簡易檢索 / 詳目顯示

研究生: 楊家麟
CHIA-LIN YANG
論文名稱: 合成含奈米POSS之聚醯亞胺及其性質研究
Synthesis and Characterization of Polyimides Based on Polyhedral Oligomeric Silsesquioxane
指導教授: 陳燿騰
YAW-TERNG CHERN
口試委員: 陳原振
none
王健珍
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 150
中文關鍵詞: 聚醯亞胺多面體矽氧烷
外文關鍵詞: Polyimide, Polyhedral Oligomeric Silsesquioxane
相關次數: 點閱:176下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

中文摘要

本論文以具反應性多面體矽氧烷寡聚物(Polyhedral Oligomeric Sil-
sesquioxane,POSS) 與聚醯亞胺以兩種不同的製備方法(醯亞胺奈米寡
聚物掺混法、共聚合法)形成之多面體矽氧烷寡聚物/聚醯亞胺奈米複合材料,並研究POSS含量對其溶解度、熱性質與機械性質的影響。
首先,以POSS-4-aminobenzene之一胺單體與芳香族二酸酐(ODPA)經溶液縮合聚合成聚醯亞胺奈米寡聚物,並將其以不同比例與聚醯亞胺(Ref.)進行掺混,這些掺混物可經由溶液塗佈成具有韌性之薄膜。這些膜的抗張強度範圍於103~127 MPa之間,斷裂伸長率為19~145%。經由DMA 分析可測得知玻璃轉移溫度在242~255℃。此外,在氮氣和空氣下的10%重量損失分別是512~522℃與505~523℃之間。
以1,4-Bis(4-aminophenoxy)-2-(4-POSS-benzyloxy)benzene之含PO-
SS二胺單體、TH/NH2 二胺單體與芳香族二酸酐(ODPA)製備的聚醯亞胺奈米複合材料具有中到高的固有黏度,黏度範圍在0.32~1.2 dL/g,分子量1.4~7.4*104。此系列的聚醯亞胺具有好的溶解度,可溶於大部分的有機溶劑中,且皆可經由溶液塗佈成具有韌性之薄膜。這些膜的抗張強度範圍於37~93 MPa之間,斷裂伸長率為3~197%。經由DMA 分析可測得玻璃轉移溫度在245~258℃。此外,在氮氣和空氣下的10%重量損失分別是495~517℃與475~516℃之間。


Abstract

In this study, nanoporous polyhedral oligomeric silsesquioxane (POSS) molecules, were covalently tethered to the imide oligomer and copolyimide to form POSS/polyimide nanocomposites in two methods. The solubility properties, thermal properties and the dynamic mechanical properties of the POSS/polyimide nanocomposites were investigated by varying the weight ratio of POSS.
First, the imide nanooligomer, were prepared via the solution condensa-
tion of aromatic dianhydrides with POSS-4-aminobenzene, and added it by different ratio into polyimide, and gave flexible and tough films via solvent casting. The films had tensile strength of 103~127 MPa, and elongation to breakage values of 19~145%.The DMA analysis reveals that the glass transition temperatures ranged from 242 to 255℃. In addition, the temperat-
ures of 10% weight loss in nitrogen and the air ranged on 512~522℃ and 505~523℃, respectively.
Second, a series of polyimide nanocomposites were prepared by reaction of different ratio 1,4-Bis(4-aminophenoxy)-2-(4-POSS-benzyloxy)-
benzene, and 1,4-Bis(4-aminophenoxy)-2-tert-butylbenzene with aromatic tetracarboxylic dianhydride. The polymer were prepared with moderate to high inherent viscosities 0.32~1.2 dL/g, and molecular weight 1.4~7.4*104. The obtained copolyimides were readily soluble in common organic solvents and gave flexible and tough films via solvent casting. The films had tensile strength of 37 ~ 93 MPa , and elongation to breakage values of 3 ~ 197 % .
The DMA analysis reveals that the glass transition temperatures ranged from 245 to 258℃. In addition, the temperatures of 10% weight loss in nitrogen and the air ranged on 495~517℃ and 475~516℃, respectively.

目 錄 致謝..............................................................................................Ⅰ 中文摘要....................................................................................ⅠⅠ Abstract......................................................................................ⅠⅤ 目錄............................................................................................ⅤⅠ 圖表索引....................................................................................ⅠⅩ 第一章 緒論.......................................................................................1 1.1 前言……........................................................................................1 1.2 奈米複合材料................................................................................3 1.2.1奈米複合材料之特性………………………………………....7 1.2.2奈米複合材料之技術發展與應用............................................8 1.3 多面體矽氧烷寡聚物…………………………………………...10 1.3.1多面體矽氧烷寡聚物材料的發展起源...................................10 1.3.2 多面體矽氧烷寡聚物 ( POSS ) 的定義與結構....................10 1.3.3 多面體矽氧烷寡聚物 ( POSS ) 的製備................................14 1.3.4 多面體矽氧烷寡聚物 ( POSS ) 與高分子共聚的方法........17 1.3.5 多面體矽氧烷寡聚物 ( POSS ) 與其他填充材的比較........19 1.4 聚醯亞胺 ( Polyimide,PI ) 的簡介...………………………..21 1.4.1 聚醯亞胺的合成方法.......................................................23 1.4.2 聚醯亞胺的改質及其應用................................................27 1.5 研究動機與目的....................................................................33 第二章 實驗............................................................................34 2.1 實驗藥品.......................................................................................34 2.2 實驗程序.......................................................................................38 2.2.1 單體製備...............................................................................38 2.2.2 聚醯亞胺奈米複合材料的合成...........................................46 2.3 單體鑑定及聚合物之物性與化性分析.......................................51 第三章 結果與討論……………............................................54 3.1 POSS-4-aminobenzene................................................................54 3.1.1 單體製備................................................................................54 3.1.2 摻混型聚醯亞胺奈米複合材料的製備................................55 3.1.3 聚醯亞胺奈米複合材料的物性分析....................................55 3.2 1,4-Bis(4-aminophenoxy)-2-(4-POSS-benzyloxy)benzene……..59 3.2.1 單體製備................................................................................59 3.2.2 聚醯亞胺奈米複合材料的合成............................................60 3.2.3 聚醯亞胺奈米複合材料的物性分析....................................61 第四章 結論........................................................................... 64 4.1 POSS-4-aminobenzene...............................................................64 4.2 1,4-Bis(4-aminophenoxy)-2-(4-POSS-benzyloxy)benzene….….65 參考文獻......................................................................................124 自述..............................................................................................130 圖表索引 Table 1 我國與先進國家在高分子奈米複合材料產業之技術水準比較 …………………………..……………………………………..2 Table 2 高分子奈米複合材料及應用……..…………………………….8 Table 3 多面體矽氧烷(POSS)與高分子共聚方式優缺點……………..17 Table 4 多面體矽氧烷(POSS)與其它填充材料之特性比較…………..20 Table 5 用於聚醯亞胺複合材料的無機物及前驅物…………..………32 Table 6 The Inherent Viscosities of Polyimide…………….…………….55 Table 7 Solubility of Imide Oligomer and Polyimide…….………….......56 Table 8 Mechanical Propetries of Blend Polyimides and the Film Quality... ………..…….…….……….……….….…………….…………...56 Table 9 Thermal Properties of Blend Polyimdes…………...….………...58 Table 10 The Inherent Viscosities and Molecular Weights of Copolyimides …….............................................................................................60 Table 11 Solubility of Copolyimides.........................................................61 Table 12 Mechanical Propetries of Copolyimides and the Film Quality...62 Table 13 Thermal Properties of Copolyimides..........................................63 Scheme 1 合成 POSS-benzene 的反應機構...........................................38 Scheme 2 合成 POSS-4-nitrobenzene 的反應機構................................39 Scheme 3 合成 POSS-4-aminobenzene 的反應機構............................40 Scheme 4 合成 1,4-Bis(4-nitrophenoxy)-2-methoxybenzene 的反應機構 ...................................................................................................41 Scheme 5 合成 1,4-Bis(4-nitrophenoxy)-2-hydroxybenzene 的反應機構 ...................................................................................................41 Scheme 6 合成 1,4-Bis(4-nitrophenoxy)-2-(4-POSS-benzyloxy)benzene 的反應機構...............................................................................42 Scheme 7 合成 1,4-Bis(4-aminophenoxy)-2-(4-POSS-benzyloxy)benzene 的反應機構...............................................................................43 Scheme 8 合成 1,4-Bis(4-nitrophenoxy)-2-tert-butylbenzene 的反應機 構...............................................................................................44 Scheme 9 合成 1,4-Bis(4-aminophenoxy)-2-tert-butylbenzene 的反應機 構...............................................................................................45 Scheme 10 聚醯亞胺寡聚物的反應機構.................................................47 Scheme 11 聚醯亞胺材料的反應機構.....................................................48 Scheme 12 聚醯亞胺奈米複合材料的反應機構.....................................50 Figure 1 奈米複合材料演進過程...............................................................6 Figure 2 插層(Intercalation)、剥離(Exfoliation)示意圖………….............6 Figure 3 多面體矽氧烷寡聚物………………….....................................11 Figure 4 多面體矽氧烷寡聚物 ( RSiO1.5 )8 ( POSS ) 的立體圖............13 Figure 5 多面體矽氧烷寡聚物 ( CH3SiO1.5 )8 之鍵角與鍵長...............13 Figure 6 POSS 的結構與體積的關係圖.................................................14 Figure 7 多面體矽氧烷寡聚物 ( POSS ) 的製備方法..........................15 Figure 8 多面體矽氧烷寡聚物 ( POSS ) 的結構分類圖......................16 Figure 9 POSS與高分子共聚的模擬示意圖.........................................18 Figure 10 聚醯亞胺的反應機構...............................................................21 Figure 11 單批式聚合法之反應機構.......................................................25 Figure 12 兩段式聚合法之反應機構.......................................................25 Figure 13 聚醯亞胺( PI )在電子材料上的應用......................................31 Figure 14 FTIR spectrum of POSS-benzene.............................................66 Figure 15 FTIR spectrum of POSS-4-nitrobenzene..................................67 Figure 16 FTIR spectrum of POSS-4-aminobenzene…..........................68 Figure 17 FTIR spectrum of 1,4-Bis(4-nitrophenoxy)-2-methoxybenzene.. ................................................................................................69 Figure 18 FTIR spectrum of 1,4-Bis(4-nitrophenoxy)-2- hydroxylbenzene. .................................................................................................70 Figure 19 FTIR spectrum of 1,4-Bis(4-nitrophenoxy)-2-(4-POSS-benzylo- xy)benzene................................................................................71 Figure 20 FTIR spectrum of 1,4-Bis(4-aminophenoxy)-2-(4-POSS-bnzyl- oxy)benzene..............................................................................72 Figure 21 FTIR spectrum of POSS PI Oligomer......................................73 Figure 22 FTIR spectrum of 側基含POSS之聚醯亞胺奈米複合材料…. ……………………………………………………………….74 Figure 23 Mass spectrum of 1,4-Bis(4-nitrophenoxy)-2-methoxybenzene... ……………………………………………………………….75 Figure 24 Mass spectrum of 1,4-Bis(4-nitrophenoxy)-2-hydroxybenzene... ….………………………………………………………..…..76 Figure 25 DSC curve of CPI 11 in nitrogen at a heating rate of 10℃/min …………...…………………………………………………..77 Figure 26 DSC curve of CPI 12 in nitrogen at a heating rate of 10℃/min …………...…………………………………………………..78 Figure 27 DSC curve of CPI 13 in nitrogen at a heating rate of 10℃/min ………...……………………………………………………..79 Figure 28 DSC curve of CPI 14 in nitrogen at a heating rate of 10℃/min ………...……………………………………………………..80 Figure 29 DSC curve of CPI 15 in nitrogen at a heating rate of 10℃/min ………...……………………………………………………..81 Figure 30 DSC curve of CPI 16 in nitrogen at a heating rate of 10℃/min ………...……………………………………………………..82 Figure 31 DSC curve of CPI 21 in nitrogen at a heating rate of 10℃/min ………...……………………………………………………..83 Figure 32 DSC curve of CPI 22 in nitrogen at a heating rate of 10℃/min ……….……………………………………..………………..84 Figure 33 DSC curve of CPI 23 in nitrogen at a heating rate of 10℃/min ………...……………………………………………………..85 Figure 34 DSC curve of CPI 24 in nitrogen at a heating rate of 10℃/min ………...……………………………………………………..86 Figure 35 DSC curve of CPI 25 in nitrogen at a heating rate of 10℃/min ………...……………………………………………………..87 Figure 36 DSC curve of Ref. in nitrogen at a heating rate of 10℃/min ……………………………………………………………….88 Figure 37 DMA curve of CPI 11 in nitrogen at a heating rate of 5℃/min ………...……………………………………………………..89 Figure 38 DMA curve of CPI 12 in nitrogen at a heating rate of 5℃/min …………...…………………………………………………..90 Figure 39 DMA curve of CPI 13 in nitrogen at a heating rate of 5℃/min …………...…………………………………………………..91 Figure 40 DMA curve of CPI 14 in nitrogen at a heating rate of 5℃/min …………...…………………………………………………..92 Figure 41 DMA curve of CPI 15 in nitrogen at a heating rate of 5℃/min …………...…………………………………………………..93 Figure 42 DMA curve of CPI 16 in nitrogen at a heating rate of 5℃/min …………...…………………………………………………..94 Figure 43 DMA curve of CPI 21 in nitrogen at a heating rate of 5℃/min ………...……………………………………………………..95 Figure 44 DMA curve of CPI 22 in nitrogen at a heating rate of 5℃/min ………...……………………………………………………..96 Figure 45 DMA curve of CPI 23 in nitrogen at a heating rate of 5℃/min ………...……………………………………………………..97 Figure 46 DMA curve of CPI 24 in nitrogen at a heating rate of 5℃/min ………...……………………………………………………..98 Figure 47 DMA curve of Ref. in nitrogen at a heating rate of 5℃/min ………...………………………………………..……..……..99 Figure 48 TGA curve of CPI 11 in nitrogen at a heating rate of 10℃/min ……….…………………………………………………..…100 Figure 49 TGA curve of CPI 12 in nitrogen at a heating rate of 10℃/min ………………………………………………………..…….101 Figure 50 TGA curve of CPI 13 in nitrogen at a heating rate of 10℃/min ……….………………………………………………..……102 Figure 51 TGA curve of CPI 14 in nitrogen at a heating rate of 10℃/min ……….……………………………………………....……..103 Figure 52 TGA curve of CPI 15 in nitrogen at a heating rate of 10℃/min ……….………………………………………………..……104 Figure 53 TGA curve of CPI 16 in nitrogen at a heating rate of 10℃/min ……….……………………………………………….…….105 Figure 54 TGA curve of CPI 21 in nitrogen at a heating rate of 10℃/min ……….……………………………………………….…….106 Figure 55 TGA curve of CPI 22 in nitrogen at a heating rate of 10℃/min ……….……………………………………………….…….107 Figure 56 TGA curve of CPI 23 in nitrogen at a heating rate of 10℃/min ……….……………………………………………….…….108 Figure 57 TGA curve of CPI 24 in nitrogen at a heating rate of 10℃/min ……….……………………………………………….…….109 Figure 58 TGA curve of CPI 25 in nitrogen at a heating rate of 10℃/min ……….……………………………………………….…….110 Figure 59 TGA curve of Ref. in nitrogen at a heating rate of 10℃/min ……….……………………………………………….…….111 Figure 60 TGA curve of CPI 11 in air atmosphere at a heating rate of 10℃/min……………………………………………….…….112 Figure 61 TGA curve of CPI 12 in air atmosphere at a heating rate of 10℃/min…….……………………………………….……....113 Figure 62 TGA curve of CPI 13 in air atmosphere at a heating rate of 10℃/min……….…………………………………………….114 Figure 63 TGA curve of CPI 14 in air atmosphere at a heating rate of 10℃/min……………………………………………….…….115 Figure 64 TGA curve of CPI 15 in air atmosphere at a heating rate of 10℃/min……….……………...……………………….…….116 Figure 65 TGA curve of CPI 16 in air atmosphere at a heating rate of 10℃/min……….………...…………………………….…….117 Figure 66 TGA curve of CPI 21 in air atmosphere at a heating rate of 10℃/min……….……………………………….…………....118 Figure 67 TGA curve of CPI 22 in air atmosphere at a heating rate of 10℃/min……………………………………………….…….119 Figure 68 TGA curve of CPI 23 in air atmosphere at a heating rate of 10℃/min……………………………………………….…….120 Figure 69 TGA curve of CPI 24 in air atmosphere at a heating rate of 10℃/min……………………………………………….…….121 Figure 70 TGA curve of CPI 25 in air atmosphere at a heating rate of 10℃/min……….………………………………...…….…….122 Figure 71 TGA curve of Ref. in air atmosphere at a heating rate of 10℃/min……………………………………………….…….123

參考文獻

1. 李建裕,有機/無機多面體矽氧烷寡聚物奈米複合材料,國立交通大學/應用化學系,民國90年
2. 陳英茂/工研院化學工業研究所高分子組正研究員,高分子奈米複合材料的發展,化工資訊與商情,第九期
3. William F. Smith , 〝Composite material〞 , Materials science and engineering,2nd ed,P593~655, 1994
4. R.Roy, 〝Science〞,Vol. 238, P664, 1997
5. 朱屯、王福明、王習東,奈米材料技術,五南圖書出版股份有限公司,2003
6. http://home.kimo.com.tw/lw0309/property001.htm
7. 葉瑞銘,高分子/蒙脫土奈米複合材料在傳統民生用途上的應用-金屬防蝕,http://chemtech.e-ipro.com/Column.php?mode=detail&id =41
8. Andre L. et al., Polym. Prep., p 235, 2000
9. James E.O’Conner, 〝Polyphenylene Sulfide Ppultruded Type Comp- osite Structures〞, SAMPE Qurterly, 1987
10. D.M. Delozier ; R.A. Orwoll ; J.F. Cahoon, Polymer,Vol.43,pp.813,
2002

11. Z. M. Liang ; J. Yin ; H. J. Xu, Polymer, Vol.44, pp.1391,2003
12. J. H. Chang ; M. P. Kwang ; D. Cho, Polymer Engineering and Sc-
ience, Vol.41, No.9, p.1514,2001
13. J. H. Chang ; M. P. Kwang, Polymer Engineering and Science,Vo1.
41,No.12, p.2226,2001
14. S. H. Hsiao ; G. S. Liou ; L. M. Chang, Journal of Applied Polymer
Science, Vol.80, p.2067,2001
15. Gu ; S. W. Kuo ; F. C. Chang, Journal of Applied Polymer Science,
Vo1.79, p.1902,2001
16. 郭文法,工業材料,125 期,1997,pp.129
17. Zhang, C.; Babonneau, F.; Bonhomme, C.; Laine, R. M.; Soles,C.L.
Hristov, H. A.; Yee, A. F. J. Am. Chem. Soc., 120, p 8380,1998
18. Meads J. A. and Kipping F. S., J. Chem. Soc., 107, p 459, 1915
19. Brown J. F. and Vogt L. H., J. Am. Chem. Soc., 87, p 4313, 1965
20. Brown J. F., J. Am. Chem. Soc., 87, p 4317, 1965
21. Zheng, L.; Waddon, A. J.; Farris, R. J.; Coughlin, E. B.Macromole-
cules, 35, p 2375,2002
22. Kare L., Arkiv For Kemi., 16, p 203, 1960

23. Baney R. H. et al., Chem. Rev., 95, p. 1409-1430, 1995
24. Zhang, C.; Babonneau, F.; Bonhomme, C.; Laine, R. M.; Soles,C.L.
;Hristov, H. A.; Yee, A. F. J. Am. Chem. Soc., 120, p 8380,1998
25. R. Tamaki, Y. Tanaka, M. Z. Asuncion, J. Choi and R. M. Laine, J.
Am. Chem. Soc., 123,p 11420,2001
26. 呂奇明,低介電多面體倍半矽氧烷寡聚物(POSS)/聚醯亞胺奈米
複合材料,國立交通大學/材料科學與工程系,民國91年
27. N.Q. Vu, J.A. Carter, J. W. Gilman, F. J. Feher and J. D.Lichtenhan,
Macromolecules, 26,p 2141,1993
28. F. J. Feher, et al, Organometallics, 10,p 2525,1991
29. F. J. Feher, D. Soulivong and G. T. Lewis, J. Am. Chem. Soc., 119,
p 11323,1997
30. F. J. Feher, D. Soulivong and N. Frank, Chem.Commun.,1279,1998
31. F. J. Feher, et al., Chem.Commun., 10, p 1705,1999
32. F. J. Feher,Terroba R. and J. W. Ziller, Chem.Commun., 10,p 2153,
1999
33. T.P.Mather et al,Macromolecules, 32, p 194,1999
34. L.Zheng et al,J.Polym.Sci.;Part A: Polym.Chem., 40, p 885,2002

35. L.Zheng,J.F.Richard and E.B.Coughlim,J.Polym.Sci.: Part A:Polym.
Chem., 39, p 2920,2001
36. T.S.Haddad et al.,Polym.Prepr., 40, p 496,1999
37. T.S.Haddad and J.D.,Lichtenhan,Macromolecules, 28, p 8435,1995
38. L.Zheng,R.J.Farrisand and E.B.Coughlin,Macromolecules,34,p 8034,
2001
39. http://www.hybridplastics.com/
40. M. T. Bogert, R. R. Renshaw, J. Am. Chem. Soc., 30,p 1140,1908
41. P. M. Heigenisher and N .J. Johnstin, ACS Symp.Ser132, American
Chemical Society Washington, DC, p.3, 1980
42. 林金雀,聚醯亞胺樹脂在電子相關產業之應用,化工資訊月刊,
Vol.13, NO.8, p.29-34,1999
43. H. D. Stenzenberger, Brit. Polym. J, p.15, 1979
44. J. V. Crivello, J. Polym. Sci, 11(6), p.1185, 1973
45. N. Bilow, A. L. Landis and L. J. Miller, U. S. Patent 3845,018,1974
46. R. A. Meyers, Am. Chem. Sci., Polym. Prepr.,10, p.186, NO.1, 1969
47. N. A .Adrova, M. I. Bessonov, L. A. Laius and A. P. Rudakov,
Polyimide:A new class of thermally stable polymers(in Russian),
Nauka, Leningrad1, 1968
48. 李伯毅,正型鹼性水溶液顯影感光性聚醯亞胺材料之研究,國
立成功大學化工研究所碩士論文,2002
49. H. G. Rogers, R. A. Gaudiana, W. C. Hollinsed, P. S. Kalyanaraman,
J. S. Manello, C. McGoWan, R. A. Minns and R. Sahatjian
Macromolecules, p.1085,Vol.18, 1985
50. K. H. Choi, J. C. Jung, H. S. Kim, B. H. Sohn, W. C. Zin, M. Ree,
Polymer, p.1517,Vol.45, 2004
51. X. Guo, J. Fang, K. Tanaka, H. Kita, K. I. Okamoto, J Polym Sci
Part A Polym Chem, p.1432, Vol.42, 2004
52. S. Banerjee, M. K. Madhra, V. Kute, J Appl Polym Sci, p.821,
Vol.93,2004,
53. B. Y. Myung, C. J. Ahn, T. H. Yoon, Polymer, p.3185, Vol.45, 2004
54. C. Gao, X. Wu, G. Lv, M. Ding, L Gao, Macromolecules, p.2754 ,
Vol. 37,2004
55. Y. Yin, J. Fang, T. Watari, K. Tanaka, H. Kita, K. –I. Okamoto, J
Mater Chem, p.1062 , Vol.14, 2004
56. 王其仁、謝玉英,配向膜材料及應用技術,工業材料,No.166,
p.125-130, 2000

57. Wu Y.,Zhang Q.,Kanazawa A.,Shiono T.,Ikeda T.,Nagase Y.,
Macromolecules, p.3951 , Vol.32, 1999
58. 江選雅,聚醯亞胺的合成及其在LCD上的應用,化工資訊月刊,
Vol.13, No.7, p.43-53, 1999
59. 林俊右,李育德,太巨科技公司,低熱膨脹係數聚醯亞胺共聚物之
合成與性質研究,第二十屆高分子研討會論文專輯, p. 99 ,1997
60. 邱致銘,可溶性聚醯亞胺/二氧化矽奈米複合材料之合成與性質研
究,國立成功大學化工研究所碩士論文,2003
61. 丁孟賢,何天白,聚亞醯胺新型材料,科學出版社,1998
62. Chyi-Ming Leu,G. Mahesh Reddy,Kung-Hwa Wei,and Ching-Fong
Shu,Chem. Mater.,15,p.2261,2003
63. G.C.Eastmond,J.Paprotny,Synthesis, p.894~898,1998

無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE