簡易檢索 / 詳目顯示

研究生: 魏光男
Kuang-Nan Wei
論文名稱: 在Rayleigh-Bénard對流系統中奈米金粒子提昇聚合酵素連鎖反應效率
Enhancement of Polymerase Chain Reaction by Gold Nanoparticles in a Rayleigh-Bénard Convection cell
指導教授: 陳志強
Jyh-Chien Chen
陳明志
Ming-Jyh Chern
口試委員: 劉校生
Hsiao-Sheng Liu
林怡均
Yi-Jiun Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 82
中文關鍵詞: 聚合酵素連鎖反應效率自然對流基因複製奈米流體
外文關鍵詞: polymerase chain reaction, natural convection, DNA replication, nano fluid
相關次數: 點閱:190下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近來,文獻研究發現,加入少量的奈米金粒子,可以大幅的提昇傳統溫度循環式的
PCR(Polymerase Chain Reaction)反應器的效率 Li et al. [1]。雖然,提昇這個效應的機制尚未釐清,但是一般認為,加入奈米金粒子可以增加系統的熱傳效率 Li et al. [2]。而本實驗的主要研究方向為,奈米金粒子加入 Rayleigh-Bénard 對流的反應槽 (RBCC)內,同時執行 PCR, 然後研究奈米金粒子的流動特性,並且其中有何影響讓熱趨使流動更加旺盛。然後由電泳實驗分析中觀察到,在 RBCC中加入奈米金粒子,亦可以提昇 PCR效率。並找到一個最理想的奈米金粒子濃度提昇 PCR效率,這點與先前發表的文獻有著相似的結果。又由量測 RBCC內的流動速度分析中,可以顯現出,加入奈米金粒子,
同時也改變了流場的型態。所以論文中將詳細地討論,流場和 PCR效率之間兩者相互關係的機制。


Recently, it is shown that the addition of small amount of gold nano-particles can drastically enhance the efficiency of a traditional temperature cycling polymerase chain reaction (PCR) machine in the amplification of DNA, Li et al. [1]. Although the enhancement mechanism remains unknown, it is generally believed that the heat transfer efficiency of the system is increased by the addition of the nanoparticles, Li et al. [2]. A Rayleigh-B´enard convection cell (RBCC) is setup to study the heat driven flow properties of nano-particle enriched fluids and to perform the PCR at the same time. In electrophoresis experiments, it is found that the addition of gold nano-particles also enhances the efficiency of the PCR in a RBCC. Similar to previous findings, there is an optimal nano-particle concentration for the PCR.Velocity measurements reveal that the convection flow pattern in the RBCC is changed by the addition of nano-particles in the fluids. Possible mechanisms for the relation between the flow patterns and the PCR efficiency are discussed.

1 導論  1.1 研究動機與研究目的 1.1.1 DNA的歷史 1.1.2 PCR的原理 1.2 文獻回顧 1.3 論文架構 2 實驗材料與方法 2.1 PCR步驟與藥品調製 2.1.1 C-PCR的實驗步驟 2.1.2 RB-PCR的實驗步驟 2.2 電泳實驗 2.3 純化 2.4 溫控設備 2.5 流場觀測 2.6 結論 3 實驗結果分析 3.1 C-PCR與 RB-PCR比較分析 3.2 濃度影響分析 3.3 反應時間影響分析 3.4 流場型態分析 3.5 討論 3.6 結論 4 結論與建議 4.1 結論 4.2 建議 參考文獻

[1] Li, H., Huang, J., Lv, J., An, H., Zhang, X., Zhang, Z., Fan, C. and Hu, J., 2005, Nanoparticle PCR: nanogold-assisted PCR with echanced specificity.
Angewandte Chemie International Edition 44, 5100-5103.
[2] Wheeler, E.K., Benett, W., Stratton, P., Richards, J., Chen, A., Christian,
A., Ness, K.D., Ortega, J., Li, L.G., Weisgraber, T.H., Goodson, K. and
Milanovich, F., 2004, Convectively driven polymerase chain reaction thermal
cycler. Analytical Chemistry 76, 14, 4011-4016.
[3] Kubista, M., Andrade, J.M., Bengtsson, M., Forootan, A., Jon´ak, J., Lind,
K., Sindelka, R., Sj¨oback, R., Sj¨ogreen, B., Str¨ombon, L., St°ahlberg, A.,
Zoric, N., 2006, The real-time polymerase chain reaction. Molecular Aspects
of Medicine 27, 95-125.
[4] Pollack, M.G., Paik, P.Y., Shenderov, A.D., Pamula, V.K., Dietrich, F.S.
and Fair, R.B., 2003, Investigation of electrowetting-based microfluidics for
real-time PCR applications. Proceedings of the 7th International Conference
on Minialurized Chemical and Biochemical Analysis Systems, Squaw Valley,
California USA.
[5] Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A., 1988, Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239,487-491.
[6] M¨uller, G., Neumann, G. andWeber, W., 1984, Natural convection in vertical
Bridgman configurations. Journal of Crystal Growth 70, 78-93.
[7] Braun, D. and Libchaber, A., 2002, Trapping of DNA by thermophoretic
depletion and convection. Physical Review Letters 89, 188103.
[8] Krishnan, M., Ugaz, V.M. and Burns, M. A., 2002, PCR in a Rayleigh-B´enard
convection cell. Science 298, 793.
[9] Krishnan, M., Agrawal, N., Burns, M.A. and Ugaz, V.M., 2004, Reaction and
fluidics in miniaturized natural convection systems. Analytical Chemistry 76,
6254-6265.
[10] Braun, D., Goddard, N.L. and Libchaber, A., 2003, Exponential DNA replication by laminar convection. Physical Review Letters 91, 158103.
[11] Braun, D., 2004, PCR by thermal convection. Modern Physics Letters B 81,
775-784.
[12] Chen, Z., Qian, S., Abrams, W.R., Malamud, D. and Bau, H.H., 2004,
Thermosiphon-based PCR reactor: experiment and modeling. Analytical
Chemistry 76, 3707-3715.
[13] Li, M., Lin, Y.C., Wu, C.C. and Liu, H.S., 2005, Enhancing the efficiency of a PCR using gold nanoparticles. Nucleic Acids Research 33, 21.
[14] Watson, J.D. and Crick, F.H., 1953, Molecular structure of nucleic acids.
Nature 171, 737-738.
[15] Drlica, K.A., 1997, Understanding DNA and Gene Cloning. John Wiley, New
York, pp 44.
[16] Xia, K.Q. and Sun, C., 2005, Three-dimensional flow structures and dynamics of turbulent thermal convection in a chlindrical cell. Physical Review E 72,
026302.
[17] Adrian, R.J., 1991, Particle-imaging techniques for experimental fluid mechanics. Annual Reviews of Fluid Mechanics 23, 261-304.
[18] Rybicki, E.P., available at: www.mcb.uct.ac.za/pcroptim.htm
[19] Tiniand, B., Maaloum, M. and Pernodet, N., 1998, Agarose gel structure
using atomic force microscopy: gel concentration and ionic strength effects.
Electrophoresis 19, 1606-1610.
[20] Tiniand, B., Maaloum, M. and Pernodet, N., 1997, Pore size of agarose gels
by atomic force microscopy. Electrophoresis 18, 55-58.
[21] Li, H. and Rothberg, L., 2004, Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of sciences 101, 39.
[22] Shen, H.B., Hu, M., Wang, Y.B. and Zhou, H.Q., 2005, Polymerase chain
reaction of nanoparticle-bound primers. Biophysical Chemistry 115, 63-66.
[23] Li, H., and Rothberg, L., 2004, Label-free colorimeric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. Journal of the American Chemical Society 126, 10958-10961.
[24] Elghanian, R., Storhoff J.J., Mucic, R.C., Letsinger, R.L. and Mirkin,
C.A., 1997, Selective colorimetric detection of polynucleotides based on the
distance-dependent optical properties of gold nanoparticles. Science 277,
1078-1081.
[25] Ge, Z., Kang, Y., Taton, T.A., Braun, P.V., and Cahill, D.G., 2005, Thermal transport in Au-core polymer-shell nanoparticles. Nano Letters 5, 531-535.
[26] Akamatsu, K., Kimura, M., Shibata, Y., Nakano, S., Miyoshi, D., Nawafune,
H. and Sugimoto, N., 2006, A DNA with extremely enhanced thermal stability
based on controlled immobilization on gold nanoparticles. Nano Letters 6,
491-495.
[27] Yang, J., Lee, J.Y., Too, H.P. and Chow, G.M., 2006, Inhibition of DNA
hybridization by small metal nanoparticles. Biophysical Chemistry 120, 87-
95.
[28] Herdt, A.R., Drawz, S.M., Kang, Y. and Taton, T.A., 2006, DNA dissociation
and degradation at gold nanoparticle surfaces. Colloid and Surfaces B 51,
130-139.
[29] Putnam, S.A. and Cahill, D.G., 2006, Thermal conducticity of nanoparticle
suspensions. Journal of Applied Physics 99, 084308.

QR CODE