簡易檢索 / 詳目顯示

研究生: 馬佳誠
Jia-cheng Ma
論文名稱: 以多步陽極氧化法製作漸進式二氧化鈦奈米管及其氣體感測應用研究
The gas sensing application of graded TiO2 nanotubes by multi-step anodization
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 林啟瑞
none
周賢鎧
none
郭鴻飛
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 132
中文關鍵詞: 二氧化鈦奈米管漸進式陽極氧化氫氣感測
外文關鍵詞: TiO2 nanotubes, graded, anodization, hydrogen sensor
相關次數: 點閱:317下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   利用多步驟陽極氧化法,在室溫下以含氟的EG/H2O電解液中,將鈦片製備成漸進式平坦型二氧化鈦奈米管(Graded-P-TNT),經過一小時的280°C退火,再以過氧化氫對其表面進行一個半小時的化學處理後,即由漸進式平坦型二氧化鈦奈米管(Graded-P-TNT)變成漸進式聚集型二氧化鈦奈米管(Graded-A-TNT),並用FESEM、XRD及PL分析其表面形貌、結晶相、鍵結強度與材料品質,且應用於氫氣感測器。
      本實驗結果發現,在30V~50V的漸進式平坦型二氧化鈦奈米管結構(Graded-P-TNT(30V~50V))有較大接觸面積及較好的結晶相與材料品質,使其對氫氣有最高的靈敏度546%,並以過氧化氫對其表面進行化學處理後,變成漸進式聚集型二氧化鈦奈米管(Graded-A-TNT(30V~50V)),且因為表面呈現聚集狀,增加了表面的接觸面積,讓其對氫氣有更高的靈敏度575%。


      The graded planar TiO2 nanotubes (Graded-P-TNT) were synthesized in NH4F/ethylene glycol (EG) electrolyte by using multi-step anodization method with operating step voltages at room temperature, and then were annealled by thermal oxidation at 280°C for 1 hour under atmosphere ambient. Graded-P-TNT can be transformed into graded aggregated TiO2 nanotubes (Graded-A-TNT) after H2O2 post-treatment for 1.5 hour at room temperature. FESEM, XRD, Raman spectroscopy, and PL were used to analyze the surface morphology, crystallinity, chemical binding, and film quality, respectively, and apply for hydrogen sensing.
      In this work, it was found that Graded-P-TNT (30V~50V) hydrogen sensing property with the high response of 546% since the larger area of contact and better film quality. Graded-A-TNT (30V~50V) hydrogen sensing property with the better response of 575% might be due to the increasing area of contact after the H2O2 post-treatment.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 二氧化鈦性質介紹 3 2.2 二氧化鈦製備介紹 7 2.2.1 硫酸法 7 2.2.2 氯化法 8 2.2.3 水熱法 10 2.2.4 微乳液法 11 2.2.5 真空濺鍍法 11 2.2.6 溶膠凝膠法 12 2.2.7 模板合成法 13 2.2.8 沉澱法 14 2.3 鈦與陽極氧化 15 2.3.1 陽極氧化法介紹 15 2.3.2 鈦金屬陽極氧化之反應機制 15 2.3.3 漸進式陽極氧化之反應機制 19 2.4 氣體感測介紹 20 2.4.1 二氧化鈦與氫氣感測 22 2.4.2 二氧化鈦與氫氣之反應機制 23 第三章 實驗方法 24 3.1 製備之材料介紹 24 3.2 實驗流程 25 3.3 二氧化鈦奈米管之製備及應用方法 27 3.3.1 鈦片前處理 27 3.3.2 電解液之製備 28 3.3.3 平坦型二氧化鈦奈米管結構 28 3.3.4 聚集型二氧化鈦奈米管結構 30 3.3.5 漸進式平坦型二氧化鈦奈米管結構 31 3.3.6 漸進式聚集型二氧化鈦奈米管結構 32 3.3.7 多步陽極氧化示意結構 34 3.3.8 氣體感測之量測方法 35 3.4 實驗分析儀器介紹 36 3.4.1 場發射掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 36 3.4.2 穿透式電子顯微鏡 (Transmission electron microscopy, TEM) 37 3.4.3 拉曼光譜儀 (Raman Spectroscopy) 39 3.4.4 X-ray 繞射儀 (X-ray diffractometer, XRD) 40 3.4.5 光激發螢光頻譜儀 (Photoluminescence, PL) 43 3.4.6 高真空量測系統 44 第四章 結果與討論 45 4.1 陽極氧化之時間與電壓的影響 45 4.2 二氧化鈦退火溫度的影響 47 4.3 二氧化鈦奈米管結構 49 4.3.1 平坦型奈米管固定時間的比較分析 50 4.3.2 平坦型奈米管固定長度的比較分析 55 4.3.3 平坦型奈米管(P-TNT)物理特性分析 58 4.3.4 聚集型奈米管(A-TNT)物理特性分析 63 4.3.5 氫氣感測特性 68 4.4 漸進式(20V~50V)二氧化鈦奈米管結構 71 4.4.1 漸進式平坦型奈米管(Graded-P-TNT(20-50))物理特性分析 71 4.4.2 漸進式聚集型奈米管(Graded-A-TNT(20-50))物理特性分析 76 4.4.3 氫氣感測特性 81 4.5漸進式(30V~50V)二氧化鈦奈米管結構 84 4.5.1 漸進式平坦型奈米管(Graded-P-TNT(30-50))物理特性分析 84 4.5.2 漸進式聚集型奈米管(Graded-A-TNT(30-50))物理特性分析 89 4.5.3 氫氣感測特性 94 4.6漸進式(30V~40V)二氧化鈦奈米管結構 97 4.6.1 漸進式平坦型奈米管(Graded-P-TNT(30-40))物理特性分析 97 4.6.2 漸進式聚集型奈米管(Graded-A-TNT(30-40))物理特性分析 102 4.6.3 氫氣感測特性 107 4.7漸進式(40V~50V)二氧化鈦奈米管結構 110 4.7.1 漸進式平坦型奈米管(Graded-P-TNT(40-50))物理特性分析 110 4.7.2 漸進式聚集型奈米管(Graded-A-TNT(40-50))物理特性分析 115 4.7.3 氫氣感測特性 120 4.8 氫氣感測特性的總比較及其影響因素 123 第五章 結論與未來展望 127 5.1 結論 127 5.2 未來展望 128 參考文獻 129

    [1] DOE Seeks Applicants for Solicitation on the Employment Effects of a Transition to a Hydrogen Economy. Hydrogen Program, US Department of Energy. 2006-03-22
    [2] 'Bugs' and hydrogen embrittlement. Science News (Washington, D.C.). 1985-07-20,128 (3)
    [3] G. Korotcenkov, B.K. Cho, “Bulk doping influence on the response of conductometric SnO2 gas sensors Understanding through cathodoluminescence
    study”, Sensors and Actuators B 196 (2014) 80–98
    [4] T. Stoycheva, F.E. Annanouch, I. Gracia, E. Llobet, C. Blackman, X. Correig, S. Vallejos, “Micromachined gas sensors based on tungsten oxide nanoneedles directly integrated via aerosol assisted CVD”, Sensors and Actuators B 198 (2014) 210–218
    [5] http://wenku.baidu.com/view/4dab8c205901020207409c6e.html
    [6] U. Diebold, “The surface science of titanium dioxide”, Surface Science Reports 48(2003) 53-229
    [7] D. A. H. Hanaor, C. C., “Sorrell Review of the anatase to rutile phase
    transformation”, J Mater Sci (2011) 46 855–874
    [8] 裴潤,“硫酸法鈦白生產”化學工業出版社
    [9] http://www.chinabaike.com/z/fangzhi/1089536.html
    [10] http://wenku.baidu.com/view/4124623e5727a5e9856a616c.html
    [11] 施利毅, “微乳液反應法合成超細二氧化鈦粒子” ,功能材料 1999,30(5):495
    [12] 吳迎春, “液相法製備納米TiO2微粒的研究進展”, 鹽城工學院學報 2001,14(4):26
    [13] P. Hoyer, “Formation of a Titanium Dioxide Nanotube Array”, Langmuir 1996 ,12,1411-1413
    [14] 雷閆盈, “均勻沉澱法製備納米二氧化鈦工藝條件研究”, 無機鹽2001,33(2):3
    [15] G.K. Mor, O.K. Varghese, M. Paulose,K. Shankar, C.A. Grimes, “A review on highly ordered, vertically oriented TiO2 nanotube arrays : Fabrication, material properties, and solar energy applications”, Sol. Energy Mater. Sol. Cells90 (2006) 2011
    [16] G.E. Thompson, “Porous anodic alumina: fabrication, characterization and applications”, Thin Solid Films 297 (1997) 192
    [17] Gopal K. Mor, Oomman K. Varghese, Maggie Paulose, Karthik Shankar, Craig A. Grimes, “A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties,and solar energy applications”, Solar Energy Materials & Solar Cells 90 (2006) 2011–2075
    [18] Jinliang Tao, Jianling Zhao, Chengcun Tang, Yingru Kang and Yangxian Li, “Mechanism study of self-organized TiO2 nanotube arrays by anodization.”, New J. Chem., 32, pp. 2164-2168, 2008.
    [19] Yang Yang, Xiaohui Wang, Longtu Li, “Synthesis and growth mechanism of graded TiO2 nanotube arrays by two-step anodization”, Materials Science and Engineering B 149 (2008) 58–62
    [20] 陳一誠, “金屬氧化物半導體行氣體感測器”, 材料與社會, 68, pp. 62-66, 1992.
    [21] 黃炳照,”固態電解質電化學氣體感測器”, Chemistry (The Chinese Chem.Soc., Taipei), 59, pp. 207-217, 2001.
    [22] 曾明漢, "觸媒燃燒型氣體感測器”, 材料與社會, 68, pp. 57-61, 1992.
    [23] C.sonics , A. D’Amico, P. Verardi, and E. Verona, 1998 IEEE Ultrasonics Symposium Proc., pp. 549-554, 1988.
    [24] A. D’Amico, A. Palma, and E. Verona, “Palladium-surface acoustic wave interaction for hydrogen detection”, Appl. Phys Lett., 41, pp. 300-301, 1982.
    [25] A. D’Amico, A. Plama, and E. Verona, “Surface acoustic wave hydrogen sensor”, Sens. Acuatros, 3, pp. 31-39, 1982.
    [26] A. D’Amico, A. Plama, and E. Verona, “Hydrogen Sensor Using a Palladium Coated Surface Acoustic Wave Delay-Line”, 1982 IEEE Ultrasonic Symposium Proc., pp. 308-311, 1982.
    [27] A. D’Amico, A. Plama, and E. Verona, Proc. Of the 2nd International Meeting on Chemical Sensors, p. 743, 1985.
    [28] 張宏維,周鈺禎,蔡顯仁,徐慧萍,施正雄, “表面聲波氣體感測器之研製與應用”, Chemistry (The Chinese Chem. Soc., Taipei) December, pp. 487-498, 2007.
    [29] 吳泉毅、楊宗燁、林鴻明, ”奈米半導體材料之氣體感測性質”, 奈米科學, pp.405-415, 2003.
    [30] X. Wang, Sam Zhang, Lidong Sun, “A Two-step anodization to grow
    high-aspect-ratio TiO2” Thin Solid Films 519 (2011) 4694–4698
    [31] H. Wu, Z. Zhang, “Photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant on highly smooth and ordered TiO2 nanotube arrays”, Journal of Solid State Chemistry 184 (2011) 3202–3207
    [32] European Virtual Institute for Speciation Analysis (EVISA)
    [33] J.C. Zheng, “Preparation, Characterization and Application of Titania Nanotube Arrays in Dye-Sensitized Solar Cells” (2009)
    [34] http://www.kemi.dtu.dk/Forskning/Fysisk-Kemi/Raman_Spektroskopi
    [35] Gregory D. Smith, Robin J.H. Clark, “Raman microscopy in archaeological science”, Journal of Archaeological Science, 31, pp. 1137-1160, 2004.
    [36] http://chemlab.jlu.edu.cn/Guojiajingpinke/wuli/shyjchzhsh/xshexian1.htm
    [37] 國立台灣科技學X光繞射儀實驗室
    [38] B. R. Huang, Jun-Cheng Lin, Tzu-Ching Lin, Y. J. Chen “Aggregated TiO2 nanotubes with high field emission properties”, Applied Surface Science (2014)
    [39] Kansong Chen, Xinran Feng, Rui Hu, Yuebin Li, Kun Xie, Yang Li, Haoshuang Gu, “Effect of Ag nanoparticle size on the photoelectrochemical properties of Ag decorated TiO2 nanotube arrays”, Journal of Alloys and Compounds 554 (2013) 72-79
    [40] S.T. Nishanthi, S. Iyyapushpam, B. Sundarakannan, E. Subramanian, D. Pathinettam Padiyan., “Significance of crystallinity on the photoelectrochemical and photocatalytic activity of TiO2 nanotube arrays”, Applied Surface Science (2014)
    [41] Soon Hyung Kang, Wonjoo Lee, Yoon-Chae Nah, Kug-Seung Lee, Hyun Sik Kim “Synthesis of nanobranched TiO2 nanotubes and their application to dye-sensitized solar cells”, Current Applied Physics 13 (2013) 252-255
    [42] Y. J. Chen, “The application of TiO2 nanotubes coated with grapheme nanostructure” (2013)

    QR CODE