簡易檢索 / 詳目顯示

研究生: 陳瑾弘
Jin-Hong Chen
論文名稱: 不同摻料影響超硫酸鹽水泥基材料工程性質之探討
Study on the Influence of Different Admixtures on the Engineering Properties of Supersulfate Cement-based Materials
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 王和源
Her-Yung Wang
林秉如
Ping-Ju Lin
王金圳
Jin-Jun Wang
陳君弢
Chun-Tao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 152
中文關鍵詞: 超硫酸鹽水泥排煙脫硫石膏奈米二氧化矽溶液粉劑奈米二氧化矽丁苯橡膠乳膠水性環氧樹脂
外文關鍵詞: super sulfate cement, flue gas desulfurization gypsum, nano silica solution, powder nano silica, styrene butadiene rubber latex, water-based epoxy resin
相關次數: 點閱:187下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超硫酸鹽水泥(SSC)基膠結材料具有水化熱低、晚期強度高及抗硫酸鹽侵蝕能力佳等優點,但仍有凝結時間長、早期強度較低及抗碳化能力差等缺點,本研究探討藉由添加不同摻料(粉劑及液劑奈米二氧化矽、丁苯橡膠乳膠及水性環氧樹脂等聚合物),改善上述缺點之可行性。
    研究結果顯示:(1)添加奈米二氧化矽溶液,會縮短SSC漿體凝結時間,以水膠比0.4及奈米二氧化矽溶液取代2%用水量縮短最多,初凝時間由249分鐘縮短至224分鐘,終凝時間由346分鐘縮短至324分鐘;添加奈米二氧化矽溶液,也會增加SSC漿體抗壓強度,以水膠比0.45及奈米二氧化矽溶液取代0.2%用水量提升最多,7天強度由27.02 MPa提升至32.38 MPa;(2)添加粉劑奈米二氧化矽,會縮短SSC漿體凝結時間,以水膠比0.4及粉劑奈米二氧化矽取代0.05%爐石粉縮短最多,初凝時間由249分鐘縮短至230分鐘,終凝時間由346分鐘縮短至326分鐘;添加粉劑奈米二氧化矽,同樣會增加SSC漿體之抗壓強度,以水膠比0.45及粉劑奈米二氧化矽取代0.05%爐石粉提升最多,7天強度由27.02 MPa提升至33.28 MPa;(3)添加丁苯橡膠乳膠及水性環氧樹脂等聚合物,均會大大降低SSC漿體抗壓強度,但熱傳導係數皆會下降,介於0.632 W/m·K至0.700 W/m·K,說明添加聚合物,可提高SSC材料隔熱性;(4)添加兩種聚合物SSC砂漿及混凝土均會降低抗壓強度,但提升劈裂強度;(5)添加粉劑及液劑奈米二氧化矽後,7天齡期之SSC硬固漿體XRD結果顯示,氫氧化鈣峰高明顯減少,說明奈米二氧化矽於早期可與水泥及爐石粉發生卜作嵐反應;同時SEM結果也顯示,C-S-H膠體較為大塊且緻密。
    綜上所述,添加粉劑及液劑奈米二氧化矽摻料,可縮短SSC漿體凝結時間,增加抗壓強度;添加聚合物摻料之硬固SSC漿體、砂漿及混凝土,可提高隔熱性及劈裂強度。


    Super Sulfate Cement (SSC)-based cementitious materials have the advantages of low heat of hydration, high late-stage strength, and good sulfate resistance, but still have shortcomings such as long setting time, low early-stage strength and poor carbonization resistance. This study Explore the feasibility of improving the above shortcomings by adding different admixtures (powder and solution nano-silica, styrene butadiene rubber latex, water-based epoxy resin and other polymers).
    The research results show: (1) The addition of nanosilica solution will shorten the setting time of SSC slurry. Substituting 2% water consumption with water gel ratio of 0.4 and nanosilica solution will shorten the most. The initial setting time is shortened from 249 minutes to 224 minutes, and the final setting time Shortened from 346 minutes to 324 minutes; adding nano-silica solution will also increase the compressive strength of SSC slurry. Substituting a water-gel ratio of 0.45 and nano-silica solution to replace 0.2% of water consumption increases the most. The strength is increased from 7 days 27.02 MPa increased to 32.38 MPa; (2) powdered nano-silica-SSC slurry :In terms of setting time, adding powdered nano-silica will shorten the setting time of SSC slurry. The water-to-binder ratio is 0.4 and the powdered nano-silica is substituted for 0.05% of furnace stone powder. The initial setting time is shortened from 249 minutes. To 230 minutes, the final setting time is shortened from 346 minutes to 326 minutes. In terms of compressive strength, the addition of powdered nano-silica dioxide will also increase the compressive strength of SSC slurry. The 7-day strength is based on the water-to-gel ratio of 0.45. Rice silica replaces 0.05% furnace stone powder to increase the most, from 27.02 MPa to 33.28 MPa; (3) Adding polymers such as styrene butadiene rubber latex and water-based epoxy resin will greatly reduce the compressive strength of SSC slurry, but the thermal conductivity will decrease, which is between 0.632 W/m·K and 0.700 W/m·K, indicating the addition Polymer, can improve the thermal insulation of SSC material; (4) Adding two kinds of polymer SSC mortar and concrete will reduce the compressive strength, but increase the splitting strength; (5) After adding powder and liquid nano-silica, the XRD results of the 7-day-old SSC hard solid slurry showed that the peak height of calcium hydroxide was significantly reduced, indicating that nano-silica can interact with cement and furnace stone powder in the early stage. Reaction; At the same time, SEM results also show that C-S-H colloid is relatively large and dense.
    In summary, adding powder and liquid nano-silica admixtures can shorten the setting time of SSC paste and increase the compressive strength; adding polymer admixtures of hard SSC paste, mortar and concrete can improve the isolation Thermal and cleavage strength.

    目錄 摘要 i Abstract ii 致謝 iv 目錄 v 表目錄 viii 圖目錄 x 第一章 緒論 1 1.1研究動機 1 1.2研究目的 3 1.3研究流程圖 3 第二章 文獻回顧 5 2.1前言 5 2.2超硫酸鹽水泥 5 2.2.1超硫酸鹽水泥組成 5 2.2.2超硫酸鹽水泥機理 11 2.2.3超硫酸鹽水泥相關研究 11 2.3摻料與卜作嵐材料 12 2.3.1摻料 12 2.3.2卜作嵐材料 13 2.4奈米材料 13 2.4.1奈米科技 13 2.4.2奈米標章 14 2.4.3各國奈米發展 14 2.4.4台灣奈米發展 15 2.4.5奈米核效應 15 2.4.6奈米效應 16 2.4.7核心效應 16 2.4.8奈米材料之分散 18 2.4.9奈米二氧化矽應用於混凝土之相關研究 18 2.5聚合物添加劑 19 2.5.1聚合物添加劑應用於混凝土之緣起 19 2.5.2聚合物混凝土之種類 20 2.5.3聚合物添加劑應用於混凝土之機理 21 2.5.4聚合物添加劑應用於混凝土之相關研究 22 第三章 試驗計畫 36 3.1試驗內容與變數 36 3.1.1奈米二氧化矽溶液與粉劑 (漿體) 36 3.1.2丁苯橡膠乳膠及水性環氧樹脂(漿體) 37 3.1.3聚合物砂漿 38 3.1.4聚合物混凝土 39 3.2試驗材料 39 3.2.1拌合水 40 3.2.2水淬高爐石粉 40 3.2.3卜特蘭水泥 40 3.2.4排煙脫硫石膏 40 3.2.5奈米二氧化矽溶液 40 3.2.6粉劑奈米二氧化矽 41 3.2.7丁苯橡膠乳膠 41 3.2.8水性環氧樹脂 41 3.2.9細粒料 41 3.2.10粗粒料 41 3.2.11強塑劑 41 3.3配比編號說明 42 3.3.1對照組 42 3.3.2實驗組(漿體) 42 3.3.3實驗組(砂漿與混凝土) 44 3.4試驗配比設計 44 3.5拌合流程 45 3.5.1奈米二氧化矽溶液 46 3.5.2粉劑奈米二氧化矽 46 3.5.3丁苯橡膠乳膠 46 3.5.4水性環氧樹脂 47 3.5.5聚合物砂漿 47 3.5.6聚合物混凝土 48 3.6試驗方法 48 3.6.1材料性質試驗 49 3.6.2新拌性質試驗 50 3.6.3硬固性質試驗 52 3.6.4微觀試驗 54 3.6.5硫酸鹽養護 55 3.7試驗儀器與設備 55 第四章 試驗結果與討論 75 4.1新拌性質結果探討(漿體) 75 4.1.1對坍流度之影響 75 4.1.2對凝結時間之影響 76 4.1.3小結 78 4.2硬固性質結果探討(漿體) 78 4.2.1對抗壓強度之影響(石灰水養護) 78 4.2.2對熱傳導係數之影響(石灰水養護) 81 4.2.3對超音波速之影響(石灰水養護) 84 4.2.4對抗壓強度之影響(硫酸鹽環境) 86 4.2.5對熱傳導係數之影響(硫酸鹽環境) 88 4.2.6對超音波速之影響(硫酸鹽環境) 90 4.2.7小結 92 4.3新拌性質結果探討(砂漿與混凝土) 93 4.3.1對坍流度之影響(砂漿) 93 4.3.2對坍流度之影響(混凝土) 93 4.3.3小結 94 4.4硬固性質結果探討(砂漿與混凝土) 94 4.4.1對抗壓強度之影響 94 4.4.2對劈裂強度之影響 94 4.4.2小結 95 4.5微觀結構探討 95 4.5.1 X光繞射分析 95 4.5.2掃描式電子顯微鏡 96 第五章 結論與建議 146 5.1結論 146 5.2建議 148 參考文獻 149

    [1]ASTM C597 “Standard Test Method for Pulse Velocity Through Concrete”.
    [2]ASTM C1012 “Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution”.
    [3]ASTM D5334 “Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure”.
    [4]Aggarwal, L. K.,Thapliyal, P. C.,&Karade, S. R.( 2007). “Properties of polymer-modified mortars using epoxy and acrylic emulsions”. Construction and Building Materials, 21(2), 379-383.
    [5]Angulski, L. C.,&Hooton, R. D.(2015). “Influence of curing temperature on the process of hydration of supersulfated cements at early age”. Cement and Concrete Research, 77, 69-75.
    [6]Baoguo, H.,Liqing, Z.,Shuzhu, Z.,&Sufen, D.(2017). “Nano-core effect in nano-engineered cementitious composites”. Composites Part A: Applied Science and Manufacturing, 95, 100-109.
    [7]CNS 786 “水硬性水泥凝結時間檢驗法”.
    [8]CNS 1010 “水硬性水泥墁料抗壓強度檢驗法”.
    [9]CNS 1012 ”水硬性水泥試驗用之流動性台”.
    [10]CNS 1176 “混凝土坍度試驗法”.
    [11]CNS 1232 “混凝土圓柱試體抗壓強度檢驗法”.
    [12]CNS 3801 ”混凝土圓柱試體劈裂抗張強度試驗法”.
    [13]CNS 11272 ”水硬性水泥密度試驗法”.
    [14]CNS 12223 ”水淬高爐爐碴化學成分標準規定”.
    [15]CNS 12549 ”混凝土及水泥砂漿用水淬高爐爐碴粉物理性質標準規定”.
    [16]Chen, Z.F.,Zhang, Z.Q.,&Zhou, J.(2018). “High Flexural Supersulfate Cement and Preparation Metho”.
    [17]Durmuş, H. İ.,Erdemir, M.,&Özbay, E.(2016).” Utilization and efficiency of ground granulated blast furnace slag on concrete properties–A review”. Construction and Building Materials, 105, 423-434.
    [18]Diamanti, M.V. ,Nazari, A.,Granqvist, C.G.,Pruna, A.,&Amirkhanian, S.(2018). “Nanotechnology in eco-efficient construction: Materials”. Processes and Applications.
    [19]Emin, E.,&Halis, Ö.(1993). “The mechanical properties of supersulphated cement containing phosphogypsum”. Cement and concrete research, 23(1), 115-121.
    [20]Enrique, G. M.,&Rafael, C. T.(2017).” Micromechanics modeling of the electrical conductivity of carbon nanotube cement-matrix composites”. Composites Part B: Engineering,108, 451-469.
    [21]Grounds, T.,Nowell, D. ,&Wilburn, F.(2003).” Resistance of supersulfated cement to strong sulfate solutions”. Journal of thermal analysis and calorimetry, 72(1), 181-190.
    [22]Gruskovnjak, A.,Lothenbach, B.,Winnefeld, F.,Figi, R. ,Ko, S. C.,Adler, M.,&Mäder, U.(2008).” Hydration mechanisms of super sulphated slag cement”. Cement and Concrete Research, 38(7), 983-992.
    [23]Guo, S. Y.,Zhang, X.,Chen, J. Z.,Mou, B.,Shang, H. S.,Wang, P.,&Ren, J.(2020). “Mechanical and interface bonding properties of epoxy resin reinforced Portland cement repairing mortar”. Construction and Building Materials,264, 120715.
    [24]Han, B.,Wang, Y.,Dong, S.,Zhang, L.,Ding, S.,Yu, X.,&Ou, J.(2015). “Smart concretes and structures: A review”. Journal of intelligent material systems and structures, 26(11), 1303-1345.
    [25]Han, B.,Wang, Y.,Dong, S.,Zhang, L.,Ding, S.,Yu, X.,&Ou, J.(2019). “Current Progress of Nano-Engineered Cementitious Composites”. In Nano-Engineered Cementitious Composites , 97-398.
    [26]Hewlett, P.,&Liska, M.(2019).” Lea's chemistry of cement and concrete”. Butterworth-Heinemann.
    [27]Juenger, M. C. G.,Winnefeld, F.,Provis, J. L.,&Ideker, J. H.(2011).” Advances in alternative cementitious binders”. Cement and concrete research, 41(12), 1232-1243.
    [28]Jamshidi, M.,Pakravan, H. R.,&Pourkhorshidi, A. R.(2013). “Application Of Polymer Admixtures To Modify Concrete Properties: Effects Of Polymer Type And Content”. Asian Journal Of Civil Engineering,15(5), 779-787.
    [29]Kühl, H.,&Schleicher, E.(1952). “Gips Schlacken-Zement”. Fachbuch-Verlag GmbH.
    [30]Kim, S. S.,Hooton, R. D.,Cho, T. J.,&Lee, J. B.(2014).” Comparison of innovative nano fly ash with conventional fly ash and nano-silica”. Canadian journal of civil engineering, 41.5, 396-402.
    [31]Kang, S.(2015).” Early Hydration-Retarding Mechanism Of Polymer Modified Cement”. Materials Research Innovations,19, 22-26.
    [32]Kumar S.,Cui, Y.,&Kundalwal, S. I.(2016).” Gas barrier performance of graphene/ polymer nanocomposites”. Carbon, 98, 313–333.
    [33]Li, L.(2010).” Application of Metallurgical Slag in Super Sulfate Cement and its Reinforcement Mechanism”. Wuhan University of Technology Master Dissertation (in Chinese).
    [34]Liu, S.,&Li, L.(2014).” Influence of fineness on the cementitious properties of steel slag”. Journal of Thermal Analysis and Calorimetry, 117(2), 629-634.
    [35]Matschei, T.,Bellmann, F.,&Stark, J.(2005).” Hydration behaviour of sulphate-activated slag cements”. Advances in cement research, 17.4, 167-178
    [36]Murat, D.,&Alper, B.(2016). “Effect of Styrene Butadiene Copolymer (SBR) admixture on high strength concrete”. Construction and Building Materials, 112, 378-385.
    [37]Masoudi, R.,&Hooton, R. D.(2020). “Influence of alkali lactates on hydration of supersulfated cement”. Construction and Building Materials, 239, 117844.
    [38]Nguyen, H. G.(2013).” Micromechanical Modelling Of The Elastic Behaviour Of Polymer Mortars”. European Journal Of Environmental And Civil Engineering, 17:2, 65-83.
    [39]Ohama, Y.(1998). “Polymer-based admixtures”. Cement and concrete composites, 189-212.
    [40]Pitkethly, M. J.(2004).” Nanomaterials–the driving force”. Materials today, 7(12), 20-29.
    [41]Rubert, S.,Angulski, C.,Varela, M. V. F.,Filho, J. I. P.,&Hooton, R. D.(2018).” Hydration mechanisms of supersulfated cement”. Journal of Thermal Analysis and Calorimetry, 134, 971-980
    [42]Stark, J.(1995). “Sulfathüttenzement”.
    [43]Sobolev, K.,&Gutiérrez, M. F.(2005). “How nanotechnology can change the concrete world”. American Ceramic Society Bulletin, 84(10), 14.
    [44]Sakai, H.(2009).” 完全圖解 奈米科技的全貌與未來發展”. 青文出版股份有限公司.
    [45]Siddiqui, N. A.,Ma, P.-C.,Marom, G.,&Kim, J. K. (2010).” Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review”. Composites Part A: Applied Science and Manufacturing, 41(10), 1345-1367.
    [46]Sobolev, K.,&Shah, S. P.(2015). “Nanotechnology in Construction: Proceedings of NICOM5”. Springer.
    [47]Taylor, H. F.(1997). “Cement Chemistry”. 2, 459.
    [48]Thymotie, A.,Chang, T. P.,&Nguyen, H. A.(2020).” Improving properties of high-volume fly ash cement paste blended with β-hemihydrate from flue gas desulfurization gypsum”. Construction and Building Materials, 261, 120494.
    [49]Wu, Q.,Xue, Q.,&Yu, Z.(2021). “Research status of super sulfate cement”. Journal of Cleaner Production, 294, 126228.
    [50]Yeon, K. S.,Choi, Y. S.,Kim, K. K.,&Yeon, J. H.(2017).” Flexural Fatigue Life Analysis Of Unsaturated Polyester-Methyl Methacrylate Polymer Concrete”. Construction And Building Materials, 140, 336–343.
    [51]Yang, L.,Jing, M.,Lu, L.,Zhu, X.,Zhao, P.,Chen, M.,&Liu, J.(2020). “Effects of modified materials prepared from wastes on the performance of flue gas desulfurization gypsum-based composite wall materials”. Construction and Building Materials, 257, 119519.
    [52]Zhu, W.,Bartos, P. J.,&Porro, A.(2004). “Application of nanotechnology in construction Summary of a state-of-the-art report”. Materials and structures,37(9), 649– 658.
    [53]Zhang, M. H.,Jahidul, I.,&Sulapha, P.(2012). “Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag”. Construction and Building Materials, 29, 573-580.
    [54]Zhang, M. H.,Jahidul, I.,&Sulapha, P.(2012).” Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag”. Cement and Concrete Composites, 34.5, 650-662.
    [55]Zheng, Z., Li, Y., Ma, X., Zhu, X., & Li, S. (2019). “High density and high strength cement-based mortar by modification with epoxy resin emulsion”.Construction and Building Materials, 197, 319-330.
    [56]台灣奈米技術產業發展協會.” 奈米標章” Retrieved from : http://www.tanida.org.tw/nanomark.php?mn=nanomark&nm=markIntroduction
    [57]行政院公共工程委員會(2001)。公共工程高爐石混凝土使用手冊。
    [58]行政院環境保護署(2018)。2018年中華民國溫室氣體國家報告。
    [59]李火燦(2001)。排煙脫硫設備設計、裝機、運轉及維護報告。台灣電力公司。
    [60]呂添民(2005)。添加奈米矽粉之水泥砂漿力學性質與微觀結構。營建工程系。臺灣科技大學。
    [61]林振華、陳玉心、王建義(2005)。奈米科技全書(共四冊)。全華科技。
    [62]林進山、陳美卿、陳靜紋(2011)。微觀教學:探究奈米世界。五南圖書出版股份有限公司。
    [63]林伯聰(2020)。不同石膏含量對超硫酸鹽水泥混凝土新拌及硬固性質影響之研究。營建工程系。臺灣科技大學。
    [64]施正元(2006)。奈米矽質摻料對水泥基複合材料性質之影響。營建工程系。臺灣科技大學。
    [65]陳輝煌、吳清鏞、吳銘達(2011)。奈米科技叢書I:奈米科技教材教案及創新研發。國立宜蘭大學。
    [66]陳輝煌、吳清鏞、吳銘達(2011)。奈米科技叢書II:奈米科技教材教案及創新研發。國立宜蘭大學。
    [67]黃兆龍博士(2007)。凝土性質與行為。台北市:詹氏書局。
    [68]廖婉茹(2006)。奈米科技與生活。五南出版股份有限公司。
    [69]蔡信行、孫光中(2009)。奈米科技導論:基本原理及應用(二版) 。新文京出版股份有限公司。

    無法下載圖示 全文公開日期 2025/07/26 (校內網路)
    全文公開日期 2025/07/26 (校外網路)
    全文公開日期 2025/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE