簡易檢索 / 詳目顯示

研究生: 陳銘崇
Ming-Chung Chen
論文名稱: 以新穎有機添加物改進高分子異質界面太陽能電池效能之研究
Improving the Efficiency of Bulk-Heterojunction Polymer Photovoltaics by Novel Organic Additives
指導教授: 戴 龑
Yian Tai
口試委員: 廖德章
none
陳貴賢
none
林麗瓊
none
王俊凱
none
黃柏仁
none
楊志仁
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 161
中文關鍵詞: 有機太陽能電池添加劑異質界面結構光電轉換效率
外文關鍵詞: Organic photovoltaic, Additive, Bulk-Heterojunction, Power conversion efficiency
相關次數: 點閱:226下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來關於有機高分子太陽能電池研究,大多數將共軛高分子材料應用於異質界面(有機/無機)系統中,由於這一類的材料具有較高的光吸收效應與較佳的電子導電特性,因此廣泛的被應用到有機太陽能電池之吸光層(Active layer)。然而,目前的文獻大多以P3HT/PCBM混摻材料作為吸光層且其應用是最為廣泛;這一類的報告利用溫度變化與表面形態的控制來改善吸光層中激子(exciton)傳導特性,藉以提升元件整體效率;在此系統之中高分子混摻之電子施體(donor)與受體(acceptor)區域分佈依然難以得到最好的控制與目前大多的材料都受限於吸光範圍過於窄範圍之因素,進而影響元件整體效率。因此,經由添加少許的新穎有機材料於吸光層中,藉以改善元件內部激子傳導與提升光吸收效能,亦可降低此現象發生之機率。
在本論文研究目標,利用添加新穎有機材料於吸光層中(P3HT/PCBM-base)成為三成分混摻系統之太陽能電池結構。並利用四種具有不同特性之有機材料各別加入於P3HT/PCBM-base系統中並探討其各系統之現象與結果。除此之外,此四種有機材料之能階位置皆可與P3HT/PCBM相互匹配不會造成激子傳導之阻礙進而影響元件中載子傳輸之效能。此現象可提升載子傳輸與分離效能並降低其傳輸之障礙、增加吸光層之吸光效能進而提升太陽能電池整體效率。經由添加四種不同特性之新穎有機材料於各別系統中之研究,使得太陽電池整體元件效能提升至25%–35%。


In this report, we discussed major factors which limit the efficiencies of organic photovoltaics (OPV), and demonstrate the utilization of polymers as additive in the active layer of bulk hetero-junction (BHJ) OPVs to improve the device performances. There are several causes that limit the performance of the OPV. Among them, the properties of the active materials are the most determining factors. Ideally, the donor polymers should have a broad absorption (low band-gap) in the solar spectrum to ensure effective light harvesting. In addition, to achieve efficient exciton dissociation, the donor (D) and acceptor (A) phase sizes must be sufficiently small to enable efficient charge separation at their interface, yet, a bicontinuous network of D and A phases must exist with sufficiently high and considerable balanced mobilities to allow the efficient charge transport to the electrodes. Furthermore, a suitable band alignment of D-A interface in controlling the dissociation of bound excitons is of importance. In order to enhance the power conversion efficiency (PCE) of the OPV with the fulfillment of above mentioned criteria, there is still great interest in combining organic semiconductors and polymers that exhibit optical or electrical vantages in the existing OPV devices. Herein, we utilized the unique polymers within the active layer of a BHJ OPV, and individually control the light harvesting, the band alignment and the constitution of the D-A interfaces, the nano-morphologies of D/A materials, and the carrier mobilities in the active layer. With such approaches, we achieved the improvement of the PCE of the devices by around 25–35% as compared to the pristine OPV. Our study paves the way for improving the performance of OPVs by the polymer additives.

Chinese Abstract I English Abstract II Acknowledgments III Table of Contents V Figure Index VIII Table Index XIV List of abbreviation XV List of corresponding names XVII Chapter 1 Introduction 1 1.1 Preface 1 1.2 Types of solar cells 2 1.2.1 Inorganic solar cells 3 1.2.2 Organic solar cells 3 1.2.3 Advantages of organic photovoltaic (OPV) 5 1.3 Development of organic photovoltaic (OPV) 7 1.3.1 Single-layer of conjugated polymers 8 1.3.2 Bilayer hetero-junction of conjugated polymers 9 1.3.3 Bulk hetero-junction (BHJ) of conjugated polymers 10 1.4 Improvement of BHJ active layer property 14 1.4.1 Effects of solvent 14 1.4.2 Effects of annealing 16 1.4.3 Effects of additives 20 1.5 Conjugated polymers for application in organic electronics 22 1.6 Research Objectives 26 Chapter 2 Theory 27 2.1 Fundamental principles of OPV 27 2.1.1 Working principle of OPV 27 2.1.2 Basic parameters of OPV 31 2.1.3 Equivalent circuit diagram 36 2.2 Solar spectrum irradiance 39 2.3 Organic solar concentrators (OSCs) 41 Chapter 3 Experimental Section 44 3.1 Experimental apparatus 44 3.1.1 Thermal evaporator system 44 3.1.2 Organic photovoltaic glove box systems 45 3.1.3 Photolithography system 46 3.2 Materials 47 3.2.1 Active layer materials 47 3.2.2 Additive materials 48 3.3 Experimental procedure 49 3.3.1 Cleaned of ITO substrate 49 3.3.2 Fabrication pattern of the OPV device substrate 50 3.3.3 Solar cell device substrate 51 3.3.4 Device fabrication of hole and electron structure 52 3.3.5 Device fabrication of conventional structure 53 3.3.6 Device fabrication of inverted structure 56 3.4 Characterization instrumentation 59 3.4.1 Cyclic Voltammetry (CV) 59 3.4.2 Photoelectron Spectroscopy in Air (AC2) 60 3.4.3 Photoluminescence (PL) 61 3.4.4 Ultraviolet-visible spectroscopy (UV-Vis) 62 3.4.5 X-ray diffraction (XRD) 63 3.4.6 Atomic Force Microscopy (AFM) 64 3.4.7 External Quantum Efficiency (EQE) 65 3.4.8 Internal Quantum Efficiency (IQE) 66 3.4.9 Measurement of carrier mobility 67 3.4.10 Solar simulator measurement system 68 Chapter 4 Result and Discussion 69 4.1 Cascade effect of ambipolar polymer 69 4.2 Charge balance effect of higher hole-mobility polymer 82 4.3 Charge separation effect of small-molecule 91 4.4 Solar concentrator effect of high fluorescence molecular 103 4.5 Summary 117 Chapter 5 Conclusion and Future research 120 Appendix 121 Reference 122 Curriculum Vitae 135 Publication List 137

(1)http://www.alternative-energy-resources.net/.
(2)http://www.ren21.net/globalstatusreport/download/RE_GSR_2006_Updata.PDF.
(3)Günes, S.; Neugebauer, H.; Sariciftci, N. S. Chemical Reviews 2007, 107, 1324.
(4)Maturová, K.; van Bavel, S. S.; Wienk, M. M.; Janssen, R. A. J.; Kemerink, M. Nano Letters 2009, 9, 3032.
(5)Tang, C. W. Applied Physics Letters 1986, 48, 183.
(6)Makowski, M. W. Review of Scientific Instruments 1949, 20, 876.
(7)http://www.nrel.gov/ncpv/.
(8)Miles, R. W.; Zoppi, G.; Forbes, I. Materials Today 2007, 10, 20.
(9)Van Wieringen, A.; Warmoltz, N. Physica 1956, 22, 849.
(10)Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.
(11)Schmidt-Mende, L.; Bach, U.; Humphry-Baker, R.; Horiuchi, T.; Miura, H.; Ito, S.; Uchida, S.; Grätzel, M. Advanced Materials 2005, 17, 813.
(12)Sullivan, P.; Jones, T. S.; Ferguson, A. J.; Heutz, S. Applied Physics Letters 2007, 91.
(13)Zhao, D.; Tang, W.; Ke, L.; Tan, S. T.; Sun, X. W. ACS Applied Materials & Interfaces 2010, 2, 829.
(14)Stenzel, O.; Stendal, A.; Voigtsberger, K.; von Borczyskowski, C. Solar Energy Materials and Solar Cells 1995, 37, 337.
(15)Coakley, K. M.; Liu.Y.; Goh, C.; McGehee, M. D. 2005, 30, 37.
(16)Janssen, R. A. J.; Hummelen, J. C.; Saricifti, N. S. MRS Bulletin 2005, 30, 33.
(17)Dennler, G.; Scharber, M. C.; Ameri, T.; Denk, P.; Forberich, K.; Waldauf, C.; Brabec, C. J. Advanced Materials 2008, 20, 579.
(18)Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474.
(19)Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat Mater 2005, 4, 864.
(20)Hou, J.; Chen, H. Y.; Zhang, S.; Chen, R. I.; Yang, Y.; Wu, Y.; Li, G. Journal of the American Chemical Society 2009, 131, 15586.
(21)Mei, J.; Ogawa, K.; Kim, Y. G.; Heston, N. C.; Arenas, D. J.; Nasrollahi, Z.; McCarley, T. D.; Tanner, D. B.; Reynolds, J. R.; Schanze, K. S. ACS Applied Materials & Interfaces 2009, 1, 150.
(22)Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J. Advanced Materials 2006, 18, 572.
(23)Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Nat Photon 2009, 3, 297.
(24)Chen, H. Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Nat Photon 2009, 3, 649.
(25)Peet, J.; Senatore, M. L.; Heeger, A. J.; Bazan, G. C. Advanced Materials 2009, 21, 1521.
(26)Nielsen, T. D.; Cruickshank, C.; Foged, S.; Thorsen, J.; Krebs, F. C. Solar Energy Materials and Solar Cells 2010, 94, 1553.
(27)Helgesen, M.; Sondergaard, R.; Krebs, F. C. Journal of Materials Chemistry 2010, 20, 36.
(28)Xiang, X. B.; Du, W. H.; Chang, X. L.; Yuan, H. R. Solar Energy Materials and Solar Cells 2001, 68, 97.
(29)Krebs, F. C.; Fyenbo, J.; Jorgensen, M. Journal of Materials Chemistry 2010, 20, 8994.
(30)Reese, M. O.; Gevorgyan, S. A.; Jørgensen, M.; Bundgaard, E.; Kurtz, S. R.; Ginley, D. S.; Olson, D. C.; Lloyd, M. T.; Morvillo, P.; Katz, E. A.; Elschner, A.; Haillant, O.; Currier, T. R.; Shrotriya, V.; Hermenau, M.; Riede, M.; R. Kirov, K.; Trimmel, G.; Rath, T.; Inganäs, O.; Zhang, F.; Andersson, M.; Tvingstedt, K.; Lira-Cantu, M.; Laird, D.; McGuiness, C.; Gowrisanker, S.; Pannone, M.; Xiao, M.; Hauch, J.; Steim, R.; DeLongchamp, D. M.; Rösch, R.; Hoppe, H.; Espinosa, N.; Urbina, A.; Yaman-Uzunoglu, G.; Bonekamp, J.-B.; van Breemen, A. J. J. M.; Girotto, C.; Voroshazi, E.; Krebs, F. C. Solar Energy Materials and Solar Cells 2011, 95, 1253.
(31)Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Advanced Functional Materials 2001, 11, 15.
(32)Wang, J. C.; Weng, W. T.; Tsai, M. Y.; Lee, M. K.; Horng, S. F.; Perng, T. P.; Kei, C. C.; Yu, C. C.; Meng, H. F. Journal of Materials Chemistry 2010, 20, 862.
(33)Dipl.Ing. Klaus Petritsch, O. S. C. A., PhD Thesis(2002).
(34) Krebs, F. C.; Søndergaard, R.; Jørgensen, M. Solar Energy Materials and Solar Cells 2011, 95, 1348.
(35)Krebs, F. C. Solar Energy Materials and Solar Cells 2009, 93, 1636.
(36)Espinosa, N.; García-Valverde, R.; Urbina, A.; Krebs, F. C. Solar Energy Materials and Solar Cells 2011, 95, 1293.
(37)Gaudiana, R.; Brabec, C. Nat Photon 2008, 2, 287.
(38)http://en.wikipedia.org/wiki/Organic_solar_cell#cite_note-Nelson-4.
(39)Marks, R. N.; Halls, J. J. M.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. Journal of Physics: Condensed Matter 1994, 6, 1379.
(40)McGehee, M. D.; Topinka, M. A. Nat Mater 2006, 5, 675.
(41)Peumans, P.; Yakimov, A.; Forrest, S. R. Journal of Applied Physics 2003, 93, 3693.
(42)Nelson, J. Current Opinion in Solid State and Materials Science 2002, 6, 87.
(43)Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.
(44)Reyes-Reyes, M.; Kim, K.; Carroll, D. L. Applied Physics Letters 2005, 87, 083506.
(45)Chen, X.; Yang, J.; Haley, L. Y. X. C.; Lu, J.; Zhu, F.; Loh, K. P. Organic Electronics 2010, 11, 1942.
(46)Hau, S. K.; Yip, H. L.; Ma, H.; Jen, A. K. Y. Applied Physics Letters 2008, 93, 233304.
(47)White, M. S.; Olson, D. C.; Shaheen, S. E.; Kopidakis, N.; Ginley, D. S. Applied Physics Letters 2006, 89, 143517.
(48)Monson, T. C.; Lloyd, M. T.; Olson, D. C.; Lee, Y. J.; Hsu, J. W. P. Advanced Materials 2008, 20, 4755.
(49)Chang, J. H.; Chen, Y. H.; Lin, H. W.; Lin, Y. T.; Meng, H. F.; Chen, E. C. Organic Electronics 2012, 13, 705.
(50)Zhou, Y.; Li, F.; Barrau, S.; Tian, W.; Inganäs, O.; Zhang, F. Solar Energy Materials and Solar Cells 2009, 93, 497.
(51)Yang, T.; Cai, W.; Qin, D.; Wang, E.; Lan, L.; Gong, X.; Peng, J.; Cao, Y. The Journal of Physical Chemistry C 2010, 114, 6849.
(52)Shrotriya, V.; Li, G.; Yao, Y.; Chu, C. W.; Yang, Y. Applied Physics Letters 2006, 88, 073508.
(53)Irwin, M. D.; Buchholz, D. B.; Hains, A. W.; Chang, R. P. H.; Marks, T. J. Proceedings of the National Academy of Sciences 2008, 105, 2783.
(54)Schumann, S.; Da Campo, R.; Illy, B.; Cruickshank, A. C.; McLachlan, M. A.; Ryan, M. P.; Riley, D. J.; McComb, D. W.; Jones, T. S. Journal of Materials Chemistry 2011, 21, 2381.
(55)Han, S.; Shin, W. S.; Seo, M.; Gupta, D.; Moon, S. J.; Yoo, S. Organic Electronics 2009, 10, 791.
(56)Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Advanced Functional Materials 2005, 15, 1617.
(57)Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Nat Mater 2007, 6, 497.
(58)Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C. S.; Ree, M. Nat Mater 2006, 5, 197.
(59)Cai, W.; Wang, M.; Zhang, J.; Wang, E.; Yang, T.; He, C.; Moon, J. S.; Wu, H.; Gong, X.; Cao, Y. The Journal of Physical Chemistry C 2011, 115, 2314.
(60)Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. Applied Physics Letters 2001, 78, 841.
(61)Liu, J.; Shi, Y.; Yang, Y. Advanced Functional Materials 2001, 11, 420.
(62)Dittmer, J. J.; Marseglia, E. A.; Friend, R. H. Advanced Materials 2000, 12, 1270.
(63)Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Advanced Functional Materials 2003, 13, 85.
(64)Soci, C.; Hwang, I. W.; Moses, D.; Zhu, Z.; Waller, D.; Gaudiana, R.; Brabec, C. J.; Heeger, A. J. Advanced Functional Materials 2007, 17, 632.
(65)Lee, J. K.; Ma, W. L.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.; Heeger, A. J. Journal of the American Chemical Society 2008, 130, 3619.
(66)Yao, Y.; Shi, C.; Li, G.; Shrotriya, V.; Pei, Q.; Yang, Y. Applied Physics Letters 2006, 89, 153507.
(67)Li, G.; Shrotriya, V.; Yao, Y.; Yang, Y. Journal of Applied Physics 2005, 98, 043704.
(68)Erb, T.; Zhokhavets, U.; Gobsch, G.; Raleva, S.; Stühn, B.; Schilinsky, P.; Waldauf, C.; Brabec, C. J. Advanced Functional Materials 2005, 15, 1193.
(69)Yang, F.; Shtein, M.; Forrest, S. R. Nat Mater 2005, 4, 37.
(70)Shrotriya, V.; Yao, Y.; Li, G.; Yang, Y. Applied Physics Letters 2006, 89, 063505.
(71)Peet, J.; Soci, C.; Coffin, R. C.; Nguyen, T. Q.; Mikhailovsky, A.; Moses, D.; Bazan, G. C. Applied Physics Letters 2006, 89, 252105.
(72)Moulé, A. J.; Meerholz, K. Advanced Materials 2008, 20, 240.
(73)Li, L.; Lu, G.; Yang, X. Journal of Materials Chemistry 2008, 18, 1984.
(74)Koster, L. J. A.; Mihailetchi, V. D.; Blom, P. W. M. Applied Physics Letters 2006, 88, 093511.
(75)Chen, M. X.; Perzon, E.; Robisson, N.; Jönsson, S. K. M.; Andersson, M. R.; Fahlman, M.; Berggren, M. Synthetic Metals 2004, 146, 233.
(76)Kulkarni, A. P.; Kong, X.; Jenekhe, S. A. Macromolecules 2006, 39, 8699.
(77)Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletête, M.; Durocher, G.; Tao, Y.; Leclerc, M. Journal of the American Chemical Society 2007, 130, 732.
(78)Wienk, M. M.; Turbiez, M.; Gilot, J.; Janssen, R. A. J. Advanced Materials 2008, 20, 2556.
(79)Zhu, Z.; Waller, D.; Gaudiana, R.; Morana, M.; Mühlbacher, D.; Scharber, M.; Brabec, C. Macromolecules 2007, 40, 1981.
(80)Steckler, T. T.; Zhang, X.; Hwang, J.; Honeyager, R.; Ohira, S.; Zhang, X. H.; Grant, A.; Ellinger, S.; Odom, S. A.; Sweat, D.; Tanner, D. B.; Rinzler, A. G.; Barlow, S.; Brédas, J. L.; Kippelen, B.; Marder, S. R.; Reynolds, J. R. Journal of the American Chemical Society 2009, 131, 2824.
(81)Usta, H.; Facchetti, A.; Marks, T. J. Journal of the American Chemical Society 2008, 130, 8580.
(82)Muller, C. D.; Falcou, A.; Reckefuss, N.; Rojahn, M.; Wiederhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholz, K. Nature 2003, 421, 829.
(83)de Gans, B. J.; Duineveld, P. C.; Schubert, U. S. Advanced Materials 2004, 16, 203.
(84)Arias, A. C.; Ready, S. E.; Lujan, R.; Wong, W. S.; Paul, K. E.; Salleo, A.; Chabinyc, M. L.; Apte, R.; Street, R. A.; Wu, Y.; Liu, P.; Ong, B. Applied Physics Letters 2004, 85, 3304.
(85)Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chemical Reviews 2009, 109, 5868.
(86)Jayakannan, M.; Van Hal, P. A.; Janssen, R. A. J. Journal of Polymer Science Part A: Polymer Chemistry 2002, 40, 2360.
(87)Perzon, E.; Wang, X.; Admassie, S.; Inganäs, O.; Andersson, M. R. Polymer 2006, 47, 4261.
(88)Roncali, J. Macromolecular Rapid Communications 2007, 28, 1761.
(89)Roncali, J. Chemical Reviews 1992, 92, 711.
(90)Perepichka, I. F.; Perepichka, D. F.; Meng, H.; Wudl, F. Advanced Materials 2005, 17, 2281.
(91)Thelakkat, M. Macromolecular Materials and Engineering 2002, 287, 442.
(92)Liaw, D. J.; Hsu, P. N.; Chen, W. H.; Lin, S. L. Macromolecules 2002, 35, 4669.
(93)Liaw, D. J.; Wang, K. L.; Kang, E. T.; Pujari, S. P.; Chen, M. H.; Huang, Y. C.; Tao, B. C.; Lee, K. R.; Lai, J. Y. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47, 991.
(94)Strohriegl, P.; Grazulevicius, J. V. Advanced Materials 2002, 14, 1439.
(95)Shirota, Y. Journal of Materials Chemistry 2005, 15, 75.
(96)Leclerc, M. Journal of Polymer Science Part A: Polymer Chemistry 2001, 39, 2867.
(97)Blouin, N.; Michaud, A.; Leclerc, M. Advanced Materials 2007, 19, 2295.
(98)Zhang, Z. G.; Wang, J. Journal of Materials Chemistry 2012, 22, 4178.
(99)Sedra/Smith, M. c., fifth edtion, OXFORD.
(100) http://sales.hamamatsu.com/assets/html/ssd/si-photodiode/index.htm.
(101) Saunders, B. R.; Turner, M. L. Advances in Colloid and Interface Science 2008, 138, 1.
(102) Xue, J.; Rand, B. P.; Uchida, S.; Forrest, S. R. Advanced Materials 2005, 17, 66.
(103) Rand, B. P.; Genoe, J.; Heremans, P.; Poortmans, J. Progress in Photovoltaics: Research and Applications 2007, 15, 659.
(104) Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Advanced Materials 2006, 18, 789.
(105) Huynh, W. U.; Dittmer, J. J.; Libby, W. C.; Whiting, G. L.; Alivisatos, A. P. Advanced Functional Materials 2003, 13, 73.
(106) Rostalski, J.; Meissner, D. Solar Energy Materials and Solar Cells 2000, 61, 87.
(107) Case, M. A.; Owusu, Y. A.; Chapman, H.; Dargan, T.; Ruscher, P. Renewable Energy 2008, 33, 2645.
(108) Goetzberger, A.; Greube, W. Appl. Phys. 1977, 14, 123.
(109) Weber, W. H.; Lambe, J. Appl. Opt. 1976, 15, 2299.
(110) Forster, T. Discussions of the Faraday Society 1959, 27, 7.
(111) Dexter, D. L. Journal of Luminescence 1979, 779, 18.
(112) Achermann, M.; Petruska, M. A.; Kos, S.; Smith, D. L.; Koleske, D. D.; Klimov, V. I. Nature 2004, 429, 642.
(113) Basko, D.; Rocca, G. C. L.; Bassani, F.; Agranovich, V. M. The European Physical Journal B 1999, 8, 353.
(114) Klar, T. A.; Franzl, T.; Rogach, A. L.; Feldmann, J. Advanced Materials 2005, 17, 769.
(115) Franzl, T.; Klar, T. A.; Schietinger, S.; Rogach, A. L.; Feldmann, J. Nano Letters 2004, 4, 1599.
(116) J. K. Mapel , PhD Thesis (2008).
(117) Currie, M. J.; Mapel, J. K.; Heidel, T. D.; Goffri, S.; Baldo, M. A. Science 2008, 321, 226.
(118) Chen, M. C.; Liaw, D. J.; Huang, Y. C.; Wu, H. Y.; Tai, Y. Solar Energy Materials and Solar Cells 2011, 95, 2621.
(119) Chen, W. H.; Wang, K. L.; Hung, W. Y.; Jiang, J. C.; Liaw, D. J.; Lee, K. R.; Lai, J. Y.; Chen, C. L. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, 4654.
(120) Chen, M. C.; Kar, S.; Liaw, D. J.; Chen, W. H.; Huang, Y. C.; Tai, Y. Organic Electronics 2012, 13, 2702.
(121) Perednis, D.; Gauckler, L. J. Journal of Electroceramics 2005, 14, 103.
(122) Tsierkezos, N. J Solution Chem 2007, 36, 289.
(123) http://www.rkiinstruments.com/pages/AC2.htm.
(124) Goh, C.; Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Frechet, J. M. J. Applied Physics Letters 2005, 86, 122110.
(125) Xin, H.; Guo, X.; Kim, F. S.; Ren, G.; Watson, M. D.; Jenekhe, S. A. Journal of Materials Chemistry 2009, 19, 5303.
(126) Manceau, M.; Bundgaard, E.; Carle, J. E.; Hagemann, O.; Helgesen, M.; Sondergaard, R.; Jorgensen, M.; Krebs, F. C. Journal of Materials Chemistry 2011, 21, 4132.
(127) Dam, N.; Scurlock, R. D.; Wang, B.; Ma, L.; Sundahl, M.; Ogilby, P. R. Chemistry of Materials 1999, 11, 1302.
(128) Lee, Y. Z.; Chen, X.; Chen, S. A.; Wei, P.-K.; Fann, W. S. Journal of the American Chemical Society 2001, 123, 2296.
(129) Wu, I. C.; Lai, C. H.; Chen, D. Y.; Shih, C. W.; Wei, C. Y.; Ko, B. T.; Ting, C.; Chou, P. T. Journal of Materials Chemistry 2008, 18, 4297.
(130) Zhang, Z. G.; Zhang, K. L.; Liu, G.; Zhu, C. X.; Neoh, K. G.; Kang, E. T. Macromolecules 2009, 42, 3104.
(131) Dai, J.; Jiang, X.; Wang, H.; Yan, D. Applied Physics Letters 2007, 91, 253503.
(132) Thompson, B. C.; Fréchet, J. M. J. Angewandte Chemie International Edition 2008, 47, 58.
(133) Sakanoue, T.; Yahiro, M.; Adachi, C.; Takimiya, K.; Toshimitsu, A. Journal of Applied Physics 2008, 103, 094509.
(134) Kim, H.; Shin, M.; Kim, Y. The Journal of Physical Chemistry C 2009, 113, 1620.
(135) Huang, J. H.; Velusamy, M.; Ho, K. C.; Lin, J. T.; Chu, C. W. Journal of Materials Chemistry 2010, 20, 2820.
(136) Dastoor, P. C.; McNeill, C. R.; Frohne, H.; Foster, C. J.; Dean, B.; Fell, C. J.; Belcher, W. J.; Campbell, W. M.; Officer, D. L.; Blake, I. M.; Thordarson, P.; Crossley, M. J.; Hush, N. S.; Reimers, J. R. The Journal of Physical Chemistry C 2007, 111, 15415.
(137) Tamayo, A. B.; Walker, B.; Nguyen, T. Q. The Journal of Physical Chemistry C 2008, 112, 11545.
(138) Tamayo, A. B.; Dang, X. D.; Walker, B.; Seo, J.; Kent, T.; Nguyen, T. Q. Applied Physics Letters 2009, 94, 103301.
(139) Chen, W. H.; Wang, K. L.; Liaw, D. J.; Lee, K. R.; Lai, J. Y. Macromolecules 2010, 43, 2236.
(140) Liaw, D. J.; Wang, K. L.; Pujari, S. P.; Huang, Y. C.; Tao, B. C.; Chen, M. H.; Lee, K. R.; Lai, J. Y. Dyes and Pigments 2009, 82, 109.
(141) Coakley, K. M.; McGehee, M. D. Chemistry of Materials 2004, 16, 4533.
(142) Smestad, G. P.; Krebs, F. C.; Lampert, C. M.; Granqvist, C. G.; Chopra, K. L.; Mathew, X.; Takakura, H. Solar Energy Materials and Solar Cells 2008, 92, 371.
(143) Melzer, C.; Koop, E. J.; Mihailetchi, V. D.; Blom, P. W. M. Advanced Functional Materials 2004, 14, 865.
(144) Braun, C. L. The Journal of Chemical Physics 1984, 80, 4157.
(145) Mandoc, M. M.; Koster, L. J. A.; Blom, P. W. M. Applied Physics Letters 2007, 90, 133504.
(146) Mauer, R.; Kastler, M.; Laquai, F. Advanced Functional Materials 2010, 20, 2085.
(147) Liao, Y. L.; Hung, W. Y.; Hou, T. H.; Lin, C. Y.; Wong, K. T. Chemistry of Materials 2007, 19, 6350.
(148) Davis, W. B.; Svec, W. A.; Ratner, M. A.; Wasielewski, M. R. Nature 1998, 396, 60.
(149) Chang, C. W.; Liou, G. S. Journal of Materials Chemistry 2008, 18, 5638.
(150) Wynands, D.; Levichkova, M.; Leo, K.; Uhrich, C.; Schwartz, G.; Hildebrandt, D.; Pfeiffer, M.; Riede, M. Applied Physics Letters 2010, 97, 073503.
(151) Huang, J. H.; Ho, Z. Y.; Kekuda, D,; Chang, Yung.; Chu C. W.; Ho, K. C. Nanotechnology 2009, 20, 025202.
(152) Chang, Y. T.; Hsu, S. L.; Su, M. H.; Wei, K. H. Advanced Materials 2009, 21, 2093.
(153) Brabec, C. J. Solar Energy Materials and Solar Cells 2004, 83, 273.
(154) Goliber, T. E.; Perlstein, J. H. The Journal of Chemical Physics 1984, 80, 4162.
(155) D Chirvase, J. P., J C Hummelen and V Dyakonov Nanotechnology 2004, 15, 1317.
(156) Sista, S.; Yao, Y.; Yang, Y.; Tang, M. L.; Bao, Z. Applied Physics Letters 2007, 91, 223508.
(157) Ooi, Z. E.; Tam, T. L.; Shin, R. Y. C.; Chen, Z. K.; Kietzke, T.; Sellinger, A.; Baumgarten, M.; Mullen, K.; deMello, J. C. Journal of Materials Chemistry 2008, 18, 4619.
(158) Besocke, K. Rev. Sci. Instrum. 1976, 47, 840.
(159) Schaller, R. D.; Sykora, M.; Jeong, S.; Klimov, V. I. The Journal of Physical Chemistry B 2006, 110, 25332.
(160) Su, M. S.; Kuo, C. Y.; Yuan, M. C.; Jeng, U. S.; Su, C. J.; Wei, K. H. Advanced Materials 2011, 23, 3315.
(161) Campoy-Quiles, M.; Kanai, Y.; El-Basaty, A.; Sakai, H.; Murata, H. Organic Electronics 2009, 10, 1120.
(162) Wu, H. Y.; Wang, K. L.; Jiang, J. C.; Liaw, D. J.; Lee, K. R.; Lai, J. Y.; Chen, C. L. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, 3913.
(163) Winder, C.; Matt, G.; Hummelen, J. C.; Janssen, R. A. J.; Sariciftci, N. S.; Brabec, C. J. Thin Solid Films 2002, 403–404, 373.
(164) Liu, Y.; Summers, M. A.; Edder, C.; Fréchet, J. M. J.; McGehee, M. D. Advanced Materials 2005, 17, 2960.
(165) Liaw, D. J.; Chang, F. C.; Leung, M. k.; Chou, M. Y.; Muellen, K. Macromolecules 2005, 38, 4024.
(166) Schulten, X. H. a. K. Physics Today 1997, 50, 28.
(167) Koeppe, R.; Bossart, O.; Calzaferri, G.; Sariciftci, N. S. Solar Energy Materials and Solar Cells 2007, 91, 986.
(168) Blom, P. W. M.; de Jong, M. J. M.; Vleggaar, J. J. M. Applied Physics Letters 1996, 68, 3308.
(169) http://www.smartglass.com/default.asp.
(170) Lanpert, C. M. Solar Energy Materials 1984, 11, 1.

QR CODE