簡易檢索 / 詳目顯示

研究生: 呂欣玲
Hsin-Ling Lu
論文名稱: 銀離子結合胜肽融合功能性類澱粉蛋白纖維之表面抗菌應用
Silver binding peptide Fused CsgA Coating for Antibacterial Application
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 王勝仕
陳奕君
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 87
中文關鍵詞: CsgA銀離子結合胜肽類澱粉蛋白
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 類澱粉蛋白纖維(amyloid fibrils)在醫學上為導致的阿茲海默和帕金森氏症的主要因素之一,然而類澱粉蛋白的獨特的自組裝特性可用於應用,功能性類澱粉蛋白亦存在於自然界生物細胞中,如由桿菌產生的類澱粉蛋白纖維,稱為捲曲纖維(curli fiber)。類澱粉蛋白傾向自組裝為具有奈米孔洞之高表面積類澱粉纖維網絡,其性質非常穩定,可以抵抗蛋白水解酶的水解和其他惡劣條件。此外,其高生物相容性使其廣泛用於藥物輸送,生物傳感器和組織工程的奈米纖維材料等各個領域。
    大腸桿菌或沙門氏菌的胞外纖維,稱為Csg系統。CsgA是捲曲纖維的主要亞基蛋白,它們在細胞質合成,然後以未折疊蛋白之形式運輸到細胞表面,在細胞表面自組裝後成為細胞外類澱粉蛋白纖維。已有許多研究將功能性胜肽或酵素蛋白與CsgA蛋白融合,經細胞表現生產後,此融合蛋白自組裝形成類澱粉蛋白纖維,而可成為酵素或功能性蛋白之固定化平台。
    本研究使用基因工程來生產CsgA融合蛋白,CsgA-Ag4和CBD-CsgA-Ag4,藉由大腸桿菌表達,並利用CsgA本身的自組裝能力和其與各種親疏水性材料表面之作用力將功能性胜肽固定化於表面,再藉由與之融合的銀離子結合胜肽(silver binding peptide)還原銀離子形成奈米銀使材料表面達到抗菌的效果,自組裝功能性奈米纖維具有一定的機械強度與穩定性以抵抗外在環境的變化。研究結果顯示CsgA-Ag4與CBD-CsgA-Ag4皆能在大腸桿菌系統中表達,且維持其功能進行自組裝並還原銀離子。CsgA-Ag4和CBD-CsgA-Ag4銀還原量差別不大,ICP結果顯示CBD-CsgA-Ag4銀還原量只高於CsgA-Ag4 0.81%,而每1 mg的CsgA融合蛋白能還原約17.7 ppm的銀離子。兩者抗菌效果相對於基材本身皆展示出99%以上的抗菌效果,而CsgA-Ag4相較於CBD-CsgA-Ag4有較好的抗菌表現。


    Amyloid fibrils formation in the tissue is one of the major factors which caused Alzheimer's disease and Parkinson's disease in human beings. However, the unique self-assemble property of amyloid can have some bio-applications. This type of proteins produced by Bacillus and are called Curli fiber. Amyloid are easy to self-aggregate to a fiber network which has a high surface area with nanopores. The network is very stable and can resist the hydrolysis of proteolytic enzymes and other harsh conditions. In addition, the high biocompatibility property make it widely used in various fields such as drug delivery, biosensors and tissue engineering’s nano-fiber material.
    The extracellular fiber of Escherichia coli or Salmonella, called Csg system are some parts of Curli fiber. CsgA are the main subunit proteins of curli fiber, which are synthesized in the cytoplasm in the form of unfolded proteins and then transported to the cell surface. Then they self-assemble on the cell surface and become extracellular amyloid fibrils. There are many previous reports about CsgA protein fused with some functional peptides or enzymes. After protein expression in cells, the fusion protein self-assembles and become amyloid fibrils, which can be used as immobilized platform for enzymes or functional proteins.
    In this work, we used genetic engineering to produce recombinant CsgA and its fusion with some functional peptides such as CsgA-Ag4 and CBD-CsgA-Ag4. All proteins have been expressed using E. coli as the host. CsgA and its fusions can self-assemble on both hydrophilic and hydrophobic surfaces due to CsgA’s characteristic of self adhesion. The fusion proteins CsgA-Ag4 and CBD-CsgA-Ag4 also had ability to bind with silver ions and reduced into silver nanoparticles via silver binding peptide (Ag4) and making the substrates surface antibacterial.
    The self-assembled functional nanofibers had a good mechanical strength and stability to resist the changes of the external environment. The results demonstrate that both CsgA-Ag4 and CBD-CsgA-Ag4 could be cloned and expressed in the E. coli system. The proteins could properly self-assembled on the substrates such as glass, silicone, and PC (polycarbonate) and reduced the binding silver ions. After compared both of fusion proteins, only small amount difference in silver reduction effect. ICP result showed the reduction amount of silver ions in the CBD-CsgA-Ag4 was only 0.81% higher than the CsgA-Ag4. The CsgA fusion proteins showed 17.7 ppm reduced amount of silver ion per mg protein. Both CsgA fusion proteins showed approximately 99% antibacterial effect compared to the bare substrate. In conclusion, CsgA-Ag4 had better antibacterial performance compared to CBD-CsgA-Ag4.

    摘要 I Abstract II 致謝 IV 目錄 V 圖索引 VII 表索引 IX 第一章 緒論 1 1.1 前言 1 1.2 研究目的與內容 2 第二章 文獻回顧 4 2.1 類澱粉蛋白(Amyloids) 4 2.2 生物膜(biofilm)之形成 6 2.3 捲曲類澱粉纖維(Curli amyloid fibrils) 7 2.4 Ag4(silver binding peptide)還原奈米銀(AgNPs)與其殺菌機制 11 第三章 實驗材料與方法 14 3.1 實驗流程 14 3.2 實驗材料與設備 14 3.2.1 實驗室質體與菌株 14 3.2.2 生物膜/抗菌之基材 14 3.2.3 實驗藥品與酵素 15 3.2.4 溶液配製 17 3.2.5 實驗儀器與設備 19 3.3 實驗方法 21 3.3.1 表現質體之建構 21 3.3.1.1 質體DNA純化 24 3.3.1.2 聚合酶連鎖反應(Polymerase chain reaction, PCR) 25 3.3.1.3 DNA電泳(DNA Electrophoresis) 26 3.3.1.4 DNA之膠體純化 26 3.3.1.5 限制酶酶切反應(restriction enzyme digestion) 27 3.3.1.6 DNA clean up 27 3.3.1.7 DNA接合反應(ligation) 28 3.3.1.8 轉形(transformation) 28 3.3.1.9 篩選重組DNA 28 3.3.2 重組蛋白之表達 29 3.3.3 蛋白質濃度分析 30 3.3.4 金屬離子親和力層析法(immobilized metal affinity chromatography,IMAC) 31 3.3.5 蛋白質電泳分析 32 3.3.6 western blot 西式墨點法分析 33 3.3.7 抽氣過濾純化Curli fusion protein兼固定化 35 3.3.8 剛果紅(Congo Red)染色 35 3.3.9 硫黃素T(Thioflavin T)螢光分析 36 3.3.10 抗菌評估 36 3.3.11 微結晶纖維素(MCC)吸附蛋白含量測定 37 3.3.12 蛋白纖維性質與應用鑑定分析 38 3.3.13 生物膜分析 39 第四章 結果與討論 41 4.1 生物膜生長觀察 41 4.2 mCsgA-Ag4之質體表達建構、表達及純化 45 4.3 CBD-mCsgA-Ag4之質體表達建構、表達及純化 46 4.4 剛果紅結合分析(Congo red binding assay) 51 4.5 硫黃素T(Thioflavin T)分析(ThT assay) 52 4.7 場發射掃描式電子顯微鏡(FE-SEM)分析 56 4.8 微結晶纖維素(MCC)吸附蛋白含量測定 59 4.9 熱重分析(TGA) 60 4.10 電感耦合電漿體光學發射光譜法(ICP-OES) 61 4.11 抗菌評估 63 第五章 結論 67 第六章 參考文獻 69

    Andersson, E. K., Bengtsson, C., Evans, M. L., Chorell, E., Sellstedt, M., Lindgren, A. E., Wittung-Stafshede, P. (2013). Modulation of curli assembly and pellicle biofilm formation by chemical and protein chaperones. Chemistry & biology, 20(10), 1245-1254.
    Biancalana, M., & Koide, S. (2010). Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1804(7), 1405-1412.
    Blanco, P., Hernando-Amado, S., Reales-Calderon, J. A., Corona, F., Lira, F., Alcalde-Rico, M., Martinez, J. L. (2016). Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms, 4(1), 14.
    Bolisetty, S., & Mezzenga, R. (2016). Amyloid–carbon hybrid membranes for universal water purification. Nature nanotechnology, 11(4), 365-371.
    Botyanszki, Z., Tay, P. K., Nguyen, P. Q., Nussbaumer, M. G., & Joshi, N. S. (2015). Engineered catalytic biofilms: Site-specific enzyme immobilization onto E. coli curli nanofibers. Biotechnol Bioeng, 112(10), 2016-2024.
    Chapman, M. R., Robinson, L. S., Pinkner, J. S., Roth, R., Heuser, J., Hammar, M., Hultgren, S. J. (2002). Role of Escherichia coli curli operons in directing amyloid fiber formation. Science, 295(5556), 851-855.
    Chen, A. Y., Deng, Z., Billings, A. N., Seker, U. O., Lu, M. Y., Citorik, R. J., Lu, T. K. (2014). Synthesis and patterning of tunable multiscale materials with engineered cells. Nature materials, 13(5), 515-523.
    Cho, K. H., Park, J. E., Osaka, T., & Park, S. G. (2005). The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 51(5), 956-960.
    Chung, P. Y., & Toh, Y. S. (2014). Anti-biofilm agents: recent breakthrough against multi-drug resistant Staphylococcus aureus. Pathogens and disease, 70(3), 231-239.
    Credou, J., & Berthelot, T. (2014). Cellulose: from biocompatible to bioactive material. Journal of Materials Chemistry B, 2(30), 4767-4788.
    Cui, M., Qi, Q., Gurry, T., Zhao, T., An, B., Pu, J., Zhong, C. (2019). Modular genetic design of multi-domain functional amyloids: insights into self-assembly and functional properties. Chem Sci, 10(14), 4004-4014.
    DeBenedictis, E. P., Liu, J., & Keten, S. (2016). Adhesion mechanisms of curli subunit CsgA to abiotic surfaces.pdf. SCIENCE ADVANCES | RESEARCH ARTICLE.
    Dobias, J., & Bernier-Latmani, R. (2013). Silver Release from Silver Nanoparticles in Natural Waters. Environmental Science & Technology, 47(9), 4140-4146.
    Donlan, R. M. (2001). Biofilms and device-associated infections. Emerging infectious diseases, 7(2), 277.
    Dorval Courchesne, N. M., Duraj-Thatte, A., Tay, P. K. R., Nguyen, P. Q., & Joshi, N. S. (2016). Scalable Production of Genetically Engineered Nanofibrous Macroscopic Materials via Filtration. ACS Biomaterials Science & Engineering, 3(5), 733-741.
    Dueholm, M. S., Petersen, S. V., Sønderkær, M., Larsen, P., Christiansen, G., Hein, K. L., Nielsen, P. H. (2010). Functional amyloid in Pseudomonas. Molecular microbiology, 77(4), 1009-1020.
    Durán, N., Durán, M., de Jesus, M. B., Seabra, A. B., Fávaro, W. J., & Nakazato, G. (2016). Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology and Medicine, 12(3), 789-799.
    Evans, M. L., Chorell, E., Taylor, J. D., Aden, J., Gotheson, A., Li, F., Chapman, M. R. (2015). The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol Cell, 57(3), 445-455.
    Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature reviews microbiology, 8(9), 623-633.
    Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., & Galdiero, M. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20(5), 8856-8874.
    Gade Malmos, K., Blancas-Mejia, L. M., Weber, B., Buchner, J., Ramirez-Alvarado, M., Naiki, H., & Otzen, D. (2017). ThT 101: a primer on the use of thioflavin T to investigate amyloid formation. Amyloid, 24(1), 1-16.
    Goldberg, M. S., & Jr, P. T. L. (2000). Is There a Cause-And-Effect Relationship Between Alpha-Synuclein Fibrillization and Parkinson's Disease? Nature Cell Biology, 2, E115.
    Goyal, P., Krasteva, P. V., Van Gerven, N., Gubellini, F., Van den Broeck, I., Troupiotis-Tsaïlaki, A., Chapman, M. R. (2014). Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature, 516(7530), 250-253.
    Gras, S. L., Tickler, A. K., Squires, A. M., Devlin, G. L., Horton, M. A., Dobson, C. M., & MacPhee, C. E. (2008). Functionalised amyloid fibrils for roles in cell adhesion. Biomaterials, 29(11), 1553-1562.
    Groenning, M. (2010). Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils—current status. Journal of chemical biology, 3(1), 1-18.
    Hammar, M. r., Arnqvist, A., Bian, Z., Olsén, A., & Normark, S. (1995). Expression of two csg operons is required for production of fibronectin‐and congo red‐binding curli polymers in Escherichia coli K‐12. Molecular microbiology, 18(4), 661-670.
    Hammer, N. D., McGuffie, B. A., Zhou, Y., Badtke, M. P., Reinke, A. A., Brannstrom, K., Chapman, M. R. (2012). The C-terminal repeating units of CsgB direct bacterial functional amyloid nucleation. J Mol Biol, 422(3), 376-389.
    Hoffner, G., & Djian, P. (2015). Polyglutamine Aggregation in Huntington Disease: Does Structure Determine Toxicity? Mol Neurobiol, 52(3), 1297-1314.
    Huang, J., Liu, S., Zhang, C., Wang, X., Pu, J., Ba, F., Zhong, C. (2019). Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nat Chem Biol, 15(1), 34-41.
    Jain, N., Ådén, J., Nagamatsu, K., Evans, M. L., Li, X., McMichael, B., Chapman, M. R. (2017). Inhibition of curli assembly and Escherichia coli biofilm formation by the human systemic amyloid precursor transthyretin. Proceedings of the National Academy of Sciences, 114(46), 12184-12189.
    Jayaraman, R. (2009). Antibiotic resistance: an overview of mechanisms and a paradigm shift. Current science, 1475-1484.
    Kalyoncu, E., Ahan, R. E., Olmez, T. T., & Safak Seker, U. O. (2017). Genetically encoded conductive protein nanofibers secreted by engineered cells. RSC Advances, 7(52), 32543-32551.
    Kaushik, A., Sharma, S. K., Chatzinotas, S., Ottersten, B., & Jondral, F. K. (2016). On the Performance Analysis of Underlay Cognitive Radio Systems: A Deployment Perspective. IEEE Transactions on Cognitive Communications and Networking, 2(3), 273-287.
    Kikuchi, T., Mizunoe, Y., Takade, A., Naito, S., & Yoshida, S. i. (2005). Curli fibers are required for development of biofilm architecture in Escherichia coli K‐12 and enhance bacterial adherence to human uroepithelial cells. Microbiology and immunology, 49(9), 875-884.
    Knowles, T. P., & Mezzenga, R. (2016). Amyloid Fibrils as Building Blocks for Natural and Artificial Functional Materials. Adv Mater, 28(31), 6546-6561.
    Laboratories, K. (1995, June 1, 2011). KEGG Pathway Maps. Retrieved from https://www.genome.jp/kegg/kegg3a.html
    Lee, E., Kim, D. H., Woo, Y., Hur, H. G., & Lim, Y. (2008). Solution structure of peptide AG4 used to form silver nanoparticles. Biochem Biophys Res Commun, 376(3), 595-598.
    Levy, I., & Shoseyov, O. (2002). Cellulose-binding domains: Biotechnological applications. Biotechnology Advances, 20(3), 191-213.
    Limoli, D. H., Jones, C. J., & Wozniak, D. J. (2015). Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. Microbiol Spectr, 3(3).
    Liu, J., & Hurt, R. H. (2010). Ion Release Kinetics and Particle Persistence in Aqueous Nano-Silver Colloids. Environmental Science & Technology, 44(6), 2169-2175.
    Marambio-Jones, C., & Hoek, E. M. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531-1551.
    Mika, F., & Hengge, R. (2014). Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli. RNA Biol, 11(5), 494-507.
    Nenninger, A. A., Robinson, L. S., Hammer, N. D., Epstein, E. A., Badtke, M. P., Hultgren, S. J., & Chapman, M. R. (2011). CsgE is a curli secretion specificity factor that prevents amyloid fibre aggregation. Molecular microbiology, 81(2), 486-499.
    Nenninger, A. A., Robinson, L. S., & Hultgren, S. J. (2009). Localized and efficient curli nucleation requires the chaperone-like amyloid assembly protein CsgF. Proceedings of the National Academy of Sciences, 106(3), 900-905.
    Nguyen, P. Q. (2017). Synthetic biology engineering of biofilms as nanomaterials factories. Biochem Soc Trans, 45(3), 585-597.
    Nguyen, P. Q., Botyanszki, Z., Tay, P. K. R., & Joshi, N. S. (2014). Programmable biofilm-based materials from engineered curli nanofibres. Nature communications, 5(1), 1-10.
    Onur, T., Yuca, E., Olmez, T. T., & Seker, U. O. S. (2018). Self-assembly of bacterial amyloid protein nanomaterials on solid surfaces. J Colloid Interface Sci, 520, 145-154.
    Parker, A., Cureoglu, S., De Lay, N., Majdalani, N., & Gottesman, S. (2017). Alternative pathways for Escherichia coli biofilm formation revealed by sRNA overproduction. Mol Microbiol, 105(2), 309-325.
    Pilkington, S. M., Roberts, S. J., Meade, S. J., & Gerrard, J. A. (2010). Amyloid fibrils as a nanoscaffold for enzyme immobilization. Biotechnol Prog, 26(1), 93-100.
    Poole, K. (2002). Mechanisms of bacterial biocide and antibiotic resistance. Paper presented at the Symposium Series (Society for Applied Microbiology).
    Reichhardt, C., Jacobson, A. N., Maher, M. C., Uang, J., McCrate, O. A., Eckart, M., & Cegelski, L. (2015). Congo Red Interactions with Curli-Producing E. coli and Native Curli Amyloid Fibers. PLoS One, 10(10), e0140388.
    Renner, L. D., & Weibel, D. B. (2011). Physicochemical regulation of biofilm formation. MRS Bull, 36(5), 347-355.
    Romero, D., Aguilar, C., Losick, R., & Kolter, R. (2010). Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proceedings of the National Academy of Sciences, 107(5), 2230-2234.
    Ryan M. K., Chester Li, Daniel C. Carter, Morley O. Stone, a., & Rajesh R. Naik. (2004). Engineered Protein Cages for Nanomaterial Synthesis. JACS.
    Seker, U. O., Chen, A. Y., Citorik, R. J., & Lu, T. K. (2017). Synthetic Biogenesis of Bacterial Amyloid Nanomaterials with Tunable Inorganic-Organic Interfaces and Electrical Conductivity. ACS Synth Biol, 6(2), 266-275.
    Shih, T. Y., & Tsai, S. L. (2014). Simultaneous silver recovery and bactericidal bionanocomposite formation via engineered biomolecules. RSC Adv., 4(77), 40994-40998.
    Sipe, J. D., & Cohen, A. S. (2000). Review: history of the amyloid fibril. J Struct Biol, 130(2-3), 88-98.
    Sleutel, M., Van den Broeck, I., Van Gerven, N., Feuillie, C., Jonckheere, W., Valotteau, C., Remaut, H. (2017). Nucleation and growth of a bacterial functional amyloid at single-fiber resolution. Nat Chem Biol, 13(8), 902-908.
    Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science, 275(1), 177-182.
    Sportelli, M. C., Izzi, M., Volpe, A., Clemente, M., Picca, R. A., Ancona, A., Cioffi, N. (2018). The Pros and Cons of the Use of Laser Ablation Synthesis for the Production of Silver Nano-Antimicrobials. Antibiotics (Basel), 7(3).
    Su, H. L., Chou, C. C., Hung, D. J., Lin, S. H., Pao, I. C., Lin, J. H., Lin, J. J. (2009). The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials, 30(30), 5979-5987.
    Taglialegna, A., Lasa, I., & Valle, J. (2016). Amyloid Structures as Biofilm Matrix Scaffolds. J Bacteriol, 198(19), 2579-2588.
    Taglialegna, A., Navarro, S., Ventura, S., Garnett, J. A., Matthews, S., Penades, J. R., Valle, J. (2016). Staphylococcal Bap proteins build amyloid scaffold biofilm matrices in response to environmental signals. PLoS pathogens, 12(6).
    Tanskanen, M. (2013). “Amyloid”—Historical Aspects. Amyloidosis, 1.
    Treter, J., & Macedo, A. (2011). Catheters: a suitable surface for biofilm formation. Handbook: science against microbial pathogens: communicating current research and technological advances. Spain: Formatex Research Center, 835-842.
    Van Gerven, N., Goyal, P., Vandenbussche, G., De Kerpel, M., Jonckheere, W., De Greve, H., & Remaut, H. (2014). Secretion and functional display of fusion proteins through the curli biogenesis pathway. Mol Microbiol, 91(5), 1022-1035.
    Van Gerven, N., Klein, R. D., Hultgren, S. J., & Remaut, H. (2015). Bacterial amyloid formation: structural insights into curli biogensis. Trends in microbiology, 23(11), 693-706.
    Walsh, T. R., & Knecht, M. R. (2017). Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chemical Reviews, 117(20), 12641-12704.
    Wang, X., & Chapman, M. R. (2008). Sequence Determinants of Bacterial Amyloid Formation. J Mol Biol., 570–580.
    Wang, X., Pu, J., An, B., Li, Y., Shang, Y., Ning, Z., Zhong, C. (2018). Programming Cells for Dynamic Assembly of Inorganic Nano-Objects with Spatiotemporal Control. Adv Mater, 30(16), e1705968.
    Westermark, G. T., Johnson, K. H., & Westermark, P. (1999). [1] Staining methods for identification of amyloid in tissue. In Methods in enzymology (Vol. 309, pp. 3-25): Elsevier.
    Wu, X., Li, M., Li, Z., Lv, L., Zhang, Y., & Li, C. (2017). Amyloid-graphene oxide as immobilization platform of Au nanocatalysts and enzymes for improved glucose-sensing activity. Journal of colloid and interface science, 490, 336-342.
    Xu, Y., & Foong, F. C. (2008). Characterization of a cellulose binding domain from Clostridium cellulovorans endoglucanase-xylanase D and its use as a fusion partner for soluble protein expression in Escherichia coli. Journal of Biotechnology, 135(4), 319-325.
    Yang, X., Li, Z., Xiao, H., Wang, N., Li, Y., Xu, X., Li, J. (2018). A Universal and Ultrastable Mineralization Coating Bioinspired from Biofilms. Advanced Functional Materials, 28(32).
    Yeom, S.-J., Han, G. H., Kim, M., Kwon, K. K., Fu, Y., Kim, H., Lee, S.-G. (2017). Controlled aggregation and increased stability of β-glucuronidase by cellulose binding domain fusion. PLoS One, 12(1), e0170398.
    Zhang, C., Li, Y., Wang, H., He, S., Xu, Y., Zhong, C., & Li, T. (2018). Adhesive bacterial amyloid nanofiber-mediated growth of metal-organic frameworks on diverse polymeric substrates. Chem Sci, 9(25), 5672-5678.
    Zhang, H., Wu, M., & Sen, A. (2012). Silver nanoparticle antimicrobials and related materials. In Nano-antimicrobials (pp. 3-45): Springer.
    Zhong, C., Gurry, T., Cheng, A. A., Downey, J., Deng, Z., Stultz, C. M., & Lu, T. K. (2014). Strong underwater adhesives made by self-assembling multi-protein nanofibres. Nat Nanotechnol, 9(10), 858-866.

    無法下載圖示 全文公開日期 2025/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE