簡易檢索 / 詳目顯示

研究生: 郭祐豪
Yu-Hao Kuo
論文名稱: 綠色無水泥混凝土工程性質之研究
Study on Engineering Properties of Green No-Cement Concrete
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 黃然
陳君弢
徐輝明
張大鵬
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 115
中文關鍵詞: CFBC灰爐石粉飛灰鹼激發材料一般卜特蘭水泥應力-應變曲線
外文關鍵詞: CFBC ash, slag, fly ash, akaline activated material, ordinary Portland cement, stress-strain curve
相關次數: 點閱:220下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要係探討以(1)爐石-F級飛灰基鹼激發膠結材,(2)爐石粉(S)、F級飛灰(F)及循環式流化床燃燒(circulating fluidized bed combustion, CFBC)飛灰(C)等三種粉體所組成SFC膠結材所製成兩種綠色無水泥混凝土,在不同組成材料比例之工程性質,並以一般卜特蘭水泥混凝土為基準,在相似強度下,比較綠色無水泥混凝土與一般卜特蘭水泥混凝土工程性質之差異。
    研究結果顯示:(1)隨著F級飛灰取代量增加由0%增加至30%及60%,鹼激發混凝土抗壓強度分別下降8.57%及18.91%;隨著F級飛灰取代量由0%增加至30%及50%,SFC混凝土抗壓強度分別下降18.70%及20.32%,兩者抗壓強度皆隨F級飛灰用量比例增加而下降,SFC混凝土下降趨勢更為顯著。(2)鹼激發混凝土抗壓強度在33.87與45.69 MPa之間時,彈性模數約為15.76與19.49 GPa之間,約為一般卜特蘭水泥彈性模數之80%;SFC混凝土強度為31.12與48.05 MPa之間時,彈性模數約在21.02與25.52 GPa之間,與一般卜特蘭水泥混凝土彈性模數相近。(3)卜松比方面,鹼激發混凝土、SFC混凝土與一般卜特蘭水泥混凝土相近,皆約在0.15與0.21之間。(3)尖峰強度應變部分, SFC混凝土約為0.0025與0.0029之間,鹼激發混凝土約為0.003,鹼激發混凝土與一般卜特蘭水泥混凝土相較較小。(4)從應力-應變曲線模型觀察可得知,SFC混凝土應力-應變曲線與一般卜特蘭水泥應力-應變曲線相似,但鹼激發混凝土在加入飛灰之後呈現脆性。(5)非破壞試驗之動態彈性及剪力模數、超音波試驗部分,隨著飛灰取代量增加而遞減。(6)鹼激發混凝土熱傳導係數在1.51與1.79 W/m·K之間,高於SFC混凝土之1.65與1.82 W/m·K之間值與低於一般卜特蘭水泥混凝土之1.55與1.86 W/m·K之間,兩者綠色混凝土熱傳導係數均隨著飛灰量增加而均降低。


    This study mainly investigates the engineering properties of two green no-cement concrete under various mixture compositions, one is the Class F fly ash and ground-granulated blast-furnace slag (GGBFS) based geopolymer concrete, and the other is the no-cement SFC concrete made with an innovative cementitious binder which is purely produced with a ternary mixture of three industrial by-products of ground granulated blast furnace slag(S), low calcium Class F fly ash (F) and circulating fluidized bed combustion (CFBC) fly ash (C). By using the ordinary Portland cement (OPC) concrete with similar strengths as the base to compare the differences of its engineering porperties with those of green no-cement concrete.
    Experimental results showed that: (1)For geopolymer concrete, when the amount of replacement of fly ash increase from 0% to 30% and 60%,the values of compressive strength decrease by 8.57% and 18.91%. For SFC concrete, when the amount of replacement of fly ash increase form 0% to 30% and 50%,the values of compressive strength decrease by 18.70% and 20.32%. (2) For geopolymer concrete, when the compressive strength is in the range of 33.87 and 45.69 MPa, the modulus of elasticity is between about 15.76 and 19.49 GPa, which is about 80% of that of Potland cement concrete. For SFC concrete, when the compressive strength is in the range of 31.12 and 48.05 MPa, the modulus of elasticity is between about 21.02 and 25.52 GPa which is similar to that of Potland cement concrete. (3) The values of Possion’s ratio for geopolymer concrete, SFC concrete and Potland cement concrete are similar in the range between 0.15 and 0.21. (4) The complete stress-strain curve of SFC concrete is similar to that of OPC concrete. But, the rapid decending shape of post-peak softening portion of the complete stress-strain curve for the fly ash and GGBFS based geopolymer concretes was observed, which indicated a more brittle behavior than that of OPC concrete. (5) When the amount of replacement of type F Fly ash increases, the resulting effects showed a negative effect on the ultrasonice pulse velocity, dynamic nodulus of elasticity and dynamic shear modulus. (6) The thermal conductivities of geopolymer concrete was in the ranges of 1.51 and 1.79 W/m·K, which is lower than those in range of and 1.65 and1.82 W/m·K for the SFC concrete, and in the range of 1.55~1.86 W/m·K for the OPC concrete. The thermal conductivities for both green concretes decresed with the cincrease of addition of fly ash.

    摘 要 i Abstract ii 致謝 iv 目錄 v 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 2 1.3研究內容與流程 2 第二章 文獻回顧 4 2.1鹼激發膠結材混凝土 4 2.1.1鹼激發材料介紹 4 2.1.2鹼激發爐石反應機制 4 2.1.3爐石-飛灰複合型鹼激發材料 6 2.1.4爐石-飛灰複合型鹼激發材料氧化鈣與三氧化二鋁元素之影響 8 2.2 流體化床鍋爐技術(CFBC)灰膠結材混凝土 9 2.2.1循環式流化床鍋爐介紹 9 2.2.2 CFBC灰反應機理 10 2.2.4CFBC灰與水淬爐石粉之影響 14 2.3單軸壓縮試驗之完整應力-應變行為 15 2.3.1完整加載試驗 15 2.3.2完整加載歷程之峰後行為探討 17 2.3.3混凝土抗壓破壞機理 17 2.3.4單軸壓縮試驗之影響因子 19 第三章 試驗計畫 33 3.1試驗內容與流程 33 3.2試驗材料 33 3.3試驗設備 35 3.4試驗變數 38 3.4.1試驗內容範圍 38 3.4.2試驗變數 38 3.5試體拌合與製作 39 3.6試驗方法 41 3.6.1材料基本試驗 41 3.6.2完整加載抗壓試驗 41 3.6.3非破壞檢測 43 3.7 MTS伺服器加載系統校正 45 第四章 試驗結果與分析 70 4.1工程性質 70 4.1.1抗壓強度 70 4.1.2單位重 71 4.1.3靜彈性模數 72 4.1.4卜松比 73 4.1.5尖峰強度應變 73 4.1.6應力-應變曲線模型 74 4.2非破壞試驗 76 4.2.1動態彈性與動態剪力模數試驗 76 4.2.2超音波波速試驗 77 4.2.3熱傳導係數 78 第五章 結論與建議 93 5.1結論 93 5.2建議 94 第六章 參考文獻 95

    1. 公共工程委員會,公共工程飛灰混凝土使用手冊,台北市,1999。
    2. 台塑石化公司,「副產品「混合石膏及副產飛灰」再利用技術及應用推廣規範評估報告」,2005。
    3. 田剛、王紅梅、張凡,「脫硫灰的綜合利用」,能源環境保護學刊,第17卷,第6期,第49-53頁,2003。
    4. 吳宗翰,鹼激發爐灰砂漿鋼筋握裹性質研究,營建工程所,國立台灣科技大學,2014。
    5. 宋遠明、錢覺時、劉景相、王波、王志娟,「SO3對固硫渣膠凝系統水化及性能的影響」,建築材料學報,第16期,第4期,第688-694頁,2013。
    6. 李祐帆,鹼激發爐石-轉爐石膠結材物理性質之研究,土木工程學系碩博士班,國立成功大學,台南市,2010。
    7. 李婉禎,石化與煉鋼產業廢棄物作為控制性低強度材料膠結材和填充材之研究,營建工程所,國立台灣科技大學,2015
    8. 官志恆,鹼活化液模數比及劑量對爐石混凝土性質影響之研究,河海工程學系,國立臺灣海洋大學,基隆市,2011。
    9. 邱友梅,無鹼激發廢玻璃膠結材之研究,土木工程學系碩博士班,國立成功大學,台南市,2012。
    10. 邱顯楠,含偏高嶺土與稻殼灰鹼激發膠結材及砂漿之防火性能和工程性質探討,營建工程系,國立臺灣科技大學,台北市,2012。
    11. 夏艷晴、嚴雲、胡志華,「固流化免蒸壓加氣混凝土性能影響因素的研究」,武漢理工大學學報,第34卷,第3期,第25~30頁,2012。
    12. 涂明和,以氧化鈣與三氧化二鋁成份迴歸分析探討鹼激發爐灰砂漿工程性質之影響,營建工程所,國立台灣科技大學,2015。
    13. 張士晉,掺CFB副產石灰之鹼激發飛灰膠凝材料工程性質之研究,土木工程學系碩博士班,國立成功大學,台南市,2009。
    14. 張峻闔,碩士論文,「CFBC飛灰作為鹼激發劑與標準之符合度及混凝土性質研究」,國立交通大學土木研究所,2013。
    15. 曹德光、蘇達根、楊占印、宋國勝,偏高嶺石的微觀結構與鍵合反應能力,礦物學報,24 (2004) 366-372。
    16. 盛廣宏、陳明、程麟、方恆林,「硬石膏對硅酸鹽水泥性的影響」,水泥工程,第5期,第8~11頁,2004。
    17. 許偉哲,TFT-LCD廢玻璃鹼激發膠結材之物理性質,土木工程學系碩博士班,國立成功大學,台南市,2009。
    18. 許皓翔,TFT-LCD廢玻璃以鹼激發方式製成防火材料之研究,環境工程學系碩士班,國立宜蘭大學,宜蘭縣,2012。
    19. 陳致仰,飛灰含量對無水泥生態混凝土耐久性質之效應,營建工程所,國立台灣科技大學,2016。
    20. 黃兆龍,卜作嵐混凝土使用手冊,財團法人中興工程顧問社,台北市,2007。
    21. 黃兆龍,高爐熟料在水泥上之利用,現代混凝土技術研討會,台灣營建研究中心,第162-177頁,1984。
    22. 黃兆龍,混凝土性質與行為,詹氏書局,台北,1997。
    23. 黃俊傑,鹼激發爐灰混凝土新拌性質之研究,營建工程所,國立台灣科技大學,2016。
    24. 黃從源,三相生態混凝土工程性質之研究,營建工程所,國立台灣科技大學,2014。
    25. 廖佳慶,鹼礦渣水泥與混凝土化學收縮和乾縮行為研究,重慶大學材料科學與工程系,重慶,2007。
    26. 劉畊甫,焚化底碴鹼激發效益之評估,土木工程學研究所,臺灣大學,台北市,2010。
    27. 蔡宗和,含轉爐石及飛灰之鹼激發爐石膠結材,土木工程學系碩博士班,國立成功大學,台南市,2011。
    28. 賴琇瑩,鹼激發廢玻璃膠結材之常溫配比研究,土木工程學系碩博士班,國立成功大學,台南市,2010。
    29. 錢覺時、鄭洪傳、王智、宋遠明、楊娟,「硫化床燃煤固硫灰渣活性評定方法」,煤炭學報,第31卷,第4期,第506-510頁,2006。
    30. 謝明蒲,廢玻璃鹼激發膠結材之吸水性能研究,土木工程學系碩博士班,國立成功大學,台南市,2012。
    31. Anthony, J., and L. Jia, Y. Wu, “CFBC ash hydration studies,” Fuel, Vol.84, pp. 1393-1397 (2005).
    32. Aydın, S., B. Baradan, Effect of activator type and content on properties of alkali-activated slag mortars, Composites Part B: Engineering, 57 (2014) 166-172.
    33. Bernal, S.A., Bernal, J.L. Provis, B. Walkley, R. San Nicolas, J.D. Gehman, D.G. Brice, A.R. Kilcullen, P. Duxson, and J.S.J. van Deventer, Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation, Cement and Concrete Research, 53 (2013) 127-144.
    34. Caijun, S.L.,and Yinyu, Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement, Cement and Concrete Research, 19 (1989) 527-533.
    35. Chen C.T., H.A, Nguyen, T.P. Chang, T.R. Yang, and T.D Nguyen, Performance and microstructural examination on composition of hardened paste with no-cement SFC binder, Construction and Building Materials, 76 (2015) 264-272.
    36. Chi,M., R. Huang, Binding mechanism and properties of alkali-activated fly ash/slag mortars, Construction and Building Materials, 40 (2013) 291-298.
    37. Davidovits, J., “Geoplolymer:man-made rock gel synthesis and the resulting development of very early high strength cement,” Journal of Materials Education, Vol. 16, No. 2-3, pp. 91-139 (1994).
    38. Duxson, P., and J.L. Provis, Designing precursors for geopolymer cements, Journal of the American Ceramic Society, 91 (2008) 3864-3869.
    39. Duxson,P., A. Fernández-Jiménez, J.L. Provis, and G.C. Lukey, A. Palomo, J.S.J. Van Deventer, Geopolymer technology: The current state of the art, J Mater Sci, 42 (2007) 2917-2933.
    40. Faimon, J., Oscillatory silicon and aluminum aqueous concentrations during experimental aluminosilicate weathering, Geochimica et Cosmochimica Acta, 60 (1996) 2901-2907.
    41. Fernández-Jiménez,A., A. Palomo, I. Sobrados, and J. Sanz, The role played by the reactive alumina content in the alkaline activation of fly ashes, Microporous and Mesoporous Materials, 91 (2006) 111-119.
    42. Fu, X., Q. Li, and J. Zhai, “The physical–chemical characterization of mechanically-treated CFBC fly ash,” Cement & Concrete Composites, Vol.30(3), pp. 220-226 (2008).
    43. Goodman, and Richard E. Introduction to rock mechanics. Vol. 2. New York: Wiley, 1989
    44. Hamilton, J.P., S.L. Brantley, C.G. Pantano, L.J. Criscenti, and J.D. Kubicki, Dissolution of nepheline, jadeite and albite glasses: toward better models for aluminosilicate dissolution, Geochimica et Cosmochimica Acta, 65 (2001) 3683-3702
    45. Havlica, J., I. Odler, J. Brandštetr, R. Mikulikova, and D. Walther, “Cementitious materials based on fluidised bed coal combustion ashes,,Vol.16(2), pp. 61-67 (2010)
    46. Kumar, S., R. Kumar, and S.P. Mehrotra, Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer, J Mater Sci, 45 (2010) 607-615.
    47. Lee, C. Y., H. K. Lee, and K. M. Lee, “Strength and Microstructural Characteristics of Chemically Activated Fly Ash–Cement Systems,” Cement and Concrete Research, Vol. 33(3), pp. 425-431 (2003).
    48. Li, X. G., Q. B. Chen, B. G. Ma, J. Huang, S. W. J, and B. Wu, “Utilization of modified CFBC desulfurization ash as an admixture in blende cements: Physico-mechanical and hydration characteristics,” Fuel, Vol. 102, pp. 674-680 (2012).
    49. Li, Z., and S. Liu, Influence of Slag as Additive on Compressive Strength of Fly Ash-Based Geopolymer, Journal of Materials in Civil Engineering, 19 (2007) 470-474.
    50. Malhotra, and V.M.M.P.K. High-performance, high-volume fly ash concrete : materials, mixture proportioning, properties, construction practice, and case histories, Supplementary Cementing Materials for Sustainable Development Inc., Ottawa, 2005.
    51. Mozgawa, W., and J. Deja, Spectroscopic studies of alkaline activated slag geopolymers, Journal of Molecular Structure, 924–926 (2009) 434-441.
    52. N.K. Lee, and H.K. Lee, Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature, Construction and Building Materials, 47 (2013) 1201-1209.
    53. Nath, S.K., and S. Kumar, Influence of iron making slags on strength and microstructure of fly ash geopolymer, Construction and Building Materials, 38 (2013) 924-930.
    54. Nguyen, H.A, T.P. Chang, J.Y. Shih, C.T. Chen, and T.D Nguyen, Sulfate resistance of low energy SFC no-cement mortar, Construction and Building Materials, 102 (2016) 239–243.
    55. Nguyen, H.A., T.P. Chang., J.Y., Shih.,. Chun-Tao,Chen., and Tien-Dung,Nguyen, Engineering properties and durability of high-strength self-compacting concrete with no-cement SFC binder, Construction and Building Materials, 106 (2016) 670-677.
    56. Noushini, A, F. Aslani, and A.Castel, Raymond IanGilbert, BrianUy, and StephenFoster, Compressive stress-strain model for low-calcium fly ash-based geopolymer and heat-cured Portland cement concrete, 73 (2016) 136-146.
    57. Poon, C. S., S. C. Kou, and Z. S., Lin, “Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4),” Cement and Concrete Research, Vol. 31(6), pp.873-881 (2001).
    58. Puertas, F., S. Martı́nez-Ramı́rez, S. Alonso, T. Vázquez, Alkali-activated fly ash/slag cements: Strength behaviour and hydration products, Cement and Concrete Research, 30 (2000) 1625-1632.
    59. Rangan, B.V.H.D., Development and properties of low calcium fly ash based geopolymer concrete, Faculty of Engineering, Curtins University of Technology, Perth, Australia, 2005.
    60. Sheng, G., J. Zhai, Q. Li, and F. Li, “Utilization of Fly Ash coming from a CFBC Boiler Co-Firing Coal and Petroleum Coke in Portland Cement,” Fuel, Vol.86(16), pp. 2625-2631 (2007).
    61. Sheng, G., Q. Li, and J. Zhai, “Investigation on the hydration of CFBC fly ash,” Fuel, 98, pp61-66 (2012).
    62. Sheng, G., Q. Li, and J. Zhai, and F. Li, “Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke,” Cement and Concrete Research, Vol.37(6), pp.871-876 (2007).
    63. Shi, C., P. V. Krivenko, and D. Roy, “Alkali-activated Cement and Concrete,” London and New York: Taylor and Francis (2006).
    64. Sievert, T., A. Wolter, and N. B. Singh, “Hydration of anhydrite of gypsum (CaSO4.II) in a ball mill,” Cement and Concrete Research,” Vol. 35, pp. 623-630 (2005).
    65. Taylor, M.T.C., and Gielen, D., Energy efficiency and CO2 emissions from the global cement industry, Energy Efficiency and CO2 Emission Reduction Potentials and Policies in the Cement Industry, International Energy Agency, Paris, 2006.
    66. Thomas,Robert J., and Sulapha Peethamparan, Alkali-activated concrete: Engineering properties and stress–strain behavior, Construction and Building Materials, 93 (2015) 49-56.
    67. Tzouvalas, G., N. Dermatas, and S. Tsimas, “Alternative calcium sulfate-bearing materials as cement retarders Part I. Anhydrite,” Cement and Concrete Research,” Vol. 34, pp. 2113-2118 (2004).
    68. Venu, T.D., and Gunneswara Rao, Tie-confinement aspects of fly ash-GGBS based geopolymer concrete short columns, Construction and Building, 151 (2017) 28-35.
    69. Vutukuri, V. S., R. D. Lama, and S. S. Saluja. "Handbook on Mechanical Properties of Rocks: Testing Techniques and Results, vol. I. Series on Rock and Soil Mechanics vol. 2, No. 1." Trans Tech Publications, Clausthal, Germany, ISBN 0-87849-010-8 (1974).
    70. Wan, H., Z. Shui, and Z. Lin, Analysis of geometric characteristics of GGBS particles and their influences on cement properties, Cement and Concrete Research, 34 (2004) 133-137.
    71. Wang, P.Z., R. Trettin, and V. Rudert, Effect of fineness and particle size distribution of granulated blast-furnace slag on the hydraulic reactivity in cement systems, Advances in Cement Research, 17 (2005) 161-166.
    72. Wang, S.-D., and K.L. Scrivener, Hydration products of alkali activated slag cement, Cement and Concrete Research, 25 (1995) 561-571.
    73. Wang, S.-D., K.L. Scrivener, and P.L. Pratt, Factors affecting the strength of alkali-activated slag, Cement and Concrete Research, 24 (1994) 1033-1043.
    74. Wang,S.-D., K.L. Scrivener, 29Si and 27Al NMR study of alkali-activated slag, Cement and Concrete Research, 33 (2003) 769-774.
    75. Xia, Y., Y. Yan, “Utilization of modified CFBC desulfurization ash as an admixture in blended cements: Physico-mechanical and hydration characteristics,”Construction and Materials, Vol. 47, pp. 1461-1467(2013).
    76. Yip, C.K. G.C. Lukey, and J.S.J. van Deventer, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cement and Concrete Research, 35 (2005) 1688-1697.
    77. Yip, C.K., G.C. Lukey, and J.L. Provis, J.S.J. van Deventer, Effect of calcium silicate sources on geopolymerisation, Cement and Concrete Research, 38 (2008) 554-564.
    78. Zajac M., A. Rossberg, G. L. Saout, and B. Lothenbach, “Influence of limestone and anhydrite on the hydration of Portland”, Cement and Concrete Composites, Vol. 46, pp. 99-108 (2014).

    QR CODE