簡易檢索 / 詳目顯示

研究生: 游福安
Fu-An Yu
論文名稱: 金屬複合氧化物觸媒進行光催化氧化與還原反應及抗菌上應用之研究
Metal oxide composite photocatalysts for applications of photocatalytic oxidation、reduction, and antibacteria
指導教授: 郭東昊
Dong-hau Kuo
口試委員: 林惠娟
none
薛人愷
none
吳昌謀
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 139
中文關鍵詞: 可見光光觸媒抗菌染料裂解
外文關鍵詞: visible photocatalyst, anti-bacteria, dye degradation
相關次數: 點閱:205下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文是就奈米半導體光觸媒的合成與應用做相關研究,以某n型半導體當作載體,外層再覆上p型半導體,以形成p-n界面的複合材料。應用面上的測試採取兩大方向,一為水溶液相的有機物染料裂解及有害金屬鉻離子還原作探討,二為光觸媒抑菌效果的探討。
驗證複合光觸媒功能所採用的儀器分析包含結構分析: XRD、XPS;圖像分析: SEM、HR-TEM;光學分析: UV-VIS、PL,可得知其半導體能隙、不同光波長的吸收度等資訊。
應用面上,進行五種不同的染料的測試,包含AB 1、MB、EY、RHB、MO。五種染料分別在可見光及紫外光下進行氧化裂解測試,結果呈現p-n junction的複合材料效果最為突出;也用重金屬鉻離子配合其顯色劑1,5-二苯基二氨脲來測試光觸媒的還原性,結果呈現n型半導體還原性較為良好;最後用大腸桿菌當作菌源來測試光觸媒在照光下(可見光)及暗室下的抑菌效果,發現到本光觸媒殺菌效果驚人,即使在暗室下仍有強抗菌能力,且可以證實相同光觸媒材料下照光的光觸媒抑菌效果比暗室中更為突出。


The thesis is focused on research of synthesis and application of composite-type nano-semiconductor photocatalysts. By using n-type semiconductor as a substrate or carrier, we deposited p-type semiconductor on the surface of n-type semiconductor to form the coupled photocatalytic material.
The applications of this coupled photocatalytic material are involed in two ways, one is to degrade the organic dye solution and to reduce heavy metal chromium ion in solution, and the other is to test effectiveness of its anti-bacteria.
Several instruments used to confirm the coupled catalystic material are XRD and XPS for structural analysis, SEM and HR-TEM for image analysis, and UV-VIS and PL for optical analysis. Therefore, we can acquire some information like bandgap and the light absorption capability.
For application considerations, the first test is to do photo-degradation test with five different dyes under both visible and UV light. It was found that the coupled improved the dye photodegradation. The second test is about the reduction test of chromium ion under both visible and UV light. The data indicated that n-type semiconductor had the stongest ability in reducing chromium ion. The final test is to execute the anti-bacteria test with photocatalyst under visible light and in the dark. We observed that photocatalyst particle was quite effective to inhibit E. coli even without light. Overall, our photocatalyst under light showed much better ability to suppress bacteria than in the dark.

摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 1-1 前言 1-2 奈米材料 1-3 光觸媒簡介 1-4 研究動機 第二章 基礎理論與文獻回顧 2-1 n型半導體簡介 2-1-1 n型半導體性質 2-1-2 n型半導體製備 2-2 p型半導體簡介 2-2-1 p型半導體性質 2-2-2 p型半導體製備 2-3 奈米半導體光觸媒簡介 2-3-1 觸媒簡介 2-3-2 奈米現象 2-3-3 半導體光觸媒簡介 2-3-4 光觸媒裂解/還原機制簡介 2-3-5 光觸媒抗菌簡介 2-3-6 自由基簡介 2-4 半導體光觸媒改質 2-4-1 Doped摻雜改質 2-4-2 金屬改質 2-4-3 介面形成改質(Coupled) 2-4-4 混和的金屬多氧化物 第三章 實驗步驟 3-1 實驗藥品 3-2 實驗設備器材 3-3 實驗流程 3-3-1 材料的修飾 3-3-2 複合材料比例最適化 3-3-3 比例最適化後的再修飾 3-3-4 多種染料降解實驗以及六價鉻還原實驗 3-3-5 光觸媒抗菌應用 3-4 儀器分析介紹 3-4-1 表面分析 3-4-2 結構分析 3-4-3 光學分析 第四章 結果與討論 4-1 複合光觸媒-材料鑑定 4-1-1 X-ray Diffraction (XRD) 繞射分析 4-1-2 X-ray Photoelectron Spectroscopy (XPS) 4-1-3 Scanning Electron Microscopy (SEM) 4-1-4 High-Resolution Transmission Electron Microscopy (HR-TEM) 4-1-5 UV-VIS Spectroscopy 4-1-6 PL Spectroscopy 4-2 光觸媒在水溶液相中的應用 4-2-1 複合半導體光觸媒進行MB染料降解 4-2-2 以MB染料降解來尋求最適化的組成比例 4-2-3 以MB染料降解來尋求複合觸媒上最佳的第三層修飾材 4-2-4 利用紫外光、可見光裂解多種染料之能力 4-2-5 染料裂解重複使用性的探討 4-2-6 利用紫外光與可見光還原六價鉻離子 4-3 光觸媒在抗菌上的應用 第五章 結論 參考文獻

[1]呂宗昕、吳偉宏譯,“科學發展376期”,(2004)
[2]徐唯庭,“以奈米銀包覆二氧化鈦顆粒靶材製備含銀二氧化鈦薄膜於光觸媒與抗菌活性之特性分析”國立台灣科技大學材料科學與工程所碩士學位論文,(2014)
[3]鄭千芳,“以溶膠凝膠法製備複合奈米Ag/TiO2光觸媒之研究”國立雲林科技大學化學工程所碩士學位論文,(2005)
[4]葉世墉,“二氧化鈦的合成與光催化性質的研究” 國立中央大學化學工程與材料工程研究所碩士學位論文,(2005)
[5]張冠張,“低溫超臨界二氧化碳成長ZnO奈米管”國立中山大學機械與機電工程學系碩士論文,(2009)
[6]包榮宏,“以逆微胞法製備鐵/金核殼型奈米粒子之研究”南台科技大學電機工程研究所碩士學位論文,(2006)
[7]川合知二原著、林振華編譯、黃廷合校閱,“奈米技術入門”全華科技圖書股份有限公司
[8]黃柏榮,“製備披覆TiO2與Cu2ZnSnS4奈米粒之介孔SiO2複合微球於光觸媒應用”國立台灣科技大學材料科學與工程所碩士學位論文, (2014)
[9]馬振基,“ 奈米材料科技原理與應用 ”全華科技圖書股份有限公司,(2004)
[10]中技社,“21 世紀的綠色技術 - 光催化應用”
[11]廖倖娟,“以UV/TiO2光催化反應處理液相酚”國立台灣大學環境衛生研究所,(2001)
[12]Oliver, B.G., E.G. Cosgrove, and J.H. Carey, Effect of suspended sediments on the photolysis of organics in water. Environmental Science & Technology, 1979. 13(9): p. 1075-1077.
[13]胡振國譯,“半導體元件-物理與技術”全華圖書公司,(1989)
[14]Hoffmann, M.R., et al., Environmental applications of semiconductor photocatalysis. Chemical reviews, 1995. 95(1): p. 69-96.
[15]APHA Standard Methods for the Examination of Water and Wastewater; 16thed., American Public Health Association: Washington D.C., 1985; pp 201-204.
[16]Miwa, T., et al., Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite. International Journal of Hydrogen Energy, 2010. 35(13): p. 6554-6560.
[17]Yu, J., et al., Photogenerated electron reservoir in hetero-p–n CuO–ZnO nanocomposite device for visible-light-driven photocatalytic reduction of aqueous Cr (vi). Journal of Materials Chemistry A, 2015. 3(3): p. 1199-1207.
[18]Xiao-wang, L., et al., Synthesis, characterization and antibacterial property of Ag/mesoporous CeO2. The Chinese Journal of Nonferrous Metals, 2015. 22(6).
[19]張東憲,“奈米光觸媒應用於玻璃表面之自淨功能研究”國立台灣科技大學營建工程系研究所,(2004)
[20]Zhang, H., G. Chen, and D.W. Bahnemann, Photoelectrocatalytic materials for environmental applications. Journal of Materials Chemistry, 2009. 19(29): p. 5089-5121.
[21]Yang, J., et al., Controllable synthesis of Ag–CuO composite nanosheets with enhanced photocatalytic property. Materials Letters, 2014. 120: p. 16-19.
[22]Yao, W., et al., Synthesis and characterization of high efficiency and stable Ag3 PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions. Journal of Materials Chemistry, 2012. 22(9): p. 4050-4055.

QR CODE