簡易檢索 / 詳目顯示

研究生: 洪聖博
Sheng-Po Hung
論文名稱: 數位同軸全像微粒循跡測速儀之研發與其於聲射微流體之應用
Development of Digital In-line Holographic Micro Particle Tracking Velocimetry and Its Application in Acoustofluidics
指導教授: 田維欣
Wei-Hsin Tien
口試委員: 陳品銓
Pin-Chuan Chen
蔣雅郁
Ya-Yu Chiang
曾修暘
Hsiu-Yang Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 162
中文關鍵詞: 數位同軸全像顯微鏡微粒循跡測速儀聲射流
外文關鍵詞: Digital In-line Holographic Microscopy (DIHM), Particle Tracking Velocimetry (PTV), Acoustic streaming
相關次數: 點閱:386下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以數位同軸全像顯微鏡(Digital In-line Holographic Microscopy, DIHM)研發三維流場微粒循跡測速(Particle Tracking Velocimetry, PTV)的量技術,並將之應用於量測以三角形微結構激發 之聲射微流體(acoustofluidics)之三維流場。微流體以微銑削方式製造出壓克力模具,再使用軟微影技術以 PDMS 翻模製成。流道側壁設計有三角形微結構,經壓電片振動後,產生穩態聲射流。在DIHM的開發上,使用Huygens-Fresnel光傳播原理中Rayleigh-Sommerfeld的第一個解,做為微流場全像圖之三維重建理論,並成功於Matlab上研發處理程式,進行全像圖前處理與重建、微粒中尋心、微粒三維位置重建、PTV循跡分析等步驟,將流場中的速度資訊完整呈現。利用電子移動平台與點陣列之校正片,得出本研究之實驗設置可解析之體積約為 555μm×690μm×440μm,其平均放大倍率為8.79倍,標準差為0.047。利用電子移動平台進行深度位置校正之結果得出三維位置不准度x、y位置分別為0.84μm、0.79μm,z位置則為9.03μm。流場速度不准度則為101.51μm/s。本研究中z位置之不准度是主要的誤差來源,來自於全像圖重建時深度方向的微粒影像被拉長的效應。解析三角形微結構周圍的聲射流三維速度場結果顯示,在渦旋中微結構尖端與周圍速度之速度差可達10倍左右,是在先前研究中未能觀測到的微粒速度場變化。最後,透過比較以綠光532nm與藍光450nm雙波長的實驗得知,不同波長的光對於全像圖的影響是重建位置時因為不同波長的光之焦距不同,進而導致色差的產生。重建時會產生 z 方向上的平移,平移約為 13~15μm。


In this study, Digital In-line Holographic Microscopy(DIHM) was used to develop a technique to perform Particle Tracking Velocimetry(PTV) for microscale flows, and was applied to measuring the 3-D flow field in an acoustofluidics induced by a triangular micro-structure. in the three-dimensional flow field. The acoustofluidic device is made using soft lithography with the acrylic mold made by micro-milling and rolling over with PDMS. The triangular micro-structure on the micro channel sidewall oscillates by the vibration of piezoelectric disk to produce a steady-state acoustic streaming flow. For the development of DIHM the first solution of Rayleigh-Sommerfeld in the Huygens-Fresnel light propagation principle was used as the theoratical basis of the three-dimensional reconstruction. A data processing flow based on MATLAB was successfully constructed to perform steps including pre-processing and reconstruction of the hologram, finding the particle center position, reconstruction of the particle 3-D position and PTV analysis to acquire whole-field velocity information in the flow. With the use of the motorised linear stage and calibration target plate for calibration, the current experimental setup can resolve a volume of 555μm×690μm×440μm. The average magnification is 8.79 with a standard deviation of 0.047. The calibration for depth location shows that the uncertainty of x and y positions are and respectively and for the z position. The resulting velocity uncertainty of the flow field is . The major source of error is from the uncertainty of the z position d due to the elongation of the reconstructed particle image in the depth direction. The resolved 3-D velocity field around the triangular micro-structure shows that the velocity difference between the tip and the outer-region of the vortical flow can achieve a ratio of 10, which was not observed in the previous studies. Through the comparison of 532nm and 450nm dual-wavelength experiments, the influence of illumination wavelengths on the holographic image was found to be the chromatic aberration effect due to different focal lengths of the illumination. The chromatic aberration causes a translation about 13~15μm in the resoved z direction when the same magnification is applied.

第一章 緒論 1 1.1 介紹 1 1.2 文獻回顧 2 1.2.1 全像術簡介 2 1.2.2 數位全像顯微術種類 3 1.2.2.1 同軸式 3 1.2.2.2 離軸式 5 1.2.3 繞射理論與影像重建 7 1.2.3.1 Helmholtz方程與Kirchhoff積分定理 7 1.2.3.2 Kirchhoff平面屏幕繞射理論 8 1.2.3.3 Fresnel-Kirchhoff繞射公式 10 1.2.3.4 Rayliegh-Sommerfeld繞射理論 11 1.2.4 應用於顯微物體追蹤 13 1.2.4.1 實驗設置比較 13 1.2.4.2 無透鏡數位同軸全像顯微鏡 13 1.2.4.3 有透鏡數位同軸全像顯微鏡 14 1.2.4.3.1 平面波成像的DIHM 16 1.2.4.3.2 球面波成像的DIHM 19 1.2.5 聲射流與應用 20 1.2.6 小結 22 1.3 研究目的 23 1.4 論文架構 24 第二章 實驗原理與方法 25 2.1 實驗原理 25 2.1.1 重建理論模型 25 2.1.1.1 Rayliegh-Sommerfeld繞射理論推導 25 2.1.1.2 光場重建推導 27 2.2 實驗方法 31 2.2.1 數位同軸全像顯微鏡系統 31 2.2.1.1 相機 33 2.2.1.2 移動平台 34 2.2.1.3 雷射與觸發器 35 2.2.2 流場觀測實驗設置 40 2.2.2.1 聲射流微流體 40 2.2.2.2 聲射流渦漩之驅動 41 2.2.3 影像處理的流程圖 43 2.2.3.1 影像前處理 44 2.2.3.2 影像重建 45 2.2.3.3 尋找微粒中心位置 46 2.2.3.4 擬合深度方向位置 48 2.2.3.5 反算微粒平面位置 51 2.2.3.6 PTV分析 52 2.2.4 光學設置校正 53 2.2.5 重建位置校正 55 2.2.5.1 校正影像拍攝 55 2.2.5.2 校正影像分析步驟 56 2.2.6 不准度分析 58 2.2.6.1 位移不准度分析 58 2.2.6.2 速度不准度分析 60 2.3 實驗步驟與流程 62 第三章 結果與討論 64 3.1 光學設置校正結果 64 3.2 重建位置校正結果 65 3.3 微粒位置與循跡測速結果 71 3.3.1 全像圖前處理結果 71 3.3.2 影像重建結果 72 3.3.3 尋找微粒中心位置結果 74 3.3.4 擬合深度方向位置結果 85 3.3.4.1 第一版深度位置擬合方法 85 3.3.4.2 第二版深度位置擬合方法 86 3.3.5 反算微粒平面位置結果 89 3.3.6 PTV循跡分析結果 94 3.3.7 討論 98 3.4 不同波長的影響 99 3.4.1 全像圖之差異 99 3.4.1.1 繞射環大小差異 99 3.4.1.2 影像亮度差異 100 3.4.2 PTV分析結果 102 3.4.3 討論 105 第四章 結論與未來工作 107 4.1 結論 107 4.2 未來工作 109 第五章 附錄 110 5.1 使用Arduino控制單波長閃頻訊號程式 110 5.2 使用Arduino控制雙波長閃頻訊號程式 112 5.3 影像前處理之Matlab程式 114 5.4 影像重建之Matlab程式 117 5.5 尋找微粒中心之Matlab程式 122 5.6 擬合深度方向位置之Matlab程式 130 5.7 反算微粒中心位置之Matlab程式 134 5.8 PTV分析之Matlab程式 137 參考文獻 139

[1] D. Gabor, "A new microscopic principle," Nature, vol. 161, pp. 777-778, 1948 1948, doi: 10.1038/161777a0.
[2] E. N. Leith and J. Upatnieks, "Wavefront Reconstruction with Diffused Illumination and Three-Dimensional Objects*," J. Opt. Soc. Am., vol. 54, no. 11, pp. 1295-1301, 1964/11/01 1964, doi: 10.1364/JOSA.54.001295.
[3] J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," (in English), Appl. Optics, Article vol. 45, no. 5, pp. 836-850, Feb 2006, doi: 10.1364/ao.45.000836.
[4] E. N. Leith and J. Upatnieks, "Reconstructed Wavefronts and Communication Theory*," J. Opt. Soc. Am., vol. 52, no. 10, pp. 1123-1130, 1962/10/01 1962, doi: 10.1364/JOSA.52.001123.
[5] X. Yu, J. Hong, C. G. Liu, M. Cross, D. T. Haynie, and M. K. Kim, "Four-dimensional motility tracking of biological cells by digital holographic microscopy," (in English), J. Biomed. Opt., Article vol. 19, no. 4, p. 9, Apr 2014, Art no. 045001, doi: 10.1117/1.Jbo.19.4.045001.
[6] J. Goodman, "W.(1968) Introduction to Fourier Optics," New York.
[7] J. W. Goodman, "Introduction to Fourier optics. 3rd," Roberts and Company Publishers, 2005.
[8] E. Wolf and E. W. Marchand, "Comparison of the Kirchhoff and the Rayleigh–Sommerfeld Theories of Diffraction at an Aperture," J. Opt. Soc. Am., vol. 54, no. 5, pp. 587-594, 1964/05/01 1964, doi: 10.1364/JOSA.54.000587.
[9] J. L. de Almeida, E. Comunello, A. Sobieranski, A. M. da Rocha Fernandes, and G. S. Cardoso, "Twin-image suppression in digital in-line holography based on wave-front filtering," Pattern Analysis and Applications, 2021/01/04 2021, doi: 10.1007/s10044-020-00949-7.
[10] T. W. Su, L. Xue, and A. Ozcan, "High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories," (in English), Proc. Natl. Acad. Sci. U. S. A., Article vol. 109, no. 40, pp. 16018-16022, Oct 2012, doi: 10.1073/pnas.1212506109.
[11] S. H. Lee et al., "Characterizing and tracking single colloidal particles with video holographic microscopy," (in English), Opt. Express, Article vol. 15, no. 26, pp. 18275-18282, Dec 2007, doi: 10.1364/oe.15.018275.
[12] T. Latychevskaia and H. W. Fink, "Holographic time-resolved particle tracking by means of three-dimensional volumetric deconvolution," (in English), Opt. Express, Article vol. 22, no. 17, pp. 20994-21003, Aug 2014, doi: 10.1364/oe.22.020994.
[13] F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, "Strategies for three-dimensional particle tracking with holographic video microscopy," (in English), Opt. Express, Article vol. 18, no. 13, pp. 13563-13573, Jun 2010, doi: 10.1364/oe.18.013563.
[14] Y. S. Choi and S. J. Lee, "Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy," Appl. Optics, vol. 48, no. 16, pp. 2983-2990, Jun 2009, doi: 10.1364/ao.48.002983.
[15] J. Sheng, E. Malkiel, and J. Katz, "Digital holographic microscope for measuring three-dimensional particle distributions and motions," (in English), Appl. Optics, Article vol. 45, no. 16, pp. 3893-3901, Jun 2006, doi: 10.1364/ao.45.003893.
[16] 林孟樺, "由單一不對稱三角形結構誘發之聲射流流場分析," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2019. [Online]. Available: https://hdl.handle.net/11296/zzyacd
[17] A. Marin, M. Rossi, B. Rallabandi, C. Wang, S. Hilgenfeldt, and C. J. Kahler, "Three-dimensional phenomena in microbubble acoustic streaming," arXiv: Fluid Dynamics, 2015.
[18] F. J. A. Pereira, H. Stüer, E. Graff, and M. Gharib, "Two-frame 3D particle tracking," Measurement Science and Technology, vol. 17, 07/01 2006, doi: 10.1088/0957-0233/17/7/006.
[19] 盧信甫, "以微粒循跡測速儀研究固體、液滴與氣泡誘發之聲射流," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2018. [Online]. Available: https://hdl.handle.net/11296/xb4nz4

QR CODE