簡易檢索 / 詳目顯示

研究生: 胡泉凌
Chuan-Ling Hu
論文名稱: 應用於筆記型電腦之覆銅陶瓷基板多頻段天線設計
Multi-band Antenna Design with Direct-Bond-Copper Ceramic Substrate for Laptop Computer
指導教授: 林舜天
Shun-Tian Lin
楊成發
Chang-Fa Yang
口試委員: 吳翼貽
Ye-Ee Wu
王錫福
S.F. Wang
李學智
Hsueh-Jyh Li
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 96
中文關鍵詞: 倒F天線LTEWiMAXWLANWWANGPS覆銅陶瓷基板及筆記型電腦
外文關鍵詞: DBC, laptop computer.
相關次數: 點閱:557下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 行動通訊網路朝向 3.5G 寬頻化發展,人們藉由使用各式行動通訊裝置如功能型行動電話、智慧型行動電話、以及行動通訊數據卡等,逐漸邁入近乎無遠弗屆的行動應用網路時代。因應更高傳輸速率的需求,4G 的行動通訊技術,預計在未來LTE系統可以提供更高速的傳輸速率並具備多重饋路與多重輸出的特性。並實現單一天線內建於筆記型電腦的多頻段天線設計理念,涵蓋 LTE、WWAN、WiMAX 及 WLAN 的無線通訊系統。
    本論文係針對不同無線通訊系統之接收需求,來研製五款具備多系統功能之微型化倒 F 天線,以內建至筆記型電腦中。首先,本論文提出兩款輕薄短小適用於 WWAN 系統之微型化寬頻天線,其中乃利用覆銅陶瓷基板與多路徑技術來縮減天線尺寸並具備良好的效能與全向性的輻射場型,並探討多路徑天線的效能。再者,亦開發具備 WWAN 與LTE 之多頻段覆銅陶瓷天線,來符合筆記型電腦 4G 的走向。最後使用覆銅陶瓷設計兩款天線具備目前所需的無線通信系統,包含WWAN,LTE,WLAN(802.11n), WiMax 及 GPS 並安裝於筆記型電腦面板之右上方,以實現筆記型電腦單一天線運用於複合無線通訊系統之應用。


    For future fourth generation communication system, the requirements in terms of communication quality and transmission data rate will become more important. Compared to the current GSM/DCS/PCS/UMTS services, the Long Term Evolution (LTE) system based on the multiple-input multiple-output (MIMO) algorithm can increase channel capacity as well as mitigate fading influence, so that communication performance can be improved significantly. In order to have more applications, a single antenna with a small size to meet LTE, wireless wide area network (WWAN), worldwide interoperability for microwave access (WiMax), wireless local area network (WLAN) and GPS systems will be a new design trend when embedded inside an ultra-thin laptop computer as an internal antenna.
    In this dissertation, five kinds of multiband inverted-F antenna (IFA) designs are proposed and studied for ultra-thin laptop computer applications. All these antennas, printed on a Direct Bond Copper (DBC) Al2O3 ceramic substrate, not only come with a multi-branch structure to realize a compact dimension but also exhibit fairly good radiation performance. Also, DBC substrate’s properties regarding dielectric constant and loss to affect antenna performance are carefully investigated and evaluated. With a small size and good radiation efficiency, the proposed multiband antennas will be a potential candidate to satisfy various communication systems for integration into an ultra-thin laptop computer.

    Contents Contents VI List of Figures IX List of Tables XIII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 3 Chapter 2 Direct Bond Copper (DBC) Ceramic Substrate 5 2.1 The Characteristics of Direct Bond Copper Ceramic Substrate 5 2.2 Introduction of Direct Bond Copper Ceramic Substrate 6 2.3 Multi-layers on the DBC substrate 7 2.4 Pattern Process 8 2.5 Skin Effect of Copper Thickness 8 2.6 Compared with Other Substrate 9 Chapter 3 Inverted-F Antennas Theory 14 3.1 Introduction 14 3.2 The Inverted-F Antenna 15 Chapter 4 Miniature Broadband Antenna Design for WWAN System 19 4.1 Planar Miniature Inverted-F Antenna for Wireless Wide Area Network Operation in the Laptop Computer 19 4.1.1 Introduction 19 4.1.2 Antenna Design 20 4.1.3 Experimental Results and Discussion 20 4.1.4 Summary 21 4.2 A Miniature Slot Inverted-F Antenna to be Embedded in the Laptop Computer for WWAN Applications 29 4.2.1 Introduction 29 4.2.2 Antenna Design 30 4.2.3 Experimental Results and Discussion 30 4.2.4 Summary 32 Chapter 5 Compact Multi-Branch Inverted-F Antenna to be Embedded in a Laptop Computer for LTE700/2500/WWAN Applications 39 5.1 Introduction 39 5.2 Antenna Design 40 5.3 Experimental Results and Discussion 41 5.4 Summary 43 Chapter 6 Planar Multiband Inverted-F Antenna for LTE/ WWAN/GPS/WiMax/WLAN Operations in the Laptop computer. 51 6.1 Introduction 51 6.2 Antenna Design 52 6.3 Experimental Results and Discussion 53 6.4 Summary 55 Chapter 7 A Coupling Inverted-F Antenna for LTE/WWAN/WiMax/WLAN Operations in the Laptop Computer 66 7.1 Introduction 66 7.2 Antenna Design 68 7.3 Experimental Results and Discussion 69 7.4 Summary 72 Chapter 8 Conclusions 86 8.1 Summary 86 8.2 Future Works 87 References 88 Author Resume 95 Publication List 96

    [1] C.-H. Kuo, K.-L. Wong, and F.-S. Chang, “Internal GSM/DCS dualband open-loop antenna for laptop application,” Microw. Opt. Technol. Lett., vol. 49, pp. 680-684, Mar. 2007.
    [2] X. Wang, W. Chen, and Z. Feng, “Multiband antenna with parasitic branches for laptop applications,” Electron. Lett., vol.43, pp. 1012-1013, Sep. 2007.
    [3] Y.-W. Chi, and K.-L. Wong, “Compact multiband folded loop chip antenna for small-size mobile phone,” IEEE Trans. Antennas Propag., vol.56, no.12, pp. 3797–3803, Dec. 2008,
    [4] K.-L. Wong, and L.-C. Lee, “Multiband printed monopole slot antenna for WWAN operation in the laptop computer,” IEEE Trans. Antennas Propag., vol. 57, no. 2, pp. 324–330, Feb. 2009.
    [5] K.-L. Wong, and F.-H. Chu, “Internal planar WWAN laptop computer antenna using monopole slot elements,” Microw. Opt. Technol. Lett., vol. 51, pp. 1274-1279, May 2009.
    [6] C.-W. Chiu, and Y.-J. Chi “Planar Hexa-Band inverted-F antenna for portable device applications,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1099-1102, 2009.
    [7] C. T. P. Song, Z.-H. Hu, J. Kelly, P. S. Hall, and P. Gardner, “Wide tunable dual-band reconfigurable antenna,” Electron. Lett., vol. 45, no. 22, pp. 1109-1110, Oct. 2009.
    [8] K. Iigusa, and H. Harada, “Antenna Composition and technology for cognitive wireless communications,” Wireless Personal Communications (Springer Netherlands), vol. 51, no. 4, pp.843-854, Dec. 2009.
    [9] S. Sesia, I. Toufik, and M. Baker, Eds., “LTE, the UMTS long term evolution,” From Theory to Practice. New York, Wiley, 2009.
    [10] Motorola, “LTE’s spectrum of opportunity,” Motorola eZine Newslett.,Oct. 2008.
    [11] K.-L. Wong, “Planar antennas for wireless communications,” New York, Wiley, 2003.
    [12] ITU-R Rec. M.1457-8, “Detailed specifications of the radio interfaces of international mobile telecommunications-2000 (IMT-2000),” May 2009.
    [13] ITU-R SG WP 5D, “Acknowledgment of Candidate Submission from IEEE under Step 3 of the IMT-AdvancedProcess (IEEE Technology),” Doc. IMT-ADV/4-E, Oct. 23, 2009.
    [14] ITU-R SG WP 5D, “Acknowledgment of Candidate Submission from 3GPP Proponent (3GPP Organization Partners of ARIB, ATIS, CCSA, ETSI, TTA AND TTC) under Step 3 of the IMT-Advanced Process (3GPP Technology),”Doc. IMT-ADV/8-E, Oct. 23, 2009.
    [15] F.-R. Hsiao, H.-T. Chen, G.-Y. Lee, T.-W. Chiou, and K.-L. Wong, “Adual-band planar inverted-F patch antenna with a branch-line slit,” Microw. Opt. Technol. Lett., 2002, 32, pp. 310–312
    [16] C. R. Rowell, and R. D. Murch, “A compact PIFA suitable for dual frequency 900/1800-MHz operation’, “IEEE Trans. Antennas Propag.,1998, 46, pp. 596–598
    [17] K.-L. Wong, W.-C. Su, and F.-S. Chang, “Wideband internal folded planar monopole antenna for UMTS/WiMAX folder-type mobile phone,” Microw. Opt. Technol. Lett., 2006, 48, pp. 324–327
    [18] T.O. Sung,, S. Tohru, and N. Koichi, (1965), “Microstructure and mechanical properties for alumina/copper nano-composites”, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science Proceedings, vol. 18 no. 3, pp. 329-336. 1965.
    [19] C. Berraud,, C. Esnouf,, M. Courbie´re,, D. Juve´, and D. Tre´heux,, “Bonding structure and mechanical properties of Cu/Al2O3”, Journal of Material Science, Vol. 24,pp. 4545-4554. 1989.
    [20] Y. Yoshino, “Role of oxygen in bonding copper to alumina”, Journal of American Ceramic Society, Vol. 72, pp. 1322-1327. 1989.
    [21] Y. Yoshino, and H. Ohtsu, “Interface structure and bond strength of copper-bonded alumina substrates”, Journal of American Ceramic Society, Vol. 74, pp. 2184-2188, 1991.
    [22] Z.-N. Chen, and Michael Y. W. Chia., “Broadband planar antennas design and applications,” Institute for Infocomm Research, Singapore,Wiley, 2006.
    [23] R. W. P. King, J. C. W. Harrison and J. D. H. Denton, “Transmission-line missile antennas,” IRE Trans on Antennas and Propagation, vol. 8, no. 1, pp. 29–33, 1960.
    [24] K. Kobayashi, S. Nishiki, T. Taga and A. Sasaki, “Detachable mobile radio units for 800MHz land mobile radio system,” 34th IEEE Vehicular Technology Conference, vol. 1, pp. 21–23, 1984.
    [25] T. Taga and K. Tsunekawa, “Performance analysis of a built-in planar inverted-F antenna for 800MHz band portable radio units,” IEEE Journal of Selected Areas of Communications, vol. 5, no. 5, pp. 921–929, 1987.
    [26] K. Hirasawa and M. Haneishi, “Analysis, Design, and Measurement of Small and Low-profile Antennas,” Boston, MA: Artech House, 1991.
    [27] J. Rasinger, A. L. Scholtz, W. Pichler and E. Bonek, “Influence of surface waves upon efficiency and mutual coupling between rectangular microstrip antennas,” IEEE International Symposium on Antennas and Propagation, vol. 2, pp. 660–663, June 1990.
    [28] L. L. Rauth, J. S. McLean, K. B. Dorner, J. R. Casey and G. E. Crook, “Broadband low-profile antenna for portable data terminal,” IEEE International Symposium on Antennas and Propagation, vol. 1, pp. 438–441, June 1997.
    [29] H. Nakano, N. Ikeda, Y. Wu, R. Suzuki, H. Mimaki and J. Yamauchi, “Realization of dual-frequency and wide-band VSWR performances using normal-mode helical and inverted-antennas,” IEEE Trans. Antennas Propag., vol. 46, no. 6, pp. 788–793, 1998.
    [30] P. Song, P. S. Hall, H. Ghafouri-Shiraz and D. Wake, “Triple-band planar inverted-antennas for handheld devices,” Electron. Lett., vol. 36. no. 2, pp. 112–114, 2000.
    [31] T. Okuno and K. Hirasawa, “Semicircular planar inverted-antenna with parasitic element,” International Conference on Communication Systems, vol. 2, pp. 1170–1173, Nov. 2002.
    [32] R. L. Li, G. DeJean, M. M. Tentzeris and J. Laskar, “Developement and analysis of folded shorted-patch antenna with reduced size,” IEEE Trans. Antennas Propag., vol. 52, no. 2, pp. 555–562, 2004.
    [33] K. Oh and K. Hirasawa, “Dual-band inverted-L-folded antenna with parasitic wire,” IEEE International Symposium on Antennas and Propagation, vol. 3, pp. 3131–3134, Jun. 2004.
    [34] Z. N. Chen and M. Y. W. Chia, “Broadband planar inverted-antennas,” IEE Proceeedings: Microwave, Antennas and Propagation, vol. 148, no. 5, pp. 339–342, 2001.
    [35] A. Kishk, K. F. Lee, W. C. Mok and K. M. Luk, “Wide-band small size microstrip antenna proximately coupled to hook-shaped probe,” IEEE Trans. Antennas Propag., vol. 52, no. 1, pp. 59–65, 2004.
    [36] R. Feick, H. Carrasco, M. Olmos and H. D. Hristov, “PIFA input bandwidth enhancement by changing feed-plate silhouette,” Electron. Lett., vol. 40, no. 15, pp. 921–922, 2004.
    [37] P. Salonen, M. Keskilammi and M. Kivikoski, “Single-feed dual-band planar inverted-antenna with U-shaped slot,” IEEE Trans. Antennas Propag., vol. 48, no. 8, pp. 1262–1264, 2000.
    [38] Z. N. Chen and M. Y. W. Chia, “‘Broadband probe-fed notched plate antenna,” Electro. Lett., vol. 36, no. 7, pp. 599–600, 2000.
    [39] Z.-N. Chen, “Impedance characteristics of probe-fed L-shaped plate antenna,” Radio Science, vol. 36, no. 6, pp. 1377–1384, 2001
    [40] D. Nashaat, H. A. Elsadek and H. Ghali, “Dual-band reduced-size PIFA antenna with U-slot for bluetooth and WLAN applications,” IEEE International Symposium on Antennas and Propagation, vol. 2, pp. 962–965, Jun. 2003.
    [41] K. Ogawa, T. Uwano and M. Takahshi, “Shoulder-mounted planar antenna for mobile radio applications,”IEEE Transactions on Vehicular Technology, vol. 49, no. 3, pp. 1041–1044, 2000.
    [42] C. R. Rowell and R. D. Murch, ‘capacitively loaded PIFA for compact mobile telephone handsets, IEEE Trans. Antennas Propag, vol. 45, no. 5, pp. 837–842, 1997.
    [43] C. R. Rowell and R. D. Murch, “Compact PIFA suitable for dual-frequency 900/1800-MHz operation,” IEEE Trans. Antennas Propag., vol. 46, no. 4, pp. 596–598, 1998.
    [44] T. Lo and Y. Hwang, “Bandwidth enhancement of PIFA loaded with very high permittivity material using FDTD,” IEEE International Symposium on Antennas and Propagation, vol. 2, pp. 798–801, June 1998.
    [45] Z.-N. Chen, K. Hirasawa, K. W. Leung and K. M. Luk, “new inverted-antenna with ring dielectric resonator,” IEEE Transactions on Vehicular Technology, vol. 48, no. 4, pp. 1029–1032, 1999.
    [46] G. A. Ellis and S. Liw, “Active planar inverted-antennas for wireless applications,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2899–2906, 2003.
    [47] G. Lui and R. D.Murch, “Compact dual-frequency PIFA designs using LC resonators,” IEEE Trans. Antennas Propag., vol. 49, no. 7, pp. 1016–1019, 2001.
    [48] K. L. Virga and Y. Rahmat-Samii, “Low-profile enhanced-bandwidth PIFA antennas for wireless communications packaging,” IEEE Trans. Antennas Propag., vol. 45, no. 10, pp. 1879–1888, 1997.
    [49] P. Ciais, R. Staraj, G. Kossiavas and C. Luxey, “Compact internal multiband antenna for mobile phone and WLAN standards,” IEEE Microwave and Wireless Components Lett., vol. 14, no. 4, pp. 148–150, 2004.
    [50] B.-S. Park, J.-M. Lee, S.-G. Lee, M.-S. Kang, and J.-I. Choi, “Design of sputter-deposited multilayer thin films planar inverted-F antenna for mobile terminals,” IEEE Antennas and Wireless Propag. Lett., vol. 8, pp. 1143-1145, 2009.
    [51] M.-J. Park, H. Rhyu, N. Kim, J. Byun, T. Kim, K. Jung, B. Lee, D. Kim, and F. J. Harackiewicz, “Multi-band hybrid antenna for ultra-thin mobile phone applications,” Electron. Lett., vol. 45, no. 15, pp. 773-774, Jul. 2009.
    [52] H.-W. Liu, and C.-F. Yang, “Miniature multiband monopole antenna for WWAN operation in laptop computer,” Electron. Lett., vol. 46, no. 1, pp. 21-23, Jan. 2010.
    [53] C.-L. Hu, D.-L. Huang, H.-L. Kuo, C.-F. Yang, C.-L. Liao, and S.-T. Lin “Compact Multi-Branch Inverted-F Antenna to be embedded in a Laptop Computer for LTE/WWAN/IMT-E Applications,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 838-841, Aug. 2010.
    [54] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, MOTOROLA INC., “LTE-advanced: next-generation wireless broadband technology” IEEE Wireless Communications, vol.17 , issue 3, pp.10-22, Jun. 2010.
    [55] D. Liu and B. Gaucher, “A quadband antenna for laptop applications,” in Proc. IEEE Antennas and Propagation Society Int. Symp., Hawaii, pp. 128-131, Jun. 2007.
    [56] C. Zhang, S. Yang, S. Lee, S.-E. Ghazaly, A.-E. Fathy, H.-K. Pan, and V.-K. Nair, “A low profile twin-PIFA laptop reconfigurable multi-band antenna for switchable and fixed services wireless applications,” in Proc. IEEE Antennas and Propagation Society Int. Symp., Hawaii, pp. 1209-1212, Jun. 2007.
    [57] C.-W. Chiu, Y.-J. Chi, and S.-M. Deng, “An internal multiband antenna for WLAN and WWAN applications,” Microw. Opt. Technol. Lett., vol. 51, pp. 1803–1807, Aug. 2009.
    [58] K.-L. Wong, L.-C. Chou, and C.-M. Su, “Dual-band flat-plate antenna with a shorted parasitic element for laptop applications,” IEEE Trans. Antennas Propag., vol. 53, pp. 539–544, Jan. 2005.
    [59] C.-L. Hu, W.-F. Lee, Y.-E. Wu, C.-F. Yang, and S.-T. Lin, “A compact multiband inverted-F antenna for LTE/WWAN/GPS/WiMax/WLAN operations in the laptop computer,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 1169-1173, Aug. 2010.
    [60] B.-N. Kim, S.-O. Park, J.-K. Oh, and G.-Y. Koo “Wideband built-in antenna with new crossed C-shaped coupling feed for future mobile phone applications,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 572-575, Jun 2010.
    [61] C.-W. Chiu, and Y.-J. Chi “Printed loop antenna with a U-shaped tuning element for hepta-band laptop applications,” IEEE Trans. Antennas Propag., vol. 58, no. 12, pp. 3464–3470, Oct. 2010.

    無法下載圖示 全文公開日期 2016/01/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE