簡易檢索 / 詳目顯示

研究生: 葉子毓
Zih-Yu Ye
論文名稱: 以溫度可視化方法探討化學機械拋光製程中晶圓溫度分布
Investigation of Wafer Temperature Distribution in a CMP Process Using Temperature Visualization Method
指導教授: 田維欣
Wei-Hsin Tien
口試委員: 陳炤彰
Chao-Chang Chen
黃智永
Chih-Yung Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 125
中文關鍵詞: 化學機械拋光溫度可視化溫度感測塗料
外文關鍵詞: Chemical-Mechanical Polishing, Temperature visualization, Temperature sensitive paint(TSP)
相關次數: 點閱:313下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在現今半導體晶片製程中,為達到更小的元件關鍵尺寸(Critical Dimension, CD),化學機械平坦化(Chemical-Mechanical Planarization, CMP)逐漸成為最重要的關鍵製程之一。在CMP製程中重要的參考指標-材料移除率(Material Removal Rate, MRR),會受到眾多的因素所影響,製程溫度是其中一個重要關鍵因素。本研究建構一套溫度可視化實驗設置,利用量子點對溫度的敏感性製備溫度感應塗料(Temperature Sensitive Paint, TSP),並將其塗覆於晶圓背面進行表面溫度量測。實驗參數中改變拋光流體、拋光液注入溫度、注入流率、拋光盤轉速以及下壓力,觀察不同參數下的溫度變化,量測本實驗定義之溫度穩定過程及穩態溫度分布情況作探討。在注入流體為去離子水(Deionized Water, DIW)的實驗中,其穩定時間約為25秒。在77℃的注入溫度下,從溫度分布圖中可以看到相對高溫區最先產生在晶圓後緣處並隨後擴散到其他區域,而當常溫DIW注入時,高溫區的產生反而由從晶圓前緣處開始。此差異之原因在於DIW從晶圓後緣處進入到晶圓下方,原先產生摩擦熱的區域熱量被DIW帶走,導致晶圓後緣部分溫度較低。當使用常溫DIW注入時,50 ml/min的注入流率相對於180 ml/min,晶圓平均溫度穩定上升7.7℃。在注入流體為C8902的實驗中,晶圓之溫度需要45秒穩定,與DIW相互比較的實驗下,穩定溫度表現上C8902高DIW約5.8~6.8℃。在溫度分布上,最先產生相對高溫區的位置落在晶圓後緣區,對應到注入溫度實驗結果,進入到晶圓下方的區域因為C8902含有的化學物質與晶圓反應,加上砥粒在晶
3
圓及拋光墊間的摩擦,因此導致晶圓後緣部分溫度較高。DIW與C8902在不同參數實驗中,都呈現出較大下壓力者晶圓溫度較高,較高的拋光盤轉速晶圓溫度也相對較高。


In modern semiconductor fabrication process, CMP (Chemical-Mechanical Planarization) gradually becomes one of the key process to achieve lower device critical dimension (CD). Process temperature is one of the crucial factor affecting the most important performance index, MRR(Material Removal Rate) in a CMP process. In this study, an experimental setup to visualize wafer surface temperature during the CMP process was constructed. By applying TSP (Temperature Sensitive Paint) made of quantum dots on the backside of the wafer, measured emission light intensity of the TSP can be converted to temperature. Process parameters investigated in this study include types of slurry, slurry injection temperature, slurry injection flow rate, platen rotating speed and downforce. The start-up temperature evolution and steady-state temperature distribution were measured and discussed in detail. To investigate the pure mechanical polishing effects, the DIW(Deionized Water) is used as the slurry. The time to achieve the steady-state temperature in DIW cases is 25 seconds. At high injection temperature of 77℃, the results show that temperature increase starts from trailing edge and spread to leading edge, while the results of injection temperature at room temperature show the opposite trends. These results indicate the route of the slurry flow
5
into wafer area, and the heat transfer route of the pure friction during the process. Change of the injection flow rate from 50 ml/min to180 ml/min cause a temperature rise about 7.7℃. With the slurry using C8902 for copper CMP, the time to reach steady-state is about 45 seconds, and the high temperature zones starts from the trailing edge. This is due to the reaction heat and friction heat generated by C8902 slurry and its abrasive grains along the slurry transfer route to the wafer. Comparison of the results of DIW and C8902 show that the steady-state temperature for the C8902 cases are higher than the DIW cases by 5.8 ~ 6.8℃. The results of varying process parameters show that in both DIW and C8902 cases, the higher down force and higher platen speed cause higher steady-state temperature.

摘要 .............................................................................................................................2 Abstract........................................................................................................................4 圖目錄 .........................................................................................................................9 表目錄 .......................................................................................................................13 第一章 緒論............................................................................................................14 1.1 研究背景....................................................................................................14 1.2 文獻回顧....................................................................................................16 1.2.1化學機械拋光製程之實驗觀測................................................................18 1.2.2溫度對於化學機械拋光製程之效應........................................................22 1.2.3溫度感測塗料(Temperature Sensitive Paint).............................................25 1.2.4小結...........................................................................................................28 1.3 研究目的....................................................................................................28 1.4 論文架構....................................................................................................28 第二章 實驗原理與方法..........................................................................................29 2.1 溫度感測塗料之製備 ................................................................................29 2.1.1 溫度感測塗料與原理...............................................................................29 2.1.2 溫度感測塗料量測方法...........................................................................33 2.1.3 溫度感測塗料之溫度校正曲線...............................................................34 2.1.4 溫度感測塗料之製作...............................................................................35 2.1.5 溫度感測塗料之溫度校正曲線製作.......................................................41 2.2 實驗硬體設置............................................................................................47 2.2.1 拋光墊與晶圓銜接環之設計...................................................................49 2.2.2 下壓力設置..............................................................................................54 2.2.3拋光液注入系統........................................................................................55 2.2.4 拋光液之調配...........................................................................................57 2.3 影像資料後處理........................................................................................59 2.3.1 TSP校正曲線之影像後處理....................................................................59 8 2.3.2 CMP製程中之影像後處理.......................................................................68 2.4 溫度不準度分析........................................................................................74 2.5 實驗參數規劃............................................................................................75 第三章 實驗結果......................................................................................................77 3.1 DIW為拋光液之實驗結果..............................................................................77 3.1.1 注入溫度之影響.......................................................................................77 3.1.2 注入流率之影響.......................................................................................82 3.1.3不同實驗參數之影響................................................................................87 3.1.4 小結..........................................................................................................96 3.2 C8902為拋光液之實驗結果...........................................................................97 3.2.1 不同實驗參數之影響...............................................................................97 3.2.2 C8902對晶圓的材料移除率..................................................................109 3.2.3 小結........................................................................................................110 3.3實驗結果討論................................................................................................111 3.3.1 DIW與C8902實驗結果比較................................................................111 3.3.2 本實驗研究之限制.................................................................................114 第四章 結論與建議................................................................................................120 4.1 結論...............................................................................................................120 4.2 建議及未來工作...........................................................................................121 參考資料 .................................................................................................................123

[1] 维基百科编者, "摩尔定律," in 维基百科,自由的百科全書, ed.
[2] H. Lee, D. Lee, and H. Jeong, "Mechanical aspects of the chemical mechanical polishing process: A review," (in English), International Journal of Precision Engineering and Manufacturing, Review vol. 17, no. 4, pp. 525-536, Apr 2016, doi: 10.1007/s12541-016-0066-0.
[3] 维基百科编者, "化学机械平坦化," in 维基百科,自由的百科全書, ed.
[4] B. Shin, D. Lee, E. Park, and H. Jeong, "Effect of slurry temperature on removal characteristics in cadmium telluride CMP," in Proceedings of International Conference on Planarization/CMP Technology 2014, 19-21 Nov. 2014 2014, pp. 300-301, doi: 10.1109/ICPT.2014.7017304.
[5] H. Hocheng and C. Y. Cheng, "Visualized characterization of slurry film between wafer and pad during chemical mechanical planarization," (in English), Ieee Transactions on Semiconductor Manufacturing, Article vol. 15, no. 1, pp. 45-50, Feb 2002, doi: 10.1109/66.983443.
[6] J. Coppeta, C. Rogers, A. Philipossian, and F. Kaufman, "Characterizing slurry flow during CMP using laser induced fluorescence," in Second International Chemical Mechanical Polish Planarization for ULSI Multilevel Interconnection Conference, Santa Clara, CA, 1997.
[7] N. Mueller, C. Rogers, V. P. Manno, R. White, and M. Moinpour, "In Situ Investigation of Slurry Flow Fields during CMP," (in English), Journal of the Electrochemical Society, Article vol. 156, no. 12, pp. H908-H912, 2009, doi: 10.1149/1.3223562.
[8] C. Gray et al., "Viewing Asperity Behavior under the Wafer during CMP," Electrochemical and Solid State Letters - ELECTROCHEM SOLID STATE LETT, vol. 8, 05/01 2005, doi: 10.1149/1.1887193.
[9] L. V. Bengochea, Y. Sampurno, C. Stuffle, R. C. Han, C. Rogers, and A. Philipossian, "Visualizing Slurry Flow in Chemical Mechanical Planarization via High-Speed Videography," (in English), Ecs Journal of Solid State Science and Technology, Article vol. 7, no. 3, pp. P118-P124, 2018, doi: 10.1149/2.0191803jss.
[10] X. Y. Liao, Y. Sampurno, Y. Zhuang, and A. Philipossian, "Effect of Slurry Application/Injection Schemes on Slurry Availability during Chemical Mechanical Planarization (CMP)," (in English), Electrochemical and Solid State Letters, Article vol. 15, no. 4, pp. H118-H122, 2012, doi: 10.1149/2.009205esl.
[11] 陳逸翔, "以流場可視化方法探討化學機械拋光製程中拋光液流動行為與濃度分佈," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2019. [Online]. Available: https://hdl.handle.net/11296/d6cc2u
[12] 王子軒, "探討化學機械拋光製程中機台參數對拋光液濃度分佈之影響," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2020. [Online]. Available: https://hdl.handle.net/11296/j4zn93
[13] 林明獻編著, 矽晶圓半導體材料技術, 六版ed. 新北市土城區: 全華, 2020, p. 1冊.
[14] N. H. Kim, Y. J. Seo, and W. S. Lee, "Temperature effects of pad conditioning
124
process on oxide CMP: Polishing pad, slurry characteristics, and surface reactions," (in English), Microelectronic Engineering, Article vol. 83, no. 2, pp. 362-370, Feb 2006, doi: 10.1016/j.mee.2005.10.004.
[15] M. Bahr, Y. Sampurno, R. C. Han, M. Skillman, L. Borucki, and A. Philipossian, "Effect of Slurry Injection System Position on Removal Rate for Shallow Trench Isolation Chemical Mechanical Planarization Using a Cerium Dioxide Slurry," Ecs Journal of Solid State Science and Technology, vol. 6, no. 7, pp. 455-461, 2017, doi: 10.1149/2.0321707jss.
[16] H. J. Kim, H. Y. Kim, H. D. Jeong, E. S. Lee, and Y. J. Shin, "Friction and thermal phenomena in chemical mechanical polishing," (in English), Journal of Materials Processing Technology, Article; Proceedings Paper vol. 130, pp. 334-338, Dec 2002, Art no. Pii s0924-0136(02)00820-8, doi: 10.1016/s0924-0136(02)00820-8.
[17] C. Wu et al., "Pad Surface Thermal Management during Copper Chemical Mechanical Planarization," (in English), Ecs Journal of Solid State Science and Technology, Article vol. 4, no. 7, pp. P206-P212, 2015, doi: 10.1149/2.0101507jss.
[18] D. Kwon, H. Kim, and H. Jeong, "Heat and its effects to chemical mechanical polishing," (in English), Journal of Materials Processing Technology, Article vol. 178, no. 1-3, pp. 82-87, Sep 2006, doi: 10.1016/j.jmatprotec.2005.11.025.
[19] Y. A. Sampurno, L. Borucki, Y. Zhuang, D. Boning, and A. Philipossian, "A method for direct measurement of substrate temperature during copper CMP," Journal of the Electrochemical Society, vol. 152, no. 7, pp. G537-G541, 2005, doi: 10.1149/1.1925070.
[20] T. Suratwala, M. D. Feit,W. A. Steele, and L. L. Wong, "Influence of Temperature and Material Deposit on Material Removal Uniformity during Optical Pad Polishing," (in English), Journal of the American Ceramic Society, Article vol. 97, no. 6, pp. 1720-1727, Jun 2014, doi: 10.1111/jace.12969.
[21] L. Borucki, Z. Li, and A. Philipossian, "Experimental and theoretical investigation of heating and convection in copper polishing," (in English), Journal of the Electrochemical Society, Article vol. 151, no. 9, pp. G559-G563, 2004, doi: 10.1149/1.1774489.
[22] J. McAllister, H. Dadashazar, J. C. Mariscal, Y. Sampurno, and A. Philipossian, "Impact of Polisher Kinematics and Conditioner Disc Designs on Fluid Transport during Chemical Mechanical Planarization," (in English), Ecs Journal of Solid State Science and Technology, Article vol. 8, no. 12, pp. P757-P763, Nov 2019, doi: 10.1149/2.0241911jss.
[23] T. Liu, "Pressure- and Temperature-Sensitive Paints," in Encyclopedia of Aerospace Engineering.
[24] X. Liu, H. Y. Shao, W. W. Zhou, Y. Z. Liu, and D. Peng, "Apparent temperature in temperature-sensitive paint measurement and its effect on surface heat flux determination for hypersonic flows," Measurement Science and Technology, vol. 31, no. 12, Dec 2020, Art no. 125302, doi: 10.1088/1361-6501/ab9fd9.
[25] M. Alfaro, G. Paez, and M. Strojnik, "Calibration and evaluation of EuTTA fluorescence as active medium for IR-to-visible conversion," Proc SPIE, vol. 7082, 08/01 2008, doi: 10.1117/12.796972.
[26] 陳鋒儒, "以實驗方法探討微流道交錯式薄膜氣泡腔體誘導聲流之流場與熱傳增益," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2017.
125
[Online]. Available: https://hdl.handle.net/11296/m83j8k
[27] C. Y. Huang, C. M. Lai, and J. S. Li, "Applications of Pixel-by-Pixel Calibration Method in Microscale Measurements With Pressure-Sensitive Paint," Journal of Microelectromechanical Systems, vol. 21, no. 5, pp. 1090-1097, Oct 2012, doi: 10.1109/jmems.2012.2203106.
[28] G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, "Quantum-dot optical temperature probes," Applied Physics Letters, vol. 83, no. 17, pp. 3555-3557, Oct 2003, doi: 10.1063/1.1620686.
[29] 陳建志, "塗覆量子點之溫度感測流場循跡微粒之研發," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2018. [Online]. Available: https://hdl.handle.net/11296/9873n2
[30] 林頌揚, "雙波長自校式溫度感測循跡微粒之研發," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2019. [Online]. Available: https://hdl.handle.net/11296/g4zvfs
[31] 繆聞, "雙波長自校式溫度感測循跡微粒之性能驗證及資料處理," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2020. [Online]. Available: https://hdl.handle.net/11296/3n7t78
[32] 林文彬, "量子點結構與光譜性質關聯之探討," 碩士, 材料科學研究所, 國立中山大學, 高雄市, 2005. [Online]. Available: https://hdl.handle.net/11296/uqd49j
[33] 謝嘉民, 賴一凡, 林永昌, and 枋志堯, "光激發螢光量測的原理、架構及應用," (in 繁體中文), 科儀新知, no. 146, pp. 39-51, 2005, doi: 10.29662/it.200506.0005.
[34] 土肥俊郎, 半導體平坦化cmp技術, 二版ed. 臺北市: 全華科技, p. 1册.
[35] 林昱銘, "電致動力輔助化學機械平坦化加工之雙向交錯式電極開發應用於矽導微孔晶圓研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2018. [Online]. Available: https://hdl.handle.net/11296/mehw9f
[36] H. Lee, Y. Zhuang, L. Borucki, S. Joh, F. O'Moore, and A. Philipossian, "Investigation of pad staining and its effect on removal rate in copper chemical mechanical planarization," (in English), Thin Solid Films, Article vol. 519, no. 1, pp. 259-264, Oct 2010, doi: 10.1016/j.tsf.2010.07.015.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)

QR CODE