties of a superhydrophobic surface,” Applied physics letters vol. 89, pp. 104106 1-2, 2006.
[40] X. Zhang, J. Zhao, Q. Zhu, N. Chen, M. Zhang, Q. Pan,” Bioinspired aquatic microrobot capable of walking on water surface like a water strider,” ACS Applied Materials and Interfaces vol. 3, pp.0630-2636, 2011.
[41] D. L. Herbertson, C. R. Evans, N. J. Shirtcliffe, G. McHale, M. I. Newton,” Electrowetting on superhydrophobic SU-8 patterned surfaces,” Sensors and Actuators A vol. 130-131, pp. 189-193, 2006.
[42] D. M. Spori, T. Drobek, S. Zurcher, N. D. Spencer,” Cassie-state wetting investigated by means of a hole-to-pillar density gradient,” Langmuir vol. 26, pp. 9465-9473, 2010.
[43] B. Bhushan, K. Koch, Y. C. Jung,” Fabrication and characterization of the hierarchical structure for superhydrophobicity and self-cleaning,” Ultramicroscopy vol. 109, pp. 1029-1034, 2009.
[44] J. Zhang, B. Yang,” Pattering colloidal crystals and nanostructure arrays
by soft lithography,” Advanced Functional Materials vol. 20, pp. 3411-3424, 2010.
[45] A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, M. Kaivola,” Optical Interference Lithography Using Azobenzene- Functionalized Polymers for Micro- and Nanopatterning of Silicon,” Advanced Materials vol. 23, pp. 4174-4177, 2011.
[46] A. Accardo, F. Gentile, F. Mecarini, F. D. Angelis, M. Burghammer, E. D. Fabrizio, C. Riekel,” In situ X-ray scattering studies of protein solution droplets drying
on micro- and nanopatterned superhydrophobic PMMA surfaces,” Langmuir vol. 26, pp. 15057-15064, 2010.
[47] S. G. Park, J. H. Moon, S. K. Lee, J. Shim, S. M. Yang,” Bioinspired holographically featured superhydrophobic and supersticky nanostructured materials,” Langmuir vol. 26, pp. 1468-1472, 2010.
[48] K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, G. Barbastathis,” Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano vol. 6, pp. 3789-3799, 2012.
[49] S. M. Kang, I. You, W. K. Cho, H. K. Shon, T. G. Lee, I. S. Choi, J. M. Karp, H. Lee,” One-step modification of superhydrophobic surfaces by a mussel-
inspired polymer coating,” Angewandte Chemie International Edition vol. 49, pp. 9401-9404, 2010.
[50] M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, Y. Chen,” Artificial lotus leaf by nanocasting,” Langmuir vol. 21, pp. 8978-8981, 2005.
[51] M. Qu, G. Zhao, Q. Wang, X. Cao, J. Zhang,” Fabrication of superhydrophobic surfaces by a Pt nanowire array on Ti/Si substrates,” Nanotechnology vol. 19, pp. 055707 1-5, 2008.
[52] X. Sheng, J. Zhang,” Superhydrophobic behaviors of polymeric surfaces with aligned nanofibers,” Langmuir vol. 25, pp. 6916-6922, 2009.
[53] Z. Cheng, J. Gao, L. Jiang,” Tip geometry controls adhesive states of superhydrophobic surfaces,” Langmuir vol. 26, pp. 8233-8238, 2010.
[54] A. Greiner, J. H. Wendorff,” Electrospinning: a fascinating method for the
preparation of ultrathin fibers,” Angewandte Chemie International Edition vol. 46, pp. 5070-5703, 2007.
[55] B. Grignard, A. Vaillant, J. D. Coninck, M. Piens, A. M. Jonas, C. Detrembleur, C. Jerome.” Electrospinning of a functional perfluorinated block copolymer as a powerful route for imparting superhydrophobicity and corrosion resistance to aluminum substrates.” Langmuir vol. 27, pp. 335-342, 2011.
[56] U. Cengiz, M. Z. Avci, H. Y. Erbil, A. S. Sarac,” Superhydrophobic terpolymer nanofibers containing perfluoroethyl alkyl methacrylate by electrospinning,” Applied Surface Science vol. 258, pp. 5815-5821, 2012.
[57] M. K. Sarkar, K. Bal, F. He, J. Fan,” Design of an outstanding super-hydrophobic surface by electro-spinning,” Applied Surface Science vol. 257, pp. 7003-7009, 2011.
[58] H. Xiang, L. Zhang, Z. Wang, X. Yu, Y. Long, X. Zhang, N. Zhao, J. Xu,” Multifunctional polymethylsilsesquioxane (PMSQ) surfaces prepared by electrospinning at the sol–gel transition: Superhydrophobicity, excellent solvent resistance, thermal stability and enhanced sound absorption property,”
Journal of Colloid and Interface Science vol. 359, pp. 296-303, 2011.
[59] Y. C. Sheen, Y. C. Huang, C. S. Liao, H. Y. Chou, F. C. Chang,” New approach to fabricate an extremely super-amphiphobic surface based on fluorinated silica
Nanoparticles,” Journal of Polymer Science: Part B: Polymer Physics vol. 46, pp. 1984-1990, 2008.
[60] W. Ma, H. Wu, Y. Higaki, H. Otsuka, A. Takahara,” A ‘‘non-sticky’’ superhydrophobic surface prepared by self-assembly of fluoroalkyl phosphonic acid on a hierarchically micro/nanostructured alumina gel film,” Chemical Communications vol. 48, pp. 6824-6826, 2012.
[61] S. A. Mahadik, M. S. Kavale, S. K. Mukherjee, A. V. Rao,” Transparent superhydrophobic silica coatings on glass by sol–gel method,” Applied Surface Science vol. 257, pp. 333-339, 2010.
[62] R. V. Lakshmi, T. Bharathidasan, P. Bea, B. J. Basu,” Fabrication of superhydrophobic and oleophobic sol–gel nanocomposite coating,” Surface & Coatings Technology vol. 206, pp. 3888-3894, 2012.
[63] E. Y. Kim, T. Hwang, S. S. Kim,” Change in microstructure and surface properties of electrospray-synthesized silica layers,” Journal of Colloid and Interface Science vol. 364, pp. 561-565, 2011.
[64] Y. Fan, C. Li, Z. Chen, H. Chen,” Study on fabrication of the superhydrophobic sol–gel films based on copper wafer and its anti-corrosive properties,” Applied Surface Science vol. 258, pp. 6531-6536, 2012.
[65] K. C. Camargo, A. F. Michels, F. S. Rodembusch, F. Horowitz,” Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region,” Chemical Communications vol. 48, pp.4992-4994, 2012.
[66] M. S. Kavale, D. B. Mahadik, V. G. Parale, P. B. Wagh, S. C. Gupta, A. V. Rao, H. C. Barshilia,” Applied Surface Science vol. 258, pp. 158-162, 2011.
[67] L. Xu, J. He,” Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles,” Langmuir vol. 28, pp. 7512-7518, 2012.
[68] R. M. Jisr, H. H. Rmaile, J. B. Schlenoff,” Hydrophobic and ultrahydrophobic multilayer thin films from perfluorinated polyelectrolytes,” Angewandte Chemie vol.44, pp. 782-758, 2005.
[69] W. Sun, L. Shen, J. Wang, K. Fu, J. Ji,” Netlike knitting of polyelectrolyte multilayers on honeycomb-patterned substrate,” Langmuir vol. 26, pp. 14236-14240, 2010.
[70] Y. H. Kim, Y. M. Lee, J. Y. Lee, M. J. Ko, P. J. Yoo,” Hierarchical nanoflake surface driven by spontaneous wrinkling of polyelectrolyte/metal complexed films,” ACS Nano vol. 6, pp. 1082-1093, 2012.
[71] E. J. Lee, C. H. Jung, I. T. Hwang, K. H. Choi, S. O. Cho, Y. C. Nho,” Surface morphology control of polymer films by electron irradiation and its application to superhydrophobic surfaces,” ACS Applied Materials and Interfaces vol. 3, pp. 2988-2993, 2011.
[72] N. Vandencasteele, B. Broze, S. Collette, C. D. Vos, P. Viville, R. Lazzaroni, F. Reniers,” Evidence of the synergetic role of charged species and atomic oxygen in the molecular etching of PTFE surfaces for hydrophobic surface synthesis,” Langmuir vol. 26, pp. 16503-16509, 2010.
[73] E. Wohlfart, J. P. F. Blazquez, E. Arzt, A. D. Campo,” Nanofibrillar patterns on PET: The influence of plasma parameters in surface morphology,” Plasma Processes and Polymers vol. 8, pp. 876-884, 2011.
[74] K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides,” Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: srom stable super hydrophilic to super hydrophobic surfaces,” Langmuir vol. 25, pp. 11748-11759, 2009.
[75] A. K. Gnanappa, D. P. Papageorgiou, E. Gogolides, A. Tserepi, A. G. Papathanasiou, A. G. Boudouvis,” Hierarchical, plasma nanotextured, robust
superamphiphobic polymeric surfaces structurally stabilized through a wetting–
drying cycle,” Plasma Processes and Polymers vol. 9, pp. 304-315, 2012.
[76] S. J. Hwang, D. J. Oh, P. G. Jung, S. M. Lee, J. S. Go, J. H. Kim, K. Y. Hwang, J. S. KO,” Dry etching of polydimethylsiloxane using microwave plasma,” Journal of Micromechanics and Microengineering vol. 19, pp. 095010 1-10, 2009.
[77] R. Wu, S. Liang, A. Pan, Z. Yuan, Y. Tang, X. Tan, D. Guan, Y. Yu,” Fabrication of nano-structured super-hydrophobic film on aluminum by controllable immersing method,” Applied Surface Science vol. 258, pp. 5933-5937, 2012.
[78] Y. Zhang, J. Wu, X. Yu, H. Wu,” Low-cost one-step fabrication of superhydrophobic surface on Al alloy,” Applied Surface Science vol. 257, pp. 7928-7931, 2011.
[79] J. P. Lee, S. Choi, S. Park,” Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching,” Langmuir vol. 27, pp. 809-814, 2011.
[80] R. Su, H. Liu, T. Kong, Q. Song, N. Li, G. Jin, G. Cheng,” Tuning surface wettability of InxGa(1-x)N nanotip arrays by phosphonic acid modification and photoillumination,” Langmuir vol. 27, pp. 13220-13225, 2011.
[81] L. Yao, M. Zheng, S. He, L. Ma, M. Li, W. Shen,” Preparation and properties of ZnS superhydrophobic surface with hierarchical structure,” Applied Surface Science vol. 257, pp. 2955-2959, 2011.
[82] C. R. Crick, S. Ismail, J. Praaten, I. P. Parkin,” An investigation into bacterial attachment to an elastomeric superhydrophobic surface prepared via aerosol assisted deposition,” Thin Solid Films vol. 519, pp. 3722-3727, 2011.
[83] R. A. Wolf, Atomospheric Pressure Plasma for Surface Modification: John Wiley
& Sons, 2013.
[84] R. E. Belford and S. Sood, “Surface Activation Using Remote Plasma for Hydrophilic Bonding at Elevated Temperature,” Electrochemical and Solid-State Letters, vol. 10, pp. H145, 2007.
[85] K. Johnsen, S. Kirkhorn, K. Olafsen, K. Redford, and A. Stori, “Modification of polyolefin surfaces by plasma-induced grafting,” Journal of Applied Polymer Science, vol. 59, pp. 1651-1657, 1996.
[86] T. M. Tillotson, L. W. Hrubesh,” Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process,” Journal of Non-Crystalline Solids vol. 145, pp. 44-50, 1992.
[87] C. H. Lin,” Preparation and property identification of nano-silica particles.” 第26屆 纖維紡織科技研討會, pp. 1113-1116.
[88] T.W. Zerda, I. Artaki, J. Jonas,” Study of polymerization processes in acid and base catalyzed silica sol-gels,” Journal of Non-Crystalline Solids vol. 81, pp. 365-379, 1986.
[89] 陳奇民,” 以溶膠凝膠法製備抗反射光學膜的研究,” 碩士, 應用化學系(所), 朝陽科技大學, 台中市, 2009.
[90] C.J. Brinker,” Hydrolysis and condensation of silicates: Effects on structure,” Journal of Non-Crystalline Solids vol. 100, pp. 31-50, 2003.
[91] I. Strawbridge, A. F. Craievich, P. F. James,” The effect of the H2O/TEOS ratio on the structure of gels derived by the acid catalysed hydrolysis of tetraethoxysilane,” Journal of Non-Crystalline Solids vo. 72, pp. 139-157, 1985.
[92] http://sindatek.com/Bmyl.htm.
[93] http://mypaper.pchome.com.tw/momoca/post/1324313883.

無法下載圖示 全文公開日期 2020/12/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE