簡易檢索 / 詳目顯示

研究生: Albert Kuncoro
Albert Kuncoro
論文名稱: 煙氣脫硫石膏與電石渣對F級飛灰及爐石粉基鹼激發材料工程性質之影響
Influences of FGD Gypsum and CCR on Engineering Properties of Class F Fly Ash and GGBFS Based Alkali-Activated Material
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 陳君弢
Chun-Tao Chen
廖文正
Wen-Cheng Liao
陳立憲
Li-Hsien Chen
蘇育民
Yu-Min Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 97
中文關鍵詞: 鹼激發材料電石碴F 級飛灰抗壓強度排煙脫硫石膏水淬高爐爐石粉
外文關鍵詞: alkali-activated material, calcium carbide residue, class-F fly ash, compressive strength, flue-gas desulfurization gypsum, ground granulated blast furnace slag
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著世界人口的遽增,人們對於建築和基礎設施活動的日常需求也隨之增加。由於
    混凝土具有可用範圍廣泛、耐用性高、成本低廉及可塑性高等特性,混凝土已然成為十
    分具有前景的建築材料。然而,由於繁多的基礎設施需求,水泥利用率與生產也與日俱
    增,從而導致了不可忽略的環境問題。因此,減少水泥生產過程中所產生的人為二氧化
    碳及相關環境問題等已然成為當前的研究重點。目前已有部分工業廢棄物已被證實並視
    為卜作嵐材料使用於水泥混和物。來自燃煤電廠的排煙脫硫石膏(FGD)廢料、燃煤後產
    生的 F級飛灰(FFA)及生產乙炔時產生的副產品電石碴(CCR)等已被研究作為鹼激發材料
    (AAM)。
    將水淬高爐爐石粉(GGBFS)加入至混合物中可提高材料性能並加快反應過程。第一
    項研究是設定 CCR 含量為 10 至 20 wt% 及 FGD 石膏含量為 0 至 20 wt% ,並觀察其效
    果,獲得 CCR 與 FGD 的最佳含量後,將其作為混合物添加 GGBFS 取代 FFA 之效果參
    照。新拌性質、物理性能和微觀結構分析等相關資訊已透過許多試驗獲得,例如流度、
    凝結時間、抗壓強度、熱傳導率、超音波試驗 (UPV)、乾燥收縮率、電子掃描顯微鏡
    (SEM) 和 X 射線衍射 (XRD)。所有不同代碼之試體至少包含三個樣本。所有試驗都以
    OPC 0.4 作為控制組並進行結果比較。
    將 CCR 作為混合物之激發劑有助於激發膠結材與卜作嵐反應。據觀察,膠結材與
    CCR 反應之產物為 C-S-H 膠體、C-A-H 膠體與 C-A-S-H 膠體。但 CCR 與 FFA 反應後之
    28 天試體抗壓強度偏低,介於 0.729 至 1.643 MP 之間。混合物中的 FGD 石膏有助於與
    膠結材中的 Al2O3 化合物反應並生成鈣礬石。藉由 28 天之抗壓強度從 1.643 MPa 增加至
    24.758 MPa 以及 XRD 結果中石英波峰的降低可知,添加 FGD 石膏有助於抗壓強度的提
    升並破壞 FFA 的晶相。相較之下,AAM 之抗壓強度增量明顯大於控制組。控制組於 7
    ii
    天至 56 天之抗壓強度增量為 4.206 MPa,而含有 10wt% FFA 與 60wt% GGBFS 之試體的
    7 天至 56 天抗壓強度增量為 12.527 MPa。強度增量可視為更具潛力發展晚期強度。與
    OPC 相比,本研究中的 AAM 試樣在早期時具有非常高的乾燥收縮量,然而在 56 天齡
    期時,所有 AAM 試樣的乾燥收縮量介於 1% 至 26% ,均低於控制組。加入 GGBFS 有
    助於提高抗壓強度,並改善混合物的凝結時間和流度。相較於控制組(OPC 0.4),抗壓強
    度提高 3%、熱導率降低 3% 為其最佳 AAM 配比


    The upsurge in worldwide population and hence increased daily requirements sequel the
    construction and infrastructural activities. Concrete, due to its easy availability, durability, cost
    effectiveness and easy workability has emerged as a promising construction material. Heavy
    infrastructural requirements and hence increased cement utilization upshot the production and,
    hence generated environmental concerns. Reducing the global anthropogenic CO2 generating
    from cement production, reducing the environmental concerns to satisfy the construction needs
    have been the aim of current research.
    The use of industrial wastes categorized as pozzolanic materials beneficial in cement like
    mixture production has been identified and used. The flue-gas desulfurization (FGD) gypsum
    waste from coal-fired power plants, class F fly ash (FFA) generated as waste after combustion
    of pulverized coal and calcium carbide residue (CCR) being the by-product of acetylene gas
    manufacturing to be used as alkali-activated material (AAM) have been investigated. Ground
    granulated blast furnace slag (GGBFS) was later introduced to the mix aiming to increase the
    material properties and to speed up the reaction process. The first investigation was carried out
    by observing the effect of CCR ranging from 10 to 20 wt%, and FGD gypsum ranging from 0
    to 20 wt%. After knowing the optimum content of CCR and FGD, these values were used to
    identify the effect of adding GGBFS to replace FFA as binder in the mixture. Several tests had
    been performed to obtain the information about the fresh-state properties, physical
    performances, and microstructural analysis such as flowability, setting time, compressive
    strength, thermal conductivity, ultrasonic pulse velocity (UPV), drying shrinkage, scanning
    electron microscopy (SEM), and X-ray diffraction (XRD). All of the testing with different
    mixture codes consists of at least 3 specimens. All of the research results are compared to OPC
    0.4, as the control specimen.
    iv
    The CCR in the mixture acts as the activator, which helps activate the binder and initiate the
    pozzolanic reaction. The products of the reaction between binder and CCR are observed as
    calcium silicate hydrate (C-S-H), calcium aluminate hydrate (C-A-H), and calcium alumina
    silicate hydrate (C-A-S-H). But the compressive strength of specimen through the result of the
    reaction between CCR and FFA was considered low, ranging from 0.729 to 1.643 MPa at the
    age of 28 days. The FGD gypsum in the mixture aids react with the Al2O3 compound in the
    binder and produces ettringite. The addition of FGD gypsum helps increase the compressive
    strength value and also breaks the crystalline phases of FFA, evidenced by the increasing of
    compressive strength from 1.643 to 24.758 MPa at 28 days, and also the decreasing peak of
    quartz in the XRD result. The compressive strength gain of AAM is considered better too
    compared to that of the control specimen. The control specimen only had a compressive strength
    gain of 4.206 MPa from the ages of 7 to 56 days, however the compressive strength of the
    specimen with 10wt% of FFA and 60wt% of GGBFS increased by 12.527 MPa from the age of
    7 to 56 days. The strength gain indicates the better potential in compressive strength at later
    ages. AAM specimens in this research had a very high drying shrinkage value at a young age
    compared to that of the OPC, however at the age of 56 days, all the AAM specimens had a
    lower drying shrinkage value of 1 to 26% compared to that of the control specimen. Introducing
    GGBFS helped greatly escalate the compressive strength and also improve the setting time and
    flowability of the mix. The values of 3% higher of compressive strength, and of 3% lower of
    thermal conductivity compared to those of the control specimen (OPC 0.4) were noted for the
    most optimal mix of AAM produced.

    摘要.............................................................................................................................................i Abstract................................................................................................................................... iii Personal Acknowledgements...................................................................................................v Table of Contents....................................................................................................................vi List of Symbol and Abbreviations.........................................................................................ix List of Tables..........................................................................................................................xii 0. List of Figures................................................................................................................xiv 1. Chapter 1 Introduction....................................................................................................1 1.1. Background.......................................................................................................................1 1.2. Significance and research objectives................................................................................3 1.3. Research outline................................................................................................................4 2. Chapter 2 Literature Review ..........................................................................................6 2.1. Fly ash...............................................................................................................................6 2.2. Ground granulated blast furnace slag (GGBFS)...............................................................8 2.3. Flue-gas desulfurization gypsum (FGD gypsum).............................................................9 2.4. Calcium carbide residue..................................................................................................11 2.5. Alkali-activated material (AAM)....................................................................................13 2.5.1. History of alkali-activated material .........................................................................13 2.5.2. Development of alkali-activated material................................................................14 2.5.3. The reaction of alkali-activated material .................................................................14 vii 3. Chapter 3 Experimental Study.....................................................................................25 3.1. Materials .........................................................................................................................25 3.2. Mixture proportions........................................................................................................26 3.3. Testing methods..............................................................................................................28 3.3.1. Flowability test.........................................................................................................28 3.3.2. Setting time test........................................................................................................29 3.3.3. Compressive strength test ........................................................................................30 3.3.4. Thermal conductivity test ........................................................................................31 3.3.5. Ultrasonic pulse velocity (UPV) test .......................................................................31 3.3.6. Drying shrinkage test ...............................................................................................32 3.3.7. Scanning electron microscopy (SEM) test...............................................................33 3.3.8. X-Ray diffraction (XRD) test ..................................................................................33 4. Chapter 4 Results and Discussion ................................................................................54 4.1. Flowability ......................................................................................................................54 4.2. Setting time .....................................................................................................................55 4.3. Compressive strength......................................................................................................57 4.4. Thermal conductivity......................................................................................................58 4.5. Ultrasonic pulse velocity (UPV).....................................................................................59 4.6. Drying shrinkage.............................................................................................................60 4.7. Scanning electron microscopy (SEM) ............................................................................62 4.8. X-Ray diffraction (XRD)................................................................................................62 5. Chapter 5 Conclusions and suggestions.......................................................................86 5.1. Conclusions.....................................................................................................................86 5.2. Suggestions.....................................................................................................................89 References...............................................................................................................................90

    [1] ACI 232, ACI232.2R-96. Use of Fly Ash in Concrete, Am. Concr. Inst. 96 (2002) 1–34.
    [2] ACI 233, ACI 233R-03. Slag Cement in Concrete and Mortar, Am. Concr. Inst. (2003)
    1–19.
    [3] Ajala, E.O., M.A. Ajala, A.O. Ajao, H.B. Saka, A.C. Oladipo, Calcium-carbide residue:
    A precursor for the synthesis of CaO–Al2O3–SiO2–CaSO4 solid acid catalyst for
    biodiesel production using waste lard, Chem. Eng. J. Adv. 4 (2020) 100033.
    https://doi.org/10.1016/j.ceja.2020.100033.
    [4] Alonso, S., A. Palomo, Alkaline activation of metakaolin and calcium hydroxide
    mixtures: Influence of temperature, activator concentration and solids ratio, Mater. Lett.
    47 (2001) 55–62. https://doi.org/10.1016/S0167-577X(00)00212-3.
    [5] American Coal Ash Association, Fly Ash Facts for Highway Engineers, J. Chem. Inf.
    Model. 53 (2013) 1689–1699.
    [6] Angdiarto, S.P., T.-P. Chang, Influences of Oyster Shell Ash and FGD Gypsum on
    Engineering Properties of Class F Fly Ash Based Geopolymer Paste, National Taiwan
    University of Science and Technology, 2020.
    [7] Asadi, I., P. Shafigh, Z.F. Bin Abu Hassan, N.B. Mahyuddin, Thermal conductivity of
    concrete – A review, J. Build. Eng. 20 (2018) 81–93.
    https://doi.org/10.1016/j.jobe.2018.07.002.
    [8] ASTM C 597-02, Pulse Velocity Through Concrete, United States Am. Soc. Test. Mater.
    04 (2003) 3–6. https://doi.org/10.1520/C0597-16.2.
    [9] ASTM C109/109M-16a, Standard test method for compressive strength of hydraulic
    cement mortars (Using 2-in. or cube specimens), Annu. B. ASTM Stand. 04 (2016) 1–
    10. https://doi.org/10.1520/C0109.
    [10] ASTM C1157-20a, Standard Performance Specification for Hydraulic Cement, ASTM
    Int. (2021). https://doi.org/10.1520/C1157_C1157M-20A.
    [11] ASTM C1437, Standard Test Method for Flow of Hydraulic Cement Mortar: C1437-01,
    Standard. (2001) 7–8. https://doi.org/10.1520/C1437-20.2.
    [12] ASTM C150-21, Standard Specification for Portland Cement, ASTM Int. (2021).
    https://doi.org/10.1520/C0150_C0150M-21.
    [13] ASTM C157/C157M-08, Standard Test Method for Length Change of Hardened
    Hydraulic-Cement Mortar and Concrete, ASTM Int. 08 (2008) 1–7.
    https://doi.org/10.1520/C0157.
    [14] ASTM C188, Standard Test Method for Density of Hydraulic Cement, ASTM Int. 95
    (2009) 1–3. https://doi.org/10.1520/C0188-17.2.
    [15] ASTM C191, Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat
    Needle, (1987) 1–8. https://doi.org/10.1520/C0191-19.2.
    [16] ASTM C230, Standard Specification for Flow Table for Use in Tests of Hydraulic
    Cement 1, Annu. B. ASTM Stand. (2010) 4–9. https://doi.org/10.1520/C0230.
    [17] ASTM C490 - 04, Standard Practice for Use of Apparatus for the Determination of
    Length Change of Hardened Cement Paste, Mortar, and Concrete, Annu. B. ASTM Stand.
    ASTM Philadelphia (PA). (2004) 1–5. https://doi.org/10.1520/C0490.
    [18] ASTM C596–01, Standard Test Method for Drying Shrinkage of Mortar Containing
    Hydraulic Cement, Annu. B. ASTM Stand. 2 (2001) 11–13.
    https://doi.org/10.1520/C0596-18.2.
    [19] ASTM C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural
    Pozzolan for Use, Annu. B. ASTM Stand. (2010) 3–6. https://doi.org/10.1520/C0618-
    19.2.
    [20] ASTM C989, Standard Specification for Slag Cement for Use in Concrete and Mortars,
    ASTM Stand. 44 (2013) 1–8. https://doi.org/10.1520/C0989.
    [21] Aydin, S., A ternary optimisation of mineral additives of alkali activated cement mortars,
    Constr. Build. Mater. 43 (2013) 131–138.
    https://doi.org/10.1016/j.conbuildmat.2013.02.005.
    [22] Babor, D., D. Plian, L. Judele, Environmental Impact of Concrete, Bul. Institutului
    Politeh. Din Lasi. Sect. Constr. Arhit. 55 (2009) 27–35.
    [23] Bhanumathidas, N., N. Kalidas, Dual role of gypsum: Set retarder and strength
    accelerator, Indian Concr. J. 78 (2004) 170–173.
    [24] Bhatt, A., S. Priyadarshini, A. Acharath Mohanakrishnan, A. Abri, M. Sattler, S.
    Techapaphawit, Physical, chemical, and geotechnical properties of coal fly ash: A global
    review, Case Stud. Constr. Mater. 11 (2019) e00263.
    https://doi.org/10.1016/j.cscm.2019.e00263.
    [25] Boardman, D.I., S. Glendinning, C.D.F. Rogers, Development of stabilisation and
    solidification in lime-clay mixes, Geotechnique. 51 (2001) 533–543.
    https://doi.org/10.1680/geot.2001.51.6.533.
    [26] Bouzoubaâ, N., S. Foo, Use of Fly Ash and Slag in Concrete : A Best Practice Guide,
    2005.
    [27] Caillahua, M.C., F.J. Moura, Technical feasibility for use of FGD gypsum as an additive
    setting time retarder for Portland cement, J. Mater. Res. Technol. 7 (2018) 190–197.
    https://doi.org/10.1016/j.jmrt.2017.08.005.
    [28] Chandru, P., J. Karthikeyan, A.K. Sahu, K. Sharma, C. Natarajan, Some durability
    characteristics of ternary blended SCC containing crushed stone and induction furnace
    slag as coarse aggregate, Constr. Build. Mater. 270 (2021) 121483.
    https://doi.org/10.1016/j.conbuildmat.2020.121483.
    [29] Chen, M.Y., J.X. Wang, K.T. Chen, B.Z. Wen, W.C. Lin, C.C. Chen, Transesterification
    of soybean oil catalyzed by calcium hydroxide which obtained from hydrolysis reaction
    of calcium carbide, J. Chinese Chem. Soc. 59 (2012) 170–175.
    https://doi.org/10.1002/jccs.201100182.
    [30] Chen, W., Y. Xie, B. Li, B. Li, J. Wang, N. Thom, Role of aggregate and fibre in strength
    and drying shrinkage of alkali-activated slag mortar, 299 (2021) 7–9.
    https://doi.org/10.1016/j.conbuildmat.2021.124002.
    [31] Cong, P., L. Mei, Using silica fume for improvement of fly ash/slag based geopolymer
    activated with calcium carbide residue and gypsum, Constr. Build. Mater. 275 (2021)
    122171. https://doi.org/10.1016/j.conbuildmat.2020.122171.
    [32] Daghooghi, M., I. Borazjani, The effects of irregular shape on the particle stress of dilute
    suspensions, J. Fluid Mech. 839 (2018) 663–692. https://doi.org/10.1017/jfm.2018.65.
    [33] Davidovits, J., Properties of geopolymers cements, in: First Int. Conf. Alkaline Cem.
    Concr., Scientific Research Institute of Binders and Materials, Kiev, Ukraine, 1994: pp.
    131–49.
    [34] Davidovits, J., Geopolymer Cement a review, Geopolymer Sci. Tech. (2013) 1–11.
    [35] Davidovits, J., Geopolumer Chemistry & Applications, Geopolymer Institute, SaintQuentin, 2011.
    [36] Du, Y., J. Wang, C. Shi, H.J. Hwang, N. Li, Flexural behavior of alkali-activated slagbased concrete beams, Eng. Struct. 229 (2021) 111644.
    https://doi.org/10.1016/j.engstruct.2020.111644.
    [37] Fang, G., W.K. Ho, W. Tu, M. Zhang, Workability and mechanical properties of alkaliactivated fly ash-slag concrete cured at ambient temperature, Constr. Build. Mater. 172
    (2018) 476–487. https://doi.org/10.1016/j.conbuildmat.2018.04.008.
    [38] Gagg, C.R., Cement and concrete as an engineering material: An historic appraisal and
    case study analysis, Eng. Fail. Anal. 40 (2014) 114–140.
    https://doi.org/10.1016/j.engfailanal.2014.02.004.
    [39] Gao, X., Q.L. Yu, H.J.H. Brouwers, Properties of alkali activated slag-fly ash blends with
    limestone addition, Cem. Concr. Compos. 59 (2015) 119–128.
    https://doi.org/10.1016/j.cemconcomp.2015.01.007.
    [40] Gencel, O., O. Karadag, O.H. Oren, T. Bilir, Steel slag and its applications in cement and
    concrete technology: A review, Constr. Build. Mater. 283 (2021) 122783.
    https://doi.org/10.1016/j.conbuildmat.2021.122783.
    [41] Ghosh, A., C. Subbarao, Tensile Strength Bearing Ratio and Slake Durability of Class F
    Fly Ash Stabilized with Lime and Gypsum, J. Mater. Civ. Eng. 18 (2006) 18–27.
    https://doi.org/10.1061/(asce)0899-1561(2006)18:1(18).
    [42] Glukhovsky, V.D., Slag-alkali concretes produced from fine-grained aggregate, Kiev
    Vishcha Shkolay. (1981).
    [43] Glukhovsky, V.D., G.S. Rostovskaja, G.V. Rumyna, High sterngth slag alkaline cements,
    in: Proc. Seventh Int. Congr. Chem. Cem. Vol 3, 1980: pp. 164–8.
    [44] Godzik, S., Air Pollution Problems in Some Central European Countries—
    Czechoslovakia, the German Democratic Republic and Poland, Butterworth, London,
    UK, 1984.
    [45] Habert, G., Environmental impact of Portland cement production, Eco-Efficient Concr.
    (2013) 3–25. https://doi.org/10.1533/9780857098993.1.3.
    [46] Hanjitsuwan, S., T. Phoo-ngernkham, L. yuan Li, N. Damrongwiriyanupap, P.
    Chindaprasirt, Strength development and durability of alkali-activated fly ash mortar with
    calcium carbide residue as additive, Constr. Build. Mater. 162 (2018) 714–723.
    https://doi.org/10.1016/j.conbuildmat.2017.12.034.
    [47] Hardjito, D., C.C. Cheak, C.H. Lee Ing, Strength and Setting Times of Low Calcium Fly
    Ash-based Geopolymer Mortar, Mod. Appl. Sci. 2 (2008) 2–11.
    https://doi.org/10.5539/mas.v2n4p3.
    [48] Hartanto, F., T.-P. Chang, Influences of Oyster Shell Ash and FGD Gypsum on
    Engineering Properties of Class F Fly Ash Based Geopolymer Paste, National Taiwan
    University of Science and Technology, 2020.
    [49] Hasnaoui, A., A. Bourguiba, Y. El Mendili, N. Sebaibi, M. Boutouil, A preliminary
    investigation of a novel mortar based on alkali-activated seashell waste powder, Powder
    Technol. 389 (2021) 471–481. https://doi.org/10.1016/j.powtec.2021.05.069.
    [50] He, J., W. Bai, W. Zheng, J. He, G. Sang, Influence of hydrated lime on mechanical and
    shrinkage properties of alkali-activated slag cement, Constr. Build. Mater. 289 (2021)
    123201. https://doi.org/10.1016/j.conbuildmat.2021.123201.
    [51] He, P., B. Zhang, J. Lu, C. Sun, Reaction mechanisms of alkali-activated glass powderggbs-CAC composites, Cem. Concr. Compos. 122 (2021) 104143.
    https://doi.org/10.1016/j.cemconcomp.2021.104143.
    [52] Horpibulsuk, S., C. Phetchuay, A. Chinkulkijniwat, Soil Stabilization by Calcium
    Carbide Residue and Fly Ash, J. Mater. Civ. Eng. 24 (2012) 184–193.
    https://doi.org/10.1061/(asce)mt.1943-5533.0000370.
    [53] Kim, K.B., J.P. Hwang, K.Y. Ann, Influence of cementitious binder on chloride removal
    under electrochemical treatment in concrete, Constr. Build. Mater. 104 (2016) 191–197.
    https://doi.org/10.1016/j.conbuildmat.2015.12.052.
    [54] Kim, M.S., Y. Jun, C. Lee, J.E. Oh, Use of CaO as an activator for producing a pricecompetitive non-cement structural binder using ground granulated blast furnace slag,
    Cem. Concr. Res. 54 (2013) 208–214. https://doi.org/10.1016/j.cemconres.2013.09.011.
    [55] Kirschner, A. V., H. Harmuth, Investigation of geopolymer binders with respect to their
    application for building materials, Ceram. - Silikaty. 48 (2004) 117–120.
    [56] Kozioł, M.J., F.R. Whatley, Gaseous Air Pollutants and Plant Metabolism, ButterworthHeinemann, 1984. https://doi.org/https://doi.org/10.1016/C2013-0-04164-3.
    [57] Kumar, A., V. Kumar, B. Prasad, Strength development and flexural behavior of
    reinforced concrete beam using one-part alkali-activated binder, Constr. Build. Mater.
    281 (2021) 122619. https://doi.org/10.1016/j.conbuildmat.2021.122619.
    [58] Lee, T., J. Lee, Setting time and compressive strength prediction model of concrete by
    nondestructive ultrasonic pulse velocity testing at early age, Constr. Build. Mater. 252
    (2020) 119027. https://doi.org/10.1016/j.conbuildmat.2020.119027.
    [59] Li, H., G. Liu, Y. Cao, Content and distribution of trace elements and polycyclic aromatic
    hydrocarbons in fly ash from a coal-fired CHP plant, Aerosol Air Qual. Res. 14 (2014)
    1179–1188. https://doi.org/10.4209/aaqr.2013.06.0216.
    [60] Li, J., X. Zhuang, C. Leiva, A. Cornejo, O. Font, X. Querol, N. Moeno, C. Arenas, C.
    Fernández-Pereira, Potential utilization of FGD gypsum and fly ash from a Chinese
    power plant for manufacturing fire-resistant panels, Constr. Build. Mater. 95 (2015) 910–
    921. https://doi.org/10.1016/j.conbuildmat.2015.07.183.
    [61] Li, L., J.X. Lu, B. Zhang, C.S. Poon, Rheology behavior of one-part alkali activated
    slag/glass powder (AASG) pastes, Constr. Build. Mater. 258 (2020) 120381.
    https://doi.org/10.1016/j.conbuildmat.2020.120381.
    [62] Li, P., Z. Ma, Z. Zhang, X. Li, X. Lu, P. Hou, P. Du, Effect of gypsum on hydration and
    hardening properties of alite modified calcium sulfoaluminate cement, Materials (Basel).
    12 (2019). https://doi.org/10.3390/ma12193131.
    [63] Li, Z., J. Zhang, S. Li, Y. Gao, C. Liu, Y. Qi, Effect of different gypsums on the
    workability and mechanical properties of red mud-slag based grouting materials, J. Clean.
    Prod. 245 (2020) 118759. https://doi.org/10.1016/j.jclepro.2019.118759.
    [64] Martins, A.C.P., J.M. Franco de Carvalho, L.C.B. Costa, H.D. Andrade, T.V. de Melo,
    J.C.L. Ribeiro, L.G. Pedroti, R.A.F. Peixoto, Steel slags in cement-based composites: An
    ultimate review on characterization, applications and performance, Constr. Build. Mater.
    291 (2021) 123265. https://doi.org/10.1016/j.conbuildmat.2021.123265.
    [65] Mastali, M., P. Kinnunen, A. Dalvand, R. Mohammadi Firouz, M. Illikainen, Drying
    shrinkage in alkali-activated binders – A critical review, Constr. Build. Mater. 190 (2018)
    533–550. https://doi.org/10.1016/j.conbuildmat.2018.09.125.
    [66] McCarthy, M.J., T.D. Dyer, Pozzolanas and pozzolanic materials, 5th ed., Elsevier Ltd.,
    2019. https://doi.org/10.1016/B978-0-08-100773-0.00009-5.
    [67] Merck & Co., Solubility rules chrat, (n.d.).
    https://www.sigmaaldrich.com/TW/en/technical-documents/technical-article/materialsscience-and-engineering/solid-state-synthesis/solubility-rules-solubility-of-commonionic-compounds (accessed July 8, 2021).
    [68] Miao, M., X. Feng, G. Wang, S. Cao, W. Shi, L. Shi, Direct transformation of FGD
    gypsum to calcium sulfate hemihydrate whiskers: Preparation, simulations, and process
    analysis, Particuology. 19 (2015) 53–59. https://doi.org/10.1016/j.partic.2014.04.010.
    [69] Nasvi, M.C.M., P.G. Ranjith, J. Sanjayan, Comparison of mechanical behaviors of
    geopolymer and class G cement as well cement at different curing temperatures for
    geological sequestration of carbon dioxide, 46th US Rock Mech. / Geomech. Symp. 2012.
    1 (2012) 324–331.
    [70] Nayak, H.K.P.S., Geotechnical Investigations on Marine Clay Stabilized Using
    Granulated Blast Furnace Slag and Cement, Int. J. Geosynth. Gr. Eng. 5 (2019) 1–12.
    https://doi.org/10.1007/s40891-019-0179-5.
    [71] Nguyen, H.A., T.P. Chang, J.Y. Shih, H. Suryadi Djayaprabha, Enhancement of lowcement self-compacting concrete with dolomite powder, Constr. Build. Mater. 161 (2018)
    539–546. https://doi.org/10.1016/j.conbuildmat.2017.11.148.
    [72] P.-C.Aïtcin, Science and Technology of Concrete Admixtures, in: Woodhead Publishing
    Limited, 2016: pp. 471–479. https://doi.org/https://doi.org/10.1016/B978-0-08-100693-
    1.00024-2.
    [73] Pacheco-Torgal, F., J. Castro-Gomes, S. Jalali, Alkali-activated binders: A review. Part
    1. Historical background, terminology, reaction mechanisms and hydration products,
    Constr. Build. Mater. 22 (2008) 1305–1314.
    https://doi.org/10.1016/j.conbuildmat.2007.10.015.
    [74] Papachristoforou, M., E.K. Anastasiou, I. Papayianni, Durability of steel fiber reinforced
    concrete with coarse steel slag aggregates including performance at elevated
    temperatures, Constr. Build. Mater. 262 (2020) 120569.
    https://doi.org/10.1016/j.conbuildmat.2020.120569.
    [75] Perumal, P., H. Sreenivasan, T. Luukkonen, A.M. Kantola, V. Telkki, P. Kinnunen, M.
    Illikainen, High strength one-part alkali-activated slag blends designed by particle
    packing optimization, Constr. Build. Mater. 299 (2021) 124004.
    https://doi.org/10.1016/j.conbuildmat.2021.124004.
    [76] Phummiphan, I., S. Horpibulsuk, T. Phoo-ngernkham, A. Arulrajah, S.-L. Shen, Marginal
    Lateritic Soil Stabilized with Calcium Carbide Residue and Fly Ash Geopolymers as a
    Sustainable Pavement Base Material, J. Mater. Civ. Eng. 29 (2017) 04016195.
    https://doi.org/10.1061/(asce)mt.1943-5533.0001708.
    [77] Prasad, M.N.V., Resource Potential of Natural and Synthetic Gypsum Waste, Elsevier
    Inc., 2016. https://doi.org/10.1016/B978-0-12-803837-6.00014-7.
    [78] Quennoz, A., 4.Hydration of C3A with Calcium Sulfate Alone and in the Presence of
    Calcium Silicate, 5035 (2011) 8–10.
    [79] Ramujee, K., Development of Low Calcium Flyash Based Geopolymer Concrete, Int. J.
    Eng. Technol. 6 (2014) 1–4. https://doi.org/10.7763/ijet.2014.v6.654.
    [80] Rao, S.M., B. V. Venkatarama Reddy, G.C. Raju, S. Lakshmikanth, N.S. Ambika,
    Chemical stabilization of lead contaminated gypsum sludge, Int. J. Geotech. Eng. 3
    (2009) 109–116. https://doi.org/10.3328/IJGE.2009.03.01.109-116.
    [81] Roy D M, Alkali activated cements, opportunities and challenges, Cem. Concr. Res. 29
    (1999) 249–254.
    [82] Ruengsillapanun, K., T. Udtaranakron, T. Pulngern, W. Tangchirapat, C. Jaturapitakkul,
    Mechanical properties, shrinkage, and heat evolution of alkali activated fly ash concrete,
    Constr. Build. Mater. 299 (2021) 123954.
    https://doi.org/10.1016/j.conbuildmat.2021.123954.
    [83] Rustandi, A., F.W. Nawawi, Y. Pratesa, A. Cahyadi, Evaluation of the suitability of tin
    slag in cementitious materials: Mechanical properties and Leaching behaviour, IOP Conf.
    Ser. Mater. Sci. Eng. 299 (2018) 0–7. https://doi.org/10.1088/1757-899X/299/1/012046.
    [84] Sargent, P., The development of alkali-activated mixtures for soil stabilisation,
    Woodhead Publishing Limited, 2015. https://doi.org/10.1533/9781782422884.4.555.
    [85] Shehata, N., E.T. Sayed, M.A. Abdelkareem, Recent progress in environmentally friendly
    geopolymers: A review, Sci. Total Environ. 762 (2021) 143166.
    https://doi.org/10.1016/j.scitotenv.2020.143166.
    [86] Shi, C., X. Hu, X. Wang, Z. Wu, G. de Schutter, Effects of Chloride Ion Binding on
    Microstructure of Cement Pastes, J. Mater. Civ. Eng. 29 (2017) 04016183.
    https://doi.org/10.1061/(asce)mt.1943-5533.0001707.
    [87] Sirchis, J., Energy Efficiency in the Cement Industry, ELSEVIER APPLIED SCIENCE,
    2003.
    [88] Sivapullaiah, P. V., A.A.B. Moghal, Role of Gypsum in the Strength Development of Fly
    Ashes with Lime, J. Mater. Civ. Eng. 23 (2011) 197–206.
    https://doi.org/10.1061/(asce)mt.1943-5533.0000158.
    [89] Škvára, F., Alkali activated materials or geopolymers?, Ceram. - Silikaty. 51 (2007) 173–
    177.
    [90] Sun, H., Z. Li, J. Bai, S.A. Memon, B. Dong, Y. Fang, W. Xu, F. Xing, Properties of
    chemically combusted calcium carbide residue and its influence on cement properties,
    Materials (Basel). 8 (2015) 638–651. https://doi.org/10.3390/ma8020638.
    [91] Talkeri, A., A.U. Ravi Shankar, Alkali activated slag/fly ash concrete incorporating
    precious slag as fine aggregate for rigid pavements, J. Traffic Transp. Eng. (English Ed.
    (2021) 1–13. https://doi.org/10.1016/j.jtte.2021.05.001.
    [92] Tan, Z., G. De Schutter, G. Ye, Y. Gao, L. Machiels, Influence of particle size on the
    early hydration of slag particle activated by Ca(OH)2 solution, Constr. Build. Mater. 52
    (2014) 488–493. https://doi.org/10.1016/j.conbuildmat.2013.11.073.
    [93] Theodoridou, M., L. Kyriakou, I. Ioannou, PCM-enhanced Lime Plasters for Vernacular
    and Contemporary Architecture, Energy Procedia. 97 (2016) 539–545.
    https://doi.org/10.1016/j.egypro.2016.10.070.
    [94] Thymotie, A., T.P. Chang, H.A. Nguyen, Improving properties of high-volume fly ash
    cement paste blended with β-hemihydrate from flue gas desulfurization gypsum, Constr.
    Build. Mater. 261 (2020) 120494. https://doi.org/10.1016/j.conbuildmat.2020.120494.
    [95] Tzouvalas, G., G. Rantis, S. Tsimas, Alternative calcium-sulfate-bearing materials as
    cement retarders: Part II. FGD gypsum, Cem. Concr. Res. 34 (2004) 2119–2125.
    https://doi.org/10.1016/j.cemconres.2004.03.021.
    [96] Tzouvalas, G., G. Rantis, S. Tsimas, Performance Criteria for the Use of Fgd Gypsum in
    Cement and Concrete Production, Meas. Monit. Model. Concr. Prop. (2007) 373–378.
    https://doi.org/10.1007/978-1-4020-5104-3_45.
    [97] Wang, B., W. Yao, D. Stephan, Preparation of calcium silicate hydrate seeds by means
    of mechanochemical method and its effect on the early hydration of cement, Adv. Mech.
    Eng. 11 (2019) 1–7. https://doi.org/10.1177/1687814019840586.
    [98] Wang, Y., X. Liu, W. Zhang, Z. Li, Y. Zhang, Y. Li, Y. Ren, Effects of Si/Al ratio on the
    efflorescence and properties of fly ash based geopolymer, J. Clean. Prod. 244 (2020)
    118852. https://doi.org/10.1016/j.jclepro.2019.118852.
    [99] Xiang, J., L. Liu, X. Cui, Y. He, G. Zheng, C. Shi, Effect of limestone on rheological,
    shrinkage and mechanical properties of alkali – Activated slag/fly ash grouting materials,
    Constr. Build. Mater. 191 (2018) 1285–1292.
    https://doi.org/10.1016/j.conbuildmat.2018.09.209.
    [100] Xu, G., X. Shi, Characteristics and applications of fly ash as a sustainable construction
    material: A state-of-the-art review, Resour. Conserv. Recycl. 136 (2018) 95–109.
    https://doi.org/10.1016/j.resconrec.2018.04.010.
    [101] Yang, B., J.G. Jang, Environmentally benign production of one-part alkali-activated slag
    with calcined oyster shell as an activator, Constr. Build. Mater. 257 (2020) 119552.
    https://doi.org/10.1016/j.conbuildmat.2020.119552.
    [102] Yang, H., D. Liang, Z. Deng, Y. Qin, Effect of limestone powder in manufactured sand
    on the hydration products and microstructure of recycled aggregate concrete, Constr.
    Build. Mater. 188 (2018) 1045–1049.
    https://doi.org/10.1016/j.conbuildmat.2018.08.147.
    [103] Zhang, X., L. Ran, X. Wang, B. Jin, J. Zhang, S.L.L. Yang, Structural characteristic and
    formation mechanism of hemihydrate calcium sulfate whiskers prepared using FGD
    gypsum, Particuology. (2021). https://doi.org/10.1016/j.partic.2021.04.010.
    [104] Zhu, X., Z. Jiang, B. He, C. Qian, Investigation on the physical stability of calciumsilicate-hydrate with varying CaO/SiO2 ratios under cryogenic attack, Constr. Build.
    Mater. 252 (2020) 119103. https://doi.org/10.1016/j.conbuildmat.2020.119103.
    [105] Zhuang, X.Y., L. Chen, S. Komarneni, C.H. Zhou, D.S. Tong, H.M. Yang, W.H. Yu, H.
    Wang, Fly ash-based geopolymer: Clean production, properties and applications, J.
    Clean. Prod. 125 (2016) 253–267. https://doi.org/10.1016/j.jclepro.2016.03.019

    無法下載圖示 全文公開日期 2024/08/20 (校內網路)
    全文公開日期 2025/08/20 (校外網路)
    全文公開日期 2025/08/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE